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Subclonal mutation selection in mouse
lymphomagenesis identifies known cancer loci
and suggests novel candidates
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Determining whether recurrent but rare cancer mutations are bona fide driver mutations

remains a bottleneck in cancer research. Here we present the most comprehensive

analysis of murine leukemia virus-driven lymphomagenesis produced to date, sequencing

700,000 mutations from >500 malignancies collected at time points throughout tumor

development. This scale of data allows novel statistical approaches for identifying selected

mutations and yields a high-resolution, genome-wide map of the selective forces surrounding

cancer gene loci. We also demonstrate negative selection of mutations that may be

deleterious to tumor development indicating novel avenues for therapy. Screening of two

BCL2 transgenic models confirmed known drivers of human non-Hodgkin lymphoma, and

implicates novel candidates including modifiers of immunosurveillance and MHC loci.

Correlating mutations with genotypic and phenotypic features independently of local variance

in mutation density also provides support for weakly evidenced cancer genes. An online

resource http://mulv.lms.mrc.ac.uk allows customized queries of the entire dataset.
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Increasing cohort sizes of human tumor sequencing has
revealed large numbers of rare clonal mutations, the con-
tribution of which is difficult to prove due to a lack of sta-

tistical power, giving rise to false positives and negatives1. It is
similarly challenging to determine how non-coding mutations,
large-scale copy number alterations, and epigenetic mechanisms
contribute to disease. The fraction of rare and non-coding
mutations that drive cancer is largely unknowable. The data
available to identify cancer drivers from tumor sequencing studies
could be increased through the inclusion of subclonal mutations
in both premalignant samples as well as mature tumors; however,
this requires numbers sufficient to demonstrate that the early
stages of selection have taken place. In this study, we use somatic
insertional mutagenesis in mice as a model to demonstrate that
low abundance mutations that are only rarely found as clonal
mutations in advanced-stage disease can be effectively employed
to identify known cancer drivers and differentiate rare disease-
causing mutations from passenger mutations.

Murine leukemia virus (MuLV)-induced lymphoma is an ideal
model to study selection of subclonal mutations. Cloning inte-
gration mutations by ligation-mediated PCR requires a fraction of
the sequencing coverage needed to identify other mutation types,
allowing large numbers of integration mutations to be identified
with unparalleled sensitivity. Furthermore, gamma retroviruses
are not subject to remobilization, can integrate in any sequence
context, and localized bias of the orientation of integrations can
be used as a measure of selection that is independent of regional
variation in integration density2.

Infection of newborn mice with MuLV causes a systemic life-
long viremia whereby viral integrations deregulate and truncate
nearby genes by diverse mechanisms, eventually causing hema-
tologic malignancies3. A high proportion of the recurrently
mutated loci correspond to known drivers of human malig-
nancies3,4. Historically, these screens focused on mutations pre-
sent in clonal outgrowths as evidence of their role in malignancy;
however, recent pyrosequencing of MuLV lymphomas has also
shown selection taking place within subclonal populations
of cells2.

Using a novel insertion site cloning protocol, that is able to
detect subclonal retroviral integrations with unprecedented sen-
sitivity, we cloned more than 3000 clonal and 700,000 subclonal
mutations across a spectrum of >500 MuLV-induced T cell and B
cell lymphoid malignancies from two BCL2 transgenic models
over a time course of lymphomagenesis. From these we find both
positive and negative selection of insertions throughout all stages
of lymphomagenesis, and that in late-stage disease both clonal
and subclonal populations identify more than 100 known cancer
drivers and regions implicated in non-Hodgkin lymphoma
(NHL) by coding mutations, copy number aberrations, and
genome-wide association studies (GWAS). This resource can be
used to prioritize rare but recurrent mutations from human
tumors for further study.

Results
An MuLV time course quantifies the transition to lymphoma.
To observe mutation selection during lymphomagenesis we
generated a diverse set of B cell and T cell-derived lymphoid
malignancies, sacrificing animals with advanced-stage disease, as
well as over a time series prior to disease development. Moloney
MuLV typically results in a T cell leukemia/lymphoma; however,
subtype and mutation profile can be skewed by genetic back-
ground and predisposing germline alleles5,6. To generate a diverse
spectrum of B and T cell malignancies we infected newborns on
two genetic backgrounds using two hBCL2 expressing transgenic
models, Vav-BCL2 (ref. 7) and Emu-BCL2-22 (ref. 8). The

t(14;18)(q32;q21) IGH/BCL2 translocation drives enforced
expression of the antiapoptotic protein BCL2 and is one of the
earliest and most common initiating mutations of follicular
lymphoma (FL) and diffuse large B cell lymphoma (DLBCL).
Overexpression of BCL2 is also frequently observed in B cell
chronic lymphocytic leukemia (CLL).

All mice developed lymphoid malignancies with latency
ranging 42–300 days (Fig. 1a–c), with enlarged spleens, thymuses,
and lymph nodes observed in all cohorts. Disease onset was
significantly accelerated by the Vav-BCL2 transgene (p= 0.0001)
(Fig. 1a) and by the Emu-BCL2-22 transgene on a C57BL/6
background (p= 0.0163) (Fig. 1c) compared with their littermate
controls. The F1 background developed lymphoma more rapidly
than equivalent C57BL/6 cohorts (Supplementary Figure 1).

Immunophenotyping of spleen cell suspensions of 345 animals
demonstrated variable B and T cell proportions in all cohorts,
reflecting the broad tropism of Moloney MuLV (Fig. 1d–f, gating
strategy outlined in Supplementary Fig. 2a). BCL2 transgenic
cohorts yielded a higher proportion of CD19+ B cell lymphomas
compared to wild-type mice (Fig. 1g), most notably in the Vav-
BCL2 cohort. Spleen suspensions segregate into two groups, with
either a majority of T cells or of B cells (Fig. 1h). T cell
lymphomas were primarily CD4+, less frequently CD4−CD8−
and rarely CD8+ or CD4+CD8+ (Supplementary Fig. 2b). B cell
lymphomas were generally immunoglobulin light chain positive
indicating a mature B cell phenotype (Supplementary Fig. 2c).
MuLV-infected Vav-BCL2 transgenic mice displayed a dispro-
portionate outgrowth of PNA+ CD95+ germinal center B cells,
and isotype switching to IgG as has been previously described in
this strain9 (Supplementary Fig. 2c, d).

To observe rates of selection of mutations in animals at all
disease stages we also generated cohorts sacrificed at days 9, 14,
28, 56, 84, and 128 post-infection and harvested spleens
(Supplementary Table 1). QPCR of virus transcript and copy
number indicated that virus replication was detectable at day 9
and reached saturation at day 14 (Fig. 2a, b). This suggests a high
proportion of mutagenesis occurs in the first 14 days post-
infection, with subsequent rare events of superinfection and
selective pressure shaping the mutation profile and the eventual
clonal outgrowth of late-stage lymphomas.

