

ALAMON OPTIMIZACIÓN DE PCR CONVENCIONAL PARA LA AMPLIFICACIÓN 2021 DE LA REGIÓN LCR Y EL GEN E6 DEL VIRUS DEL PAPILOMA HUMANO TIPO 16 (VPH16). HUMANO TIPO 16 (VPH16).

Mongelós P¹, Martínez M¹, Valenzuela A¹, Díaz N¹, Miranda M¹, Mercado A¹, Mendoza L¹. ¹Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo (Paraguay).

Introducción

El cáncer de cuello uterino es el cuarto cáncer más frecuente en mujeres en el mundo. El mismo es causado por la infección persistente del virus del papiloma humano de alto riesgo(VPH-AR). EL VPH 16 se encuentra presente en aproximadamente el 60% de los casos de cáncer de cuello uterino a nivel mundial. En Paraguay el VPH 16 es el más frecuente tanto en mujeres con cáncer de cuello uterino, así como también en mujeres con y sin lesión de cuello uterino. Las variantes de VPH 16, a la fecha se clasifican en, 4 linajes y 9 sublinajes. Linaje A, que incluye a los sublinajes A1, A2, A3 (anteriormente conocidas como europeas) y A4 (asiática). Linaje B, sublinajes B1 (Afr1a) and B2 (Afr1b). Linaje C (africana-2). Linaje D, sublinajes D1 (norteamericana, NA1), D2 (asiático-americana, AA2) y D3 (asiático-americana, AA1). La secuenciación de la región LCR se utiliza con frecuencia para clasificar la diversidad intra-típica y los linajes de las variantes, debido a que esta región es la menos conservada y es la que mayor diferencia presenta en su secuencia de nucleótidos entre los diferentes genomas de VPH. La secuenciación completa del gen E6 junto con la región LCR es utilizada a fin de que las mismas sean comparables con la clasificación de variantes en base a la secuenciación completa del genoma del VPH 16. Por ello, el objetivo fue optimizar dos PCRs convencionales a fin de amplificar la región no codificante LCR y el gen E6. Para ello se utilizaron muestras positivas para HPV 16, y se utilizaron cebadores capaces de amplificar la región LCR y el gen E6 de las diferentes variantes del VPH 16.

Resultados

En las figuras del 1-4 se pueden observar los productos amplificados obtenidos de la región LCR y el gen E6 del VPH 16 en diferentes condiciones de temperatura de alineamiento y con diferentes buffers. Para la amplificación de la región LCR y el gen E6 del VPH 16, se observaron mejores resultados a una temperatura de alineamiento de 57°C y 50°C, respectivamente. La concentración de MgCl2 utilizada en ambas reacciones fue de 1,5mM, la de dNTP 0,2mM y la de cebadores 0,2uM, teniendo en cuenta las recomendaciones del fabricante de la enzima ADN polimerasa utilizada..

Metodología

La optimización de las PCRs se realizó utilizando muestras positivas para VPH 16 y cebadores capaces de amplificar la región LCR y el gen E6 de las diferentes variantes del VPH 16. Para la amplificación de la región LCR se utilizó cebadores descriptos por Xi et al 2017 y para el gen E6, cebadores descriptos por Cornet et al 2012.

A continuación se citan los cebadores, las secuencias, las posiciones de pares de bases y el tamaño del producto de amplificación a obtener.

Tabla 1. Secuencias de cebadores, posición en el genoma del VPH 16 y tamaño del producto de amplificación esperado.

Cebador	Secuencia 5'3'	Posición	tamaño de producto de amplificación
LCR 1F	ACCCACCACCTCATCTACCTCTACAA	7101–7126	160 pha
LCR 1R	ATTTGGCACGCATGGCAAGCAGGAA	7560–7536	400 pba

Figura 1. Corrida electroforética en gel de agarosa al 1% de productos amplificados de VPH 16 con cebadores LCR1 y LCR2 utilizando una temperatura de alineamiento de 54ºC. Carril 1 Marcador de pares de base. Carriles 2-7 se utilizó Buffer HF y del 8-13 Buffer GC. En los carriles 2,3 8 y 9 se sembraron productos amplificados de 460 pba, obtenidos mediante cebadores LCR1. En los carriles 5,6, 11 y 12 se sembraron productos amplificados de 621 pba obtenidos mediante cebadores LCR2

