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Abstract—This work proposes the use of deep neural networks
for the prediction of traffic variables for measuring traffic
congestion. Deep neural networks are used in this work in
order to determine how much time each vehicle spends in
traffic, considering a certain amount of vehicles in the traffic
network and traffic light configurations. A genetic algorithm is
also implemented that finds an optimal traffic light configuration.
With the implementation of a deep neural network for the
simulation of traffic instead of using a simulation software, the
computation time of the fitness function in the genetic algorithm
improved considerably, with a decrease of precision of less than
10%. Genetic algorithms are used in order to show how useful
deep neural networks models can be when dealing with vehicular
flow slowdown.

Index Terms—traffic simulation, deep learning, genetic algo-
rithms

I. INTRODUCTION

Traffic in cities, traffic congestion and traffic jams are phe-
nomena that has been extensively studied. One of the reasons
in the interest for studying traffic is due to its importance in
the wellbeing of people and its impact on the economy of
societies because productivity and earnings are being affected
by the conditions of traffic.

In [1] several sectors are identified that have interests in
some aspect of traffic, for example, people living in the
geographical zone under study, people living outside of the
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geographical zone under study, engineers working in traffic
infrastructure, environmental, economic and political groups,
to name a few. Also it is explained in [1] that the sectors
mentioned in the previous sentence may not be interested in
the same problems, but they may have conflicting goals.

There is a general consensus that population and economic
growth, which are related to the number of vehicles in cities
and the need to commute, is increasing so fast that cities’s
infrastructure cannot cope with the growth. Therefore, big
cities are prone to traffic congestion problems.

Given the importance of traffic in the daily life of people,
there is a considerable number of works in the literature
that study the causes of traffic congestion and the different
types of collapses; see [1], [2]. From these works, three
possible causes of traffic congestion can be identified: (i) the
inadequacy of streets to handle traffic flow, (ii) the inclusion
of traffic elements that obstruct the flow, and (iii) deficient
regulations. Therefore, geographical regions having a constant
increment of traffic demand, and with no short-term plan for
a significant improvement in infrastructure, need a rigorous
study to identify what is required to improve traffic flow.

In order to optimize traffic flow, it is usually common to
assume some parameters like number of sources for cars in
a map and their corresponding appearance rate, number and
position of traffic lights, etc. Given a set of such parameters,
two important metrics that measure traffic flow are (1) time
loss (TL) and (2) waiting time (WT). Theses two times are
measured by taking their average over all cars during a time
window. This way, a traffic flow through a map can be978-0-7381-3177-1/21/$31.00 ©2021 IEEE



considered good when TL and WT are low. However, given
a map and a traffic flow, how is it possible to calculate or
estimate TL and WT? One way is to setup cameras in the
geographical zone of interest, and another way is to run a
traffic simulator. Setting up cameras to measure traffic flow
can be costly in terms of money and logistics, and running a
simulator can be computationally demanding taking too much
computation time.

This work presents a way to simulate traffic using deep
neural networks (DNNs). The goal is to obtain, with the
highest possible precision, a good estimation of TL and
WT for a given geographical map. Several architectures of
DNNs were tested, and the best architectures for TL and
WT exhibited a formidable improvement in computation time
when compared against a freely available traffic simulator,
with a decrease in precision of less that 10%. Then, the
best architectures were also used in an application to find an
optimal traffic light configuration using a genetic algorithm.
This latter application was possible because of the huge
improvements in computation time of the DNNs.

The rest of this work is organized as follow. Section II
presents the current state-of-art in traffic simulation. Section
III presents the main contributions of this work related to
the simulation of traffic using DNNs. Section IV presents
the genetic algorithm that uses the DNN found in this work
to optimize traffic lights configurations. Finally, Section V
presents the conclusions of this work with potential avenues
for future research.