Retroviral integration sites from all animals were identified
using a novel Illumina HiSeq based protocol (a revision of
methods described in Koudijs et al.10 and Uren et al.11 and
summarized in Supplementary Figure 3 and the Methods
section). The protocol switches strands of the standard Illumina
adapter to prevent any non-MuLV library fragments from
amplifying and reduces the PCR cycles to 25 divided over two
nested steps. We sequenced libraries from the lymphoid organs of
355 diseased animals, 166 animals sacrificed at predetermined
time points, and from control DNAs (human and uninfected
mouse DNA as a measure of PCR artifacts). Sequencing these
libraries identified more than 700,000 unique integration sites, the
vast majority of which are represented by a single read, suggesting
the vast majority of integrations have not undergone clonal
expansion and that some may only represent a single DNA
molecule in the original sample.

MuLV generates tumors with 100% penetrance, resulting from
independent competing clones and/or related subclones within
each animal. We sought to distinguish the early stages of disease
prior to clonal expansion from rapidly dividing samples with
clonal outgrowth by using the relative abundance of mutations in
each sample. The relative clonality of integrations within each
ligation was estimated using the number of individual sheared
DNA fragments identified for each insert. A single clonal
outgrowth of pure tumor cells containing few mutations will
yield high coverage of each mutation, whereas a clonal outgrowth
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with dozens of concurrent mutations alongside a large proportion
of non-tumor DNA will yield low coverage for even the
most clonal mutation. For comparison between samples we
generated normalized clonality values (NC values) where the
most clonal integration within each sample was normalized to
a value of 1 (Fig. 2c).

Quantifying lymphoma progression by clonal outgrowth. In
Fig. 2c the 50 insertions with the highest NC values within each
sample are ordered by their relative abundance and plotted as bar
graphs. Early-stage samples from the time course had a flat profile
of subclonal mutations with the majority represented by a single
read/DNA fragment, whereas later stage lymphoma samples are
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dominated by outgrowth of up to 20 clonal integrations. Entropy
was employed as a description of the clonality of integrations
within each sample (based on the prior use of the Shannon
entropy to estimate clonal outgrowth of T lymphoma12 and in
mathematical models of leukemia13). Entropy calculations from
the 50 most clonal integrations yielded high scores for early-stage
samples and low scores for advanced-stage lymphoma.

To verify whether these clonality values for each insert were
reproducible, a series of test libraries were generated from two
spleen DNAs. The majority of mutations with NC above 0.1 were
found within all six libraries from the same DNA sample
prepared on four separate occasions (Supplementary Figs. 4–7).
This was truer for a lower entropy library (average entropy E=
3.29) with four distinct clonal integrations than a higher entropy
library (average entropy E= 3.56) with a more continuous
distribution of clonality. In general reproducibility is a function of
clonality and these results suggest clonal integrations can be
distinguished from subclonal integrations with some consistency,
although it cannot be ruled out that some integrations will be
underrepresented due to amplification biases and other artefacts
of library construction. We also generated a dilution series of two
spleen DNAs to demonstrate that clonal integrations can be
reproducibly detected when diluted 100-fold into a second DNA
sample (Supplementary Fig. 8) and that abundance is a function
of initial concentration. Results from these experiments are
discussed in detail in the legends of Supplementary Figures 4–8.

Entropy scores reduce the information of a clonality profile to a
single number and this number can vary between libraries of a very
similar shape (e.g. Supplementary Fig. 4a). As an independent
complementary approach, we used distance measures to cluster
clonality profiles by their shape. Both Dynamic Time Warping14

(DTW) and the Kolmogorov–Smirnov statistic were used to
measure the difference in shape between all insert profiles and a
distance matrix was constructed. Clustering on the DTW matrix
yields two clusters (Fig. 3a) that place the majority of early-stage
time course samples within the cluster with higher entropy values
>3.5 (Fig. 3b, c). These groups differed by only 19 of 512 samples
when using the Kolmogorov–Smirnov statistic (Supplementary
Data 1). Throughout the time course, entropy values remain high
until days 56 and 84 when an increasing fraction of samples display
lower values indicating clonal outgrowth (Fig. 3d). Overall, clonal
outgrowth is a function of mouse age and strongly correlates with
symptomatic disease. Diseased mice (i.e. those sacrificed due to
symptoms) with entropy >3.5 likely represent animals where
lymphoma cells had not disseminated to the spleen, but had
symptoms arising from other organs (thymus, lymph nodes). For
subsequent analyses, we define late-stage samples as those with
clonal outgrowth with a low entropy and use a cut-off of entropy
<3.5 and NC >0.1 to define late-stage clonal insertions (Fig. 3e, f).

Kinetics of mutation selection throughout a time course.
MuLV has integration biases that vary substantially throughout
the genome such that mutation density is insufficient to differ-
entiate selected driver mutations from passengers. For this reason,
we assessed selection over the time course to define driver

mutations. First, by limiting analysis to the 3051 clonal integra-
tions of the late-stage lymphomas we identified 311 common
integration sites (CISs) by Gaussian kernel convolution15 (GKC),
i.e., by estimating the smoothed density distribution of integra-
tions over the genome compared to random distributions (Sup-
plementary Data 2). Candidate genes were automatically assigned
using the KCRBM R package16. Examining all insertions within
100kb windows of clonal CIS peaks over all time points
demonstrated a gradual increase in the proportion of inserts at
these loci from day 9 through to late-stage lymphoma samples
(Supplementary Fig. 9a–c).

To quantify the significance of this selection we used
contingency table tests (Fisher’s exact) to compare the number
of integrations in windows surrounding loci in early-stage
mutations (days 9 and 14), late-stage clonal, and late-stage
subclonal mutations. Ranking loci using the exact test compar-
isons between early- and late-stage mutations yields similar
results using either subclonal or clonal mutations (Supplementary
Fig. 9d, Supplementary Data 2).

p-Values for all early/late, clonal/subclonal Fisher’s exact tests
for the top 50 clonal CIS loci are illustrated in Fig. 4 in the blue
heat map. In some cases, high ranking clonal CIS loci demonstrate
weak selection between early mutations and late-stage clonal
mutations (e.g. Bzrap, Rreb1), suggesting these are more likely to
be passenger mutations resulting from integration site biases of
MuLV. Late-stage subclonal mutations outnumber clonal muta-
tions by 100-fold. Including these subclonal mutations in the
analyses, i.e., comparing all late-stage integrations to early
mutations, reveals some CIS loci with selection that is more
significant than in clonal analysis alone (Supplementary Data 2),
including verified human cancer genes such as REL, EBF1, ERG,
ELF4, MYCL, KIT, and KDR. The finding of known cancer drivers
at these loci demonstrates that analysis of selection over a time
course offers an enlarged dataset from which to identify previously
validated cancer drivers and by extension, potentially identify
novel genes not previously implicated in disease.