Figura 2. Corrida electroforética en gel de agarosa al 1% de productos amplificados de VPH 16 con cebadores LCR1 y LCR2 utilizando una temperatura de alineamiento de 57ºC. Carril 1 Marcador de pares de base. Carriles 2-7 se utilizó Buffer HF y del 8-13 Buffer GC. En los carriles 2,3 8 y 9 se sembraron productos amplificados de 460 pba, obtenidos mediante cebadores LCR1. En los carriles 5,6, 11 y 12 se sembraron productos amplificados de 621 pba obtenidos mediante cebadores LCR2.

LCR2F	CATGCTTTTTGGCACAAAATGTGTTTT	7465–7491	621 pha	
LCR2F	ATATCATGTATAGTTGTTTGCAGCTCT	180–154	οςτ μυα	
E6F	CGAAACCGGTTAGTATAA	52-69	521 pha	
E6R	GTATCTCCATGCATGATT	558-575	524 pba	

Ambas PCRs fueron probadas siguiendo las recomendaciones del fabricante de la enzima ADN polimerasa utilizada, iProof High-Fidelity DNA Polimerase de la marca Bio-Rad, en una reacción con volumen final de 50 uL con concentraciones finales de 1X Buffer (1,5 mM de MgCl₂), 200uM de dNTP, 0,2uM de cada cebador y 0,02U/uL de iProof DNA polimerasa.

Para cada par de cebadores se probaron diferentes temperaturas de alineamiento. Para los cebadores LCR1 y LCR2 se probaron las temperaturas de 54, 57 y 60ºC. Para los cebadores E6 se probaron las temperaturas de 48, 50 y 52ºC.

A continuación se describe el programa de termociclado utilizado.

Tabla 2. Programa	de termociclado	utilizado.
-------------------	-----------------	------------

Temperatura °C	tiempo	pasos	
98	3min	1	
98	10s	2	
Temperatura de alineamiento	30s	3	35 ciclos del paso 2 al 4
72	30s	4	
72	10 min	5	
4	15 min	6	
15	inf	7	

Figura 3. Corrida electroforética en gel de agarosa al 1% de productos amplificados de VPH 16 con cebadores LCR1 y LCR2 utilizando una temperatura de alineamiento de 60ºC. Carril 1 Marcador de pares de base. Carriles 2-7 se utilizó Buffer HF y del 8-13 Buffer GC. En los carriles 2,3 8 y 9 se sembraron productos amplificados de 460 pba, obtenidos mediante cebadores LCR1. En los carriles 5,6, 11 y 12 se sembraron productos amplificados de 621 pba obtenidos mediante cebadores LCR2.

Figura 4. Corrida electroforética en gel de agarosa al 1% de productos amplificados de VPH 16 con cebadores E6, produciendo un producto de amplificación de 524pba. En los carriles del 2-7 se sembraron los productos de amplificación obtenidos utilizando una temperatura de alineamiento de 48ºC, del 8 al 13 de 50ºC y del 14-19 de 52ªC. En los carriles 2,3,4 8, 9, 10, 14, 15 y 16 se sembraron productos obtenidos con la utilización del Buffer HF y en los carriles 5,6, 7, 11,12, 13, 17, 18 y 19 Buffer GC.

Conclusión.

La optimización de las reacciones para amplificar la región LCR y el gen E6 del VPH16, se realiza con el fin de determinar las variantes de VPH 16 mediante la secuenciación de ambas regiones. Posteriormente se pretende evaluar la funcionalidad y la actividad transcripcional de la región no codificante LCR a fin de relacionarla con la patogénesis cervical, considerando que existe evidencia respecto a los diferentes linajes y la capacidad de patogénesis cervical.

Fuente de financiamiento: Consejo Nacional de Ciencia y Tecnología (Proyecto Código: PINV 18 896)

Bibliografía

de Sanjose S, Quint WGV, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048–56.