We also considered other criteria as evidence for selection. A
recent study of MuLV-induced T cell lymphomas used orienta-
tion of integrations as evidence that there is selection for
deregulation of nearby genes2, i.e., loci bearing insertions that are
decidedly biased in one direction are likely to have undergone
selection for their effects on a nearby gene that would differ if the
insertion orientation were opposite.

The red heat map of Fig. 4 indicates that the majority of the top
50 clonal CIS loci also have a significant bias for integrations on
one strand or the other. We additionally observed phenotypic
bias (selection specific to B cell or T cell lymphoma, the yellow
heat map) and genotypic bias (selection in cooperation with
the BCL2 transgenes, the green heat map). The majority of the
top 50 clonal CIS loci demonstrate biases of strand specificity,
lymphoma subtype, and/or genotype specificity. Importantly
there is substantial overlap between all four selection criteria
(stage, orientation, immunophenotype, and genotype), suggesting
these criteria can be used in concert to provide corroborating
evidence for selection.

Fig. 1 Variable latency and immunophenotype of MuLV lymphoma from wild type and BCL2 transgenic mice. a The Vav-BCL2 transgene significantly
reduced latency on an F1 background. b, c The Emu-BCL2-22 transgene significantly reduces latency on a C57BL/6 background but not F1 background. The
Emu-Bcl2-22 C57BL/6 cohort had a significantly shorter latency than wild-type C57BL/6 controls and both C57BL/6 cohorts had longer latency compared
with F1 equivalents (Supplementary Fig. 1). d–f Stacked bar charts on the right represent the immunophenotyping of spleen suspensions from each cohort.
Each row represents one spleen. Colors in each row represent the proportion of B cells (blue CD19+) and T cells (yellow CD5+ CD4− CD8−, light orange
CD5+ CD8+, dark orange CD5+ CD4+ CD8+, and red CD5+ CD4+) in each sample. BCL2 transgenes increase the proportion of B cells in all cohorts
and the mixture of T cell lymphoma subtypes is highly variable. g The proportion of CD19+ B cells is increased by both BCL2 transgenes. h Histogram of all
CD19+ proportions from all cohorts combined is a bimodal distribution that can be segregated into those consisting primarily of B cells (>50%) and T cells
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Fig. 2 Quantifying the progression of MuLV replication and clonal outgrowth of resulting lymphoma. Virus copy number and expression level was
quantified by QPCR of genomic DNA (a) and RTQPCR of cDNA (b) extracted from spleen samples of time course animals. Error bars represent s.d. of 3
technical replicates per DNA/RNA sample. (c) Profiles of the relative abundance of the top 50 most clonal integrations from a cross section of mature
lymphoma (upper 2 rows) and time course samples (lower 4 rows) are represented as bar graphs. Non-adjusted clonality is indicated in blue, normalized
clonality (such that the most abundant integration has a value of 1) are the graphs in red. Asymptomatic animals from early time points display a relatively
flat profile whereas later time points and mice with symptomatic lymphoma show clear signs of clonal outgrowth. Shannon entropy values (E) are displayed
on each graph
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Identifying loci undergoing selection genome wide. The gold
standard for defining driver mutations is not only clonal out-
growth, but that the profile of mutations observed is significantly
skewed from the profile of background passenger mutations.
Rarity of clonal mutations within a region does not, however, rule
out selection in that region. Of the 300,000 integrations from late-
stage diseased animals, only a fraction are located within the

regions surrounding clonal CIS loci. To see if selection is observed
in regions outside clonal mutation CIS loci, we extended analysis
across the entire genome using both 10kb tiling and 100kb sliding
windows at 10kb intervals.

Examining the entire genome reveals significant local biases
for early versus late stage, strand bias, genotype, and immuno-
phenotype (B cell/T cell lymphoma). After multiple testing
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correction, we identified 174 late-stage specific loci with a false
discovery rate (f.d.r.) below 0.05, including dozens of windows
containing only subclonal insertions. (Supplementary Fig. 10 and
Supplementary Data 3). The Venn diagram in Fig. 5a illustrates
that there is substantial overlap of late-stage selected loci with
equivalent loci found to be strand specific (49 loci), and genotype
specific (37 BCL2 loci, 15 wild-type loci). This is also true for
immunophenotype specific loci (19 B cell loci, 11 T cell loci).
Although biases were observed for some loci between males and
females, none were found to be significant after multiple testing
correction.

In regions of high insert density subclonal mutations form a
high-resolution map of the selective pressures surrounding
known oncogenes. The distribution of integrations in different
subsets of samples is illustrated across a single chromosome
(chr15) in Supplementary Figure 1a. Tracks representing inserts
and the relative levels of selection across the genome (calculated
using Fisher’s exact test) indicates extensive selection outside
regions identified by GKC clonal inserts. The central region of
chromosome 15 (chr15:62,000,000–63,000,000) with the highest
concentration of late-stage integrations is the Myc/Pvt1 locus
(Fig. 5b). The surrounding region harbors multiple clusters of
selection spanning from upstream of Myc and extending through
multiple clusters downstream as far as the Gsdmc gene family
locus (Supplementary Fig. 11b). This distribution of selected
mutations over a 2Mb region concurs with the recent finding that
copy number gains of the entire segment, incorporating Myc,
Pvt1, and the Gsdmc family locus, is required to give acceleration
of cancer in mouse models17.

Orientation or strand bias is a unique criterion, in that it is
independent of the integration biases of MuLV that may be
influenced by cell type or genotype. To validate that orientation
bias is indeed a function of selection we calculated bias using
equal numbers of integrations from early- and late-stage cohorts
(i.e. 80,000 integrations). No loci from the early-stage inserts are
significant after multiple testing correction, but the late-stage
insert subset identifies 16 loci. This illustrates that the increased
significance of strand bias in the late-stage cohort is not merely a
function of greater statistical power from larger number of
integrations, but rather evidence of selection for integrations that
deregulate or disrupt genes (Supplementary Data 4).

Selection effectively identifies known human cancer drivers.
Supplementary Data 5 lists all candidate genes associated with
one or more of our selection criteria. Supplementary Data 6 lists
the subset of these loci corresponding to genes from the cancer
gene census18; in total 47 genes located at 43 loci. Of the 47 genes,
27 map within 200,000kb of a clonal CIS with a p-value <0.05
(Fisher’s exact test); however, an additional 21 genes at 20 loci are
implicated by subclonal selection criteria that were not identified
by clonal CIS demonstrating subclonal mutations can provide
additional statistical evidence to implicate cancer drivers for loci
lacking sufficient clonal mutations to make this determination.

We also compared the list of candidate genes identified by any
criteria with a set of 12 cohorts of hematological malignancies
present in the cBio portal19. All protein coding candidates
generated by KCRBM (without curation) or the curated candidate
gene lists were used to identify human orthologues using
BioMart (http://www.ensembl.org/biomart/martview/). The set
of 78 MuLV candidate genes found mutated in two or more
samples from any study is depicted in Fig. 6a. For the majority of
cohorts we find significant overlap between either the KCRBM
candidates or the curated genes (Fig. 6b and Supplementary
Data 7). We see most overlap with a pan NHL study (consisting
of DLBCL and FL) and cohorts of mature B cell-derived
lymphoma (DLBCL, MM, MCL). Importantly the overlap is also
significant when examining the set of genes mutated only once
in each study, i.e., the set of most rarely mutated genes from
most cohorts overlaps significantly with the candidate lists,
demonstrating this dataset can be used as corroborating evidence
for rarely mutated genes in human sequencing cohorts.

Across the set of genes identified there is a notable prevalence
for genes that are known to be deregulated by translocations and/
or copy number aberrations as well as those found in GWAS in
humans. Using a list of 278 selected regions identified in this
screen by any criteria, 273 were mapped unambiguously to an
orthologous region on Hg19. We overlapped this set of loci with
focal copy number aberrations of five human studies of mature B
cell lymphoma and found a significant degree of enrichment in
four of the five datasets (Supplementary Table 2).

Recurrent large-scale copy number changes in human B NHL
suggest the involvement of multiple genes within these regions.
We find corresponding loci where selection is evident over large
regions incorporating multiple genes. Aside from the above-
mentioned Myc/Pvt1/Gsdmc family locus (Supplementary
Fig. 11b), we see selected regions surrounding the Rel/Bcl11a
locus (orthologous to human 2p12–16 amplicons of CLL and
DLBCL Supplementary Fig. 11c), the Slamf gene family which
regulate lymphocyte survival, activation, and co-stimulation
(orthologous to human 1q21–23 amplicons of multiple myeloma
and DLBCL Supplementary Fig. 11d), and the Gimap gene family
of GTPases that also regulate lymphocyte survival and develop-
ment (orthologous to amplicons of the distal arm of human 7q
seen in FL, DLBCL, and Burkitt lymphoma) (Supplementary
Fig. 11e). We also see selected loci spanning the region
surrounding Prdm1 (orthologous to deletions of human 6q21 in
B cell NHL and other hematologic malignancies Supplementary
Fig. 11f).

The use of BCL2 transgenic animals expands the scope of
mutations identified beyond loci typically identified by MuLV in
wild-type animals. Of 37 loci that are BCL2 transgene specific,
and 19 loci that are B cell specific, we find selected regions near
known B cell lymphoma and leukemia drivers, including Pou2f2,
Ebf1, Ikzf3, and Bcl6. The most specific locus for both BCL2
transgenic animals and for B cell lymphoma is Pou2f2
(Supplementary Fig. 11g) which is recurrently mutated in human
FL and DLBCL. Recurrent missense mutations reduce Pou2f2

Fig. 3 Using distance-based measures and entropy as indicators of clonal outgrowth of lymphoma. a Dynamic Time Warping was used to cluster clonality
profiles of all samples and identifies two major groups; early-stage samples (blue) and samples undergoing clonal outgrowth (red). Near identical clusters
were obtained using the Kolgomorov–Smirnov statistic (Supplementary Data 1). b Samples are plotted comparing entropy score by rank and individual
samples are colored by cluster branch, indicating both entropy scores and clustering give a similar bifurcation of samples. c Distribution of entropy scores
between the two clusters indicates an entropy value of 3.5 effectively separates the groups. The mean (horizontal line), ±1 s.d. (box), and ±2 s.d. (vertical
line) are indicated. d Distribution of entropy scores between different time points indicates a progressive increase in the frequency of clonal outgrowth
(mean (horizontal line), ±1 s.d. (box), and ±2 s.d. (vertical line)). Superimposing the clonality profiles of all samples within each cluster indicates consistent
shape within the low entropy group (e) and within the high entropy group (f). A normalized clonality value of 0.1 is used to differentiate clonal and
subclonal mutations within the late-stage clonal outgrowth samples
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transactivation activity and B lymphoma cell lines expressing
these have a survival advantage20, conversely DLBCL cell lines
appear to be addicted to POU2F2 expression21. The position of
these insertions within several known tumor suppressor genes is
suggestive of disruption. Similar intragenic distributions of
integrations have previously been described for the tumor
suppressor Ikzf1 which is mutated or deleted in both B and T-
ALL22,23 (Supplementary Fig. 11h), and this pattern is also
observed for the tumor suppressors Ikzf3 and Ebf1 (Supplemen-
tary Figures 11i, j), both of which have inactivating mutations
in FL and DLBCL but more typically B-ALL22,24–26. Cxxc5 (late-
stage specific) also has a similar pattern of intragenic integrations
(Supplementary Fig. 11k) and is deleted and epigenetically
silenced in acute myeloid leukemia27. The majority of our
insertions at the Pou2f2 locus are intragenic, consistent with the
tumor suppressor function observed in FL.

MuLV is known to deregulate genes via a diverse set of
mechanisms including distal interactions of virus enhancers via 3D
conformation of the genome28. The integration bias of MuLV for
enhancers29 and capacity for long-range interactions likely explains
the clusters of late-stage/strand biased/genotype specific integrations
observed around gene poor loci. To identify candidates most likely
to cause disease, we searched for additional evidence in the
literature supporting the role of candidate genes in hematologic
malignancies, with an emphasis on data from human lymphoid
malignancies and a particular focus on BCL2-driven B cell
lymphoma. Supplementary Data 8 lists evidence for 194 genes
from our list of candidates flanking selected loci. Some candidates
are only implicated by one or two studies, and as such this dataset
provides independent experimental corroboration. In addition to 47
genes identified in the cancer genome census we also find 30 genes
identified in the Intogen mutational cancer driver gene list30.

To identify genes that had their expression or transcript
structure deregulated by insertions (and the mutation clonality
required to observe this) we sequenced RNA samples from a

subpanel of 26 BCL2 transgenic tumors. Isolated fusion transcripts
were identified throughout the genome (Supplemental Data 9). The
most frequent and clonal fusion transcripts identified were in the 3′
UTR of Mycn, causing upregulation of expression (Supplementary
Fig. 12a, b and Supplementary Data 9) as observed in previous
studies31. Another tumor had two intragenic fusions within
Notch1, this tumor having the highest Notch1 expression of all
26 (Supplementary Fig. 12c, d). Insert clonality corresponds to
transcript read numbers, with subclonal integrations (NC <0.1) in
these tumors giving few if any detectable transcripts.

Selection of loci implicated by GWAS of lymphoma. In a pre-
vious study we found overlap between CIS loci and loci associated
with familial CLL6. Supplementary Data 10 summarizes the lit-
erature of GWAS studies of ALL, FL, and DLBCL comprising 26
loci implicated in one or more studies. Of 278 loci from our study
that were significant by any criteria 14 overlap with the set of 25
candidate genes (a significant enrichment by Fisher’s exact test p
< 0.0001). The IKZF1 and PIP4K2A/BMI1 loci are associated with
ALL32,33. GWAS of mature B cell lymphomas have identified
associations with FL (LPP, HLA loci, PVT1, CXCR5, ETS1, and
BCL2) and with DLBCL (LPP, EXOC2, HLA-B, and PVT1)34,35.

The second most specific locus for BCL2 transgenic mice is
Cd86 (late-stage, strand bias, BCL2), which is suggestively
implicated by two GWAS studies of FL and DLBCL34–36. We
additionally find other loci encoding co-stimulatory/co-inhibitory
signaling (Supplementary Figures 11l–p). The loci encoding Cd86
ligands Ctla4 and Cd28 and their neighboring homolog Icos show
late-stage-specific selection, and polymorphisms in this region
have also been associated with various NHL subtypes37. The B7
family and their receptors are also implicated by insertions near
Icoslg (late stage) and the Cd274 (Pdcd1lg1) and Pdcd1lg2
locus (late stage with f.d.r.= 0.081) as is their receptor Pdcd1 (late
stage). Pdcd1lg2 is amplified and rearranged frequently in primary
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DLBCL 58 889 889 31 0.0000 2.83 42 0.0000 3.02 531 23 0.0000 3.50 26 0.0000 3.04 358 8 0.1137 1.69 16 0.0006 2.71

PCNSL 10 235 235 9 0.0048 2.97 13 0.0003 3.39 108 4 0.0589 2.83 4 0.1196 2.18 127 5 0.0292 3.03 9 0.0004 4.38

MM 205 892 892 31 0.0000 2.82 37 0.0000 2.60 597 17 0.0033 2.21 20 0.0042 2.01 295 14 0.0001 3.77 17 0.0000 3.56

MCL 29 46 46 5 0.0004 9.04 3 0.0458 3.96 19 2 0.0267 8.64 1 0.2837 3.14 27 3 0.0056 9.21 2 0.0797 4.54

ALL 57 35 35 3 0.0116 6.90 4 0.0031 7.35 10 0 1.0000 0.00 2 0.0124 14.18 25 3 0.0045 10.05 2 0.0697 4.93

ALL 40 98 98 3 0.1470 2.32 6 0.0073 3.72 46 0 1.0000 0.00 4 0.0083 5.42 52 3 0.0332 4.51 2 0.2289 2.27

CLL 506 837 837 25 0.0002 2.36 40 0.0000 3.04 592 13 0.0598 1.67 20 0.0039 2.03 245 12 0.0001 3.88 20 0.0000 5.24

CLL 160 397 397 11 0.0197 2.12 16 0.0017 2.43 248 6 0.1207 1.83 7 0.1431 1.65 149 5 0.0520 2.56 9 0.0012 3.69

ML 200 314 314 10 0.0107 2.45 15 0.0004 2.91 181 4 0.2294 1.66 7 0.0395 2.30 133 6 0.0095 3.50 8 0.0023 3.67

CTCL 42 460 460 6 0.5912 0.96 17 0.0031 2.22 287 3 0.7472 0.77 6 0.3829 1.21 173 3 0.4147 1.29 11 0.0002 3.92

S
T

A
T

3

Fig. 6 Overlap of CIS loci with exome sequencing studies of hematologic malignancies. Human orthologues were identified for all candidate genes (an
automated list KCRBM, and a curated list) using biomart and compared to lists of genes with coding mutations in 12 cohorts of hematologic malignancy in
cBio portal. a All genes found mutated in at least two samples over all cohorts are listed with mutation counts from each cohort. The full overlap for all
cohorts is listed in Supplementary Data 7. b The significance of overlap between the set of candidate orthologues and the set of mutated genes in each
study is calculated using a Fisher’s exact test
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mediastinal large B cell lymphoma38 and increased expression is
speculated to inhibit anti-lymphoma T cell responses39.

Late-stage biased insertions are located near theH2-D/H2-Q locus
(orthologous to the MHC I HLA-B/C loci) and BCL2 transgenic
biased clusters are found near the MHC Class II beta chains H2-Ob,
H2-Ab1, H2-Eb1, and alpha chains H2-Aa, H2-Ea-ps(orthologous
to the MHCII HLA-DRB/HLA-DQB loci) (Supplementary Fig. 11q).
Aside from the abovementioned GWAS associations both regions
are deleted in human DLBCL40–42. There are also suggestive clusters
of late-stage insertions surrounding the MHC Class I components
H2-T24/T23/T9/T22/BI/T10/T3/Gm7030 (equivalent to the HLA-E
locus) and the MHCII alpha/beta chains H2-Oa/H2-DMa/H2-DMb
(equivalent to the HLA-DOA/HLA-DMA/HLA-DMB region),
suggesting roles for both classical and non-classical MHC
components in MuLV lymphoma progression. While loss of
MHC loci (or lowered expression) in human B malignancies likely
results from selection to escape antitumor immune responses,
viruses that drive human lymphoid malignancies (such as Epstein
Barr virus and human T cell leukemia virus) encode mechanisms to
avoid host immune responses. As such in the context of MuLV
infection mutations at MHC loci may represent selection against
host antiviral responses rather antitumor responses.

Negative selection of mutations throughout lymphomagenesis.
Intriguingly we observed many loci throughout the genome that
are early-stage specific i.e. undergoing negative selection between
early- and late-stage cohorts, suggesting these integrations
become detrimental to survival and expansion of developing
lymphoma cells. The most significant of these is the Smyd3 locus
where intragenic insertions surrounding exons 6–8 are present to
a significantly lesser extent in the late-stage lymphomas samples
(Supplementary Fig. 11r). SMYD3 is a methyltransferase that
methylates H3K4 and H4K5 and overexpression has been
observed in a variety of tumor types. SMYD3 methylation of
MAP3K2 activates MAP kinase signaling and loss of Smyd3
delays development of both pancreatic and lung tumors43. Pre-
sumably integrations that disrupt Smyd3 expression are detri-
mental and hence selected against in lymphomagenesis. SMYD3
loss potentiates the effects of MEK1/2 inhibition on tumor
growth43 and SMYD3 inhibitors have been shown to inhibit the
growth of tumor cell lines44. The example of the Smyd3 locus
demonstrates the potential for time course mutation analysis to
not only identify cancer drivers, but also potential targets that
while not mutated, are essential for tumor cell growth.

Co-mutation analyses using subclonal mutations. Under-
standing which genes cooperate in lymphomagenesis can inform
the biology and subtype of disease; however, co-mutation analyses
of subclonal mutations is complicated by the potential presence of
multiple independent subclones. When using contingency table
tests (such as Fisher’s exact test) loci undergoing frequent
mutation at the subclonal level will automatically be found co-
mutated in the majority of samples (e.g. Gfi1 and Myc). To
counter this effect, we performed co-mutation analysis limiting
analysis to clonal mutations (NC >0.1). Using only clonal
mutations only a handful of loci survived multiple testing cor-
rection, (Supplementary Fig. 13a, Supplementary Data 11). To
counter the reduced power caused by limiting analysis to clonal
mutations, we categorized tumors by clonal mutations at each
locus (i.e. classifying each tumor as having an insert in each
window or not), and then counted the frequencies of mutations in
all other windows (both clonal and subclonal). The latter
approach provides greater statistical power than exclusive use of
clonal mutations (Supplementary Fig. 13b) but reduces the
number of false positives created by loci frequently found to have

subclonal mutations. Importantly this approach incorporating
subclonal mutations allows dozens of window pairs to survive
multiple testing correction.

We have previously demonstrated that co-mutation analysis
can be compromised by the pooled analysis of phenotypically and
genotypically distinct groups, which creates false positives from
genes that are co-mutated or mutually exclusive due to a primary
association with tumor subtype rather than other mutations6. For
this reason, we also calculated f.d.r. values for each of the
genotypes separately (Supplementary Data 11) and devised an
online tool that allows subsets of tumors with restricted
phenotypes, genotypes, and mutation profiles to be queried.
http://mulv.lms.mrc.ac.uk/coocc/index.php.

Discussion
In this study we present the most comprehensive analysis of
MuLV-driven lymphomagenesis produced to date, identifying
700,000 mutations from 521 infected animals with an average of
more than 1000 subclonal mutations per sample. By developing a
framework that incorporates mutation frequencies of all inte-
grations in both early- and late-stage tumors, we enhance the
statistical power enabling the identification of known driving
events in cancer and further implicate dozens of novel loci in the
biology of lymphomagenesis, in some cases independently of
evidence of clonal expansion.

The resolution of mutation coverage illustrates considerable
complexity in the position and orientation of selected integrations
in the vicinity of verified cancer drivers and suggests unchar-
acterized locus-specific mechanisms by which these mutations
modify expression in a position dependent manner. The online
repository (http://mulv.lms.mrc.ac.uk) allows researchers study-
ing lymphoid malignancies to query custom subsets of data for
genome-wide associations of a gene of interest with tumor type
and mutation status, and create custom tracks for the UCSC
genome browser45. Tracks on the UCSC genome browser can also
be browsed to examine the selection biases at specific loci of
interest http://mulv.lms.mrc.ac.uk/ucsc/index.php) and subsets of
tumors can be queried to identify co-mutated genes within phe-
notypically/genotypically matched lymphomas.

Recent whole-genome sequencing of cohorts of hundreds of
patient samples illustrates the challenges of identifying driver
mutations outside the exome46,47. Recurrent clonal mutations
follow a power law distribution, with statistically intractable rare
events making up the bulk of mutations in many tumor types.
Proving which of these contribute to disease remains a bottleneck
that can only be partly alleviated by larger cohort sizes. While the
clonal mutations in MuLV-driven tumors match a similar power
law distribution, selection of mutations identified at the subclonal
level strongly correlate with clonal mutations and/or known
cancer drivers, suggesting that these mutations can provide sta-
tistical support for the role of rarely recurrent clonal mutations.
Reanalysis of existing cohorts of tumors from other insertional
mutagenesis screens alongside equivalent non-malignant tissue
may greatly expand the yield of cancer drivers identified as well as
eliminate false positives.

Many tumor types display background mutation rates that vary
throughout the genome. For instance, mature B cell lymphomas
are in part driven by aberrant somatic hypermutation48.
This variation can confound the identification of driver mutations
outside non-coding regions. The overlap we find between inde-
pendent criteria as evidence of selection (disease stage, tumor
type, genetic interactions, and strand bias) using a mutagen that
exhibits strong regional variation in distribution demonstrates it
is possible to use these criteria as a mitigant of regional variation
in mutation frequencies. Furthermore, visualizing this selection as
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a continuum at multiple scales using multiple parameters allows
intuitive differentiation of recurrent selection in non-exonic
regions from mutation hotspots.

Proving that deregulated but intact open reading frames are
cancer drivers is problematic, particularly for tumor types such as
CLL where the number of coding mutations per cancer genome is
low and substantial epigenetic deregulation has been observed49.
Aside from genes with a supporting role in the literature, this
study implicates hundreds of other candidates with equal sig-
nificance that can be used as a resource to prioritize the study of
human cancer drivers and potential therapeutic targets.

Targeted resequencing of recurrently mutated genes in CLL has
demonstrated that coding subclonal mutations also undergo sig-
nificant selection and even convergent evolution50. Currently
selection of subclonal mutations in cancer is difficult to prove
outside the coding regions of known cancer drivers, in part
because the error rates of existing NGS platforms limit detection
of single-nucleotide allele frequencies to >1%. Novel technologies
for detection of lower abundance mutations are in development51–
53, although their throughput and coverage is limited. This study
demonstrates the value of applying genome wide, subclonal
mutation detection in both malignant and non-malignant tissue.
Incorporating these into a framework that combines tumor gen-
otype and phenotype not only provides supporting evidence for
rarely mutated cancer drivers but also potentially widens the
spectrum of genes encoding therapeutic targets.

Methods
Animal work. All procedures were performed in accordance with the UK Home
Office Animals (Scientific Procedures) Act 1986. BCL2-22 (B6.Cg-Tg(BCL2)
22Wehi/J, http://jaxmice.jax.org/strain/002318.html) were bred with wild-type
C57BL/6 and BALB/c mice (Charles River, UK). C57BL/6 Vav-BCL2 mice
were bred with wild-type BALB/c mice to produce (BALB/c x C57BL/6) F1
Vav-BCL 2 mice.

MuLV was prepared by transfection of 293T cells with the plasmid pNCA54

(provided by Stephen Goff, Addgene 17363). Newborns were injected
intraperitoneally with 50 μl MuLV supernatant. Mice were weighed weekly and
monitored three times per week for signs of illness. Mice (infected and matched
controls) in the time course cohort were sacrificed and lymphoid organs harvested
at predetermined time points, prior to disease onset (9, 14, 28, 42, 56, 84, and
112 days). Survival cohort mice were sacrificed upon developing advanced
symptoms of lymphoma and lymphoid organs were harvested and snap frozen in
liquid nitrogen immediately. Cell suspensions of spleen tissue were prepared in
all cases using the gentleMACS Dissociator (Miltenyi Biotec) set to programme
m_spleen_1.01.

Flow cytometry. Cryopreserved spleen suspensions were defrosted and washed
twice in buffer, PBS-2% fetal calf serum and incubated with 2.0 μg Fc block per 106

cells for 15 min. The samples were then incubated with the antibody cocktails (1 in
200 dilution per antibody) for 15 min after which they were washed. The majority
of samples were processed using the Attune NxT Acoustic Focusing Cytometer,
Life Technologies, and the remainder were processed on a BD LSRII. All analyses
were performed using FlowJo v10.2.

Antibodies used for the general staining panel: Cd3-AF700 Biolegend 197780,
Cd4-PerCP-Cy5.5 Biolegend 100434, Cd5-PE Biolegend 100608, Cd8a FITC
Biolegend 100706, Cd19-BV421 Biolegend 115538. Additional antibodies: B220/
CD45R-BV510 Biolegend 103247, IgD-APC-Cy7 Biolegend 405716, IgM PE
Biolegend 406508, IgG1-FITC BD Bioscience 553443, IgG2a/2b FITC BD
Bioscience 553399, IgG3-FITC BD Bioscience 553403, Kappa-AF700 Biolegend
409508, Lambda-APC Biolegend 407306, CD95-PECy7 BD Bioscience 557653,
PNA-FITC Vector Laboratories FL-1071. Fc block TruStain fcX™ anti-mouse
CD16/32, Biolegend 101320.

MuLV quantification. qPCR was performed using primers that had been opti-
mized to exclude amplification of endogenous retroviral sequences similar to
MuLV. 5′-GTATGGGCAACTTCTGGCAAC-3′ (forward) and 5′-GAGGGAGG
TTAAAGGTTCTTCG-3′ (reverse) amplified a 204 bp region of MuLV in infected
mice. Gapdh was used as a control gene using primers 5′-TGCACCACCAACT
GCTTAG-3′ (forwards) and 5′-GGATGCAGGGATGATGTTC-3′ (reverse).

For qPCR of MuLV integration copy number DNA concentration was adjusted
to 50 ng/μl and 1 μl put into a reaction volume of 20 μl which also included 10 μl of
reaction buffer, 0.6 μl of each primer (10 μM stock concentration), and 7.8 μl of
H2O. For RTqPCR of MuLV expression levels, RNA was treated with DNase1, (Life

Technologies; 18068-015) using a 0.5 μg input of RNA. cDNA was made using
SuperScript II Reverse Transcriptase (Life Technologies; 18064) of random primers
and treated with Ribonuclease H (Life Technologies; 18021-071). cDNA was
diluted 1/5 and then 1 μl amplified. The MESA Blue qPCR MasterMix Plus for
SYBR® Assay No Rox kit (Eurogentec; RT- SY2X-03+NRWOUB) was used for
amplification. Cycling conditions were 95 °C for 5 min, followed by 39 cycles of 95 °
C for 15 s, 60 °C for 60 s followed by a plate read, and then a melt curve from 65 °C
to 95 °C incrementing of 0.5 °C every 5 s.

Integration site cloning and GKC CIS identification. To clone virus integrations
we integrated the method of Koudijs et al.10 and Uren et al.11 and modified these
for the Illumina platform. DNA was extracted using either the AllPrep DNA/RNA
96 Kit (Qiagen; 80311) or the single sample version of AllPrep DNA/RNA Mini Kit
(Qiagen; 80204) as per the manufacturer’s instructions. Disposable pestles were
used to disrupt tissues in a microfuge tube and the QIAshredder (Qiagen; 79656)
was used to homogenize tissues. DNA was quantified using the Qubit® dsDNA HS
Assay Kit (Life Technologies; Q32854).

Fifty-five microliters of 20 ng/μl DNA was sheared in a Covaris 96 microTUBE™
Plate (LGC Genomics; 520078) on the Covaris E220 Sonicator with the E220
Intensifier (pn500141). Peak Incident Power 175W, Duty Factor 10%, Cycles per
Burst 200, Treatment Time 55 s. DNA fragments were blunted using NEBNext®
End Repair Module (NEB; E6050L) as per the manufacturer’s instructions but with
a reaction volume modified for the volume of DNA. Blunted fragments were then
cleaned using Agencourt AMPure XP magnetic beads (Beckman Coulter; A63880)
and A-tailed using the NEBNext® dA-Tailing Module (NEB; E6053L). Samples
were again cleaned and ligated to a unique adaptor using T4 DNA Ligase (NEB;
M0202L). Ligations were digested with EcoRV-HF® (NEB; R3195L) at 37 ˚C,
overnight. Samples were then cleaned and size selected using Agencourt AMPure
XP magnetic beads.

Fragments of mouse genome containing MuLV integrations were enriched by
nested PCR performed using the Phusion Hot Start II High-Fidelity DNA
Polymerase kit (Thermo Scientific, F549L). In the primary PCR a primer to the
virus LTR (5′-GCGTTACTTAAGCTAGCTTGCCAAACCTAC-3′) and to the
index containing adaptor (5′-AATGATACGGCGACCACCGAGATCTACAC-3′)
were used in a 50 μl reaction volume containing 28.5 μl DNA, 10 μl of 5× buffer, 1
μl of 10 mM dNTPs, 2.5 μl of each primer (10 μM), 0.5 μl of Phusion Hot Start II
High-Fidelity DNA Polymerase and 5 μl (0.1× final concentration) of SYBR® Green
I nucleic acid gel stain, 10,000× in DMSO (Sigma-Aldrich; S9430). qPCR cycling
conditions were 98 °C for 30 s, followed by 11 cycles of 98 °C for 10 s, 66 °C for 30 s,
and 72 °C for 30 s, and finally 72 °C for 5 min. Cleaned primary PCR products were
quantified using Qubit® and 50 ng was further enriched by using the same adaptor
primer and a second nested LTR primer. This primer also contained a second index
in order to create more unique index combinations enabling more samples to be
pooled per sequencing run. Reaction volumes and cycling parameters were the
same as for primary PCR. Secondary PCR products were cleaned and then size
selected as described above with a final elution volume of 30 μl.

Each of the 96 samples in each plate were quantified using Qubit® and 25 ng of
each sample used to compile a library. Each sublibrary of 96 samples was quantified
for amplifiable fragments by qPCR using the KAPA Illumina SYBR Universal Lib
Q. Kit (Anachem; KK4824) as per the manufacturer’s instructions with DNA
dilutions of 1/100, 1/1000, 1/10,000. Equal amounts of each library of 96 were
combined to give the final library used for sequencing.

HiSeq sequencing and insertion mapping. Libraries were denatured and
sequenced on the Illumina HiSeq 2500 using paired end 100 bp reads and dual-
indexes of 8 bp following Illumina’s standard protocol. Illumina sequencing Bcl
files were demultiplexed (based on the barcode index sequences) and FASTQ files
generated using Illumina CASAVA version 0.3.0.0. Adapter and LTR sequences
were trimmed (allowing two mismatches) and low-quality reads removed. Reads
were concatenated in a unique file for each sample and aligned to the mm10
reference mouse genome assembly. For each alignment against the reference, the
genomic position and orientation was extracted. The list of paired and mapped
reads for each sample was tabulated.

Reads with the same orientation and an LTR position within a window of 10
bases of each other were clustered and considered as a single insertion. All the
inserts were built by clustered LTR positions, and each one of them assigned a
unique ID, chromosome, orientation, sample ID, minimum LTR position, and
maximum LTR position from the alignment. Control uninfected mouse DNA and
human DNAs were sequenced to identify any PCR artifacts that might be
attributable to cross-contamination of reagents/adjacent wells (which would be
found in human DNA) or mispriming events on the mouse genome. All inserts
shared between two or more mice were flagged for deletion and only the earliest
cloned example of each replicate insertion was kept. Where two replicate inserts
were cloned simultaneously one was kept only if it was 10 fold more clonal than all
other inserts on the same day. This filtering minimizes the effect of recurrent PCR
artefacts and prevents cross contamination from creating false co-mutations.
Filtered inserts were used for all analyses except the RNA seq/insert comparison
which used unfiltered insertions. All analyses in this paper were performed on a
single sample of each spleen. Clonality (relative abundance of individual insertions
in a given sample) was then calculated as the number of fragments divided by the
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total number of fragments in the sample. NC was calculated by normalizing all
insertions in each sample/DNA sample such that the most clonal integration had a
value of 1.

Insertion site statistical analyses. Identification of CIS by Gaussian Kernel
Convolution: CIS loci were identified using the implementation of CIMPL(15)
distributed within the KCRBM (16) package (provided by J. de Ridder and J. de
Jong). Target genes were automatically assigned using the KCRBM package.
Additionally, each locus was manually inspected to assign curated genes.

Co-mutation analyses: Co-mutation analyses were performed using all late-
stage inserts within a 100 kb windows surrounding the list of loci identified by
GKC. For each locus two-tailed Fisher’s exact tests were performed using only
clonal inserts (NC>0.1) or by classifying samples with clonal inserts at one locus
and then counting the distributions of all inserts at the second locus regardless of
clonality.

Entropy quantitation. Clonality values among the early-stage samples are rela-
tively uniform, while late-stage samples present few integrations with very high
clonality values and most with low clonality values. To quantify this difference and
thus be able to order samples from pre-malignancy to late-stage lymphoma we
used Shannon entropy55. The 50 highest clonality values c1; c2; ¼ ; c50 were
transformed into probabilities pi:

pi ¼
ciP50
j¼1 cj

:

The Shannon entropy E over a set of probabilities p1; p2; ¼ ; pn is defined as

E ¼ �
X

i

pi log pi:

The entropy quantifies the spread of a distribution: it is zero when a single pi is
equal to one and all others are equal to zero, and reaches its maximum value when
the probabilities are uniformly distributed (pi= 1/50 for every i). Probabilities from
early-stage samples are closer to a uniform distribution and therefore the samples
will have high entropy values, while the probabilities from late-stage samples are
closer to a spike, providing low entropy values.

Clustering. Samples were clustered based on the shape of clonality profiles. The
top 50 ranked clonal insert NC values of each sample were compared to all other
samples using dynamic time warp (dtw package) or the Kolmorogov–Smirnov test
(ks.dist() function) as a measure of difference between samples (with the R
package, function dist() takes as input the list of NC values and the method chosen
-“DTW”-). A distance matrix that was clustered using the “average” linkage
method (using the R hclust() function).

Fusion transcript detection. The Virusfinder package56 was used to identify high-
quality evidence for fusion transcripts between cellular RNA and MuLV tran-
scripts. Chimeric reads mapping to these transcripts were then remapped and
visualized using Geneious.

Statistical analysis. Genome-wide scanning for selected insertions: A scanning
100kb window is moved across the genome in increments of 10 kb. For each
window the number of insertions in each class (early/late, forward strand/reverse
strand, BCL2 transgenic/wild type) is counted and the likelihood of this distribu-
tion between groups is estimated using two-tailed Fisher's exact test. By comparing
neighboring windows, p-value minima are identified (i.e. windows where the p-
value is higher on either side). Where minima are less than 100,000 bp from each
other the position with the lowest p-value is kept and others discarded. To estimate
false discovery rates all insert/group assignments are randomized (e.g. the same
number of inserts are early/late but the assignment is random). Local p-values are
calculated and p-value minima are identified. In all, 1000 permutations are used to
determine the rate at which each p-value is identified by chance.

Cohort comparisons: Survival comparison of cohorts was performed using
Prism 6. Significance of the differences in the proportion of B cells in cohorts was
determined using Prism 6 Student’s t-test.

Ethics approval. Animal work in this manuscript was carried out in compliance
with the Animals (Scientfic Procedures) Act 1996 UK under project license number
70/7353 at designated establishment 70/2722 X32FDCFC1 Imperial College Lon-
don and experiments were approved by the Imperial College Animal Welfare and
Ethical Review Body.

Code availability. Custom scripts utilized in this manuscript are available at
https://github.com/anthonyuren/MuLV_pipeline for integration site processing,
and for any other analyses from the authors upon request.

Data availability. The integration site and RNAseq sequence reads mapped to
mouse build mm10 are available in the NCBI sequence read archive https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA381700 https://www.ncbi.nlm.nih.gov/Traces/
study/?acc=SRP110741.

The entire set of insertion sites post mapping can be downloaded from http://
mulv.lms.mrc.ac.uk/peaks/tables.php.
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