II. RELATED WORK

In [3] a survey on works related to car traffic prediction that
are published in the main journals between the years 2004 and
2013 is presented. The authors of [3] concluded that, given the
non-linear nature of traffic, one of the most utilized methods
are based on neural networks. In particular, the use of deep
learning is only reported in 1.8% of the papers in the survey.
This number, however, can be due to the period of study of
the survey as deep learning has been solidified as an area of
research in recent years. Hence, deep learning, even though
it is a more recent technique, it was already being applied to
complex and relevant problems like car traffic with promising
results.

In [4] a deep belief network is used to predict traffic speed
in a street of Beijing. The authors showed that a deep belief
network can have better precision than other more commonly
used methods like back-propagation neural networks (BPNN)
and autoregressive integrated moving average (ARIMA). A
similar result is presented in [5] where different architectures
of stacked autoencoders where studied and concluded that
deep learning presents better precision than BPNNs or support
vector machines (VPN). These works also mention that deep
learning models are good at discovering the intricate patterns
in the nature of traffic, however, there is no clear improvement
in precision when the number of hidden layers or hidden nodes
is increased.

In [6] a neural network is used to approximate the result
of traffic simulations. In particular, the authors of [6] ap-
proximated the total waiting time of more than 40,000 cars
in an area having 15 traffic lights. Furthermore, different
sizes of neural networks were tested, like number of hidden
layers and number of hidden nodes, thus concluding that
size does not translate to an improvement in efficiency. This
conclusion was reached by analyzing the mean squared error
for each neural network. Nevertheless, these machine learning
techniques are used not only for traffic prediction but to change
the state of traffic with the goal of maximizing its flow. For
example, in [6] a genetic algorithm is used to find an optimal
configuration of traffic lights. Also in [7] a technique that
changes traffic in order to maximize the flow is presented.
This work presented an approach based on deep reinforcement
learning for flow control in a relatively simple crossing (no
turns) with one single traffic light. The authors of [7] compared
their network against conventional reinforcement learning and
showed that the deep reinforcement learning approach has
better performance. In particular, the main conclusion of this
latter work was that deep reinforcement learning produces
an expected waiting time that is significantly less that the
one obtained with other conventional reinforcement learning
techniques.

III. TRAFFIC SIMULATION WITH DEEP NEURAL
NETWORKS

A. Dataset Creation

In order to train the neural networks in this work, a dataset
was created using SUMO [8]. The SUMO software have the
following features:

• it allows the insertion of vehicles by type, time, and route;
• it is open source, portable and free;
• it can simulate any geographical zone as long as the map

appears in open street maps1;
• it allows the insertion of vehicles by type, time, and route;
• traffic lights cycles can be configured as needed.
SUMO has everything that is required to construct realistic

simulation scenarios. SUMO, however, cannot execute sim-
ulations by batch, which is necessary to create the required
amount of data for traffic simulation with neural networks; for
example, in [6] 80,000 simulations were used. Moreover, the
low-level control of SUMO requires many parameters to be set
by hand, like the exact route for each vehicle in the simulator
which needs to be specified explicitly for each vehicle. In order
to automated this entire process, a Training Data Generation
Software (TDGS) was created. The high-level workings of the
TDGS is shown in Figure 1.

Each stage in the TDGS is explained as follows.
• Amount of vehicles. This stage reads an input file describ-

ing a list of cases to simulate, where each case describes
the traffic demand and traffic lights configuration.

• Vehicle demand file update. This stage creates a file that
defines the vehicle demand.

1https://www.openstreetmap.org/
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Figure 1. High-level workings of the Training Data Generation Software or TDGS.

• Traffic lights configuration file update. This stage creates
a file that defines the traffic lights configuration.

• SUMO simulation. This stage uses the files in the previous
two stages to run a SUMO simulation.

• Input-Output storage. This stage saves a file with the
simulation results produced by SUMO together with the
input data of the simulation. This file contains input-
output pairs of SUMO saved as a CSV file. Aditionally,
it saves the simulation time for each input-output pair.

For the purposes of training a neural network, each entry in
the CSV file generated by the TDGS of Figure 1 is composed
of 14 numbers, where the first 12 numbers is an input
containing a traffic demand and traffic lights configuration and
the other 2 remaining numbers are the waiting time and time
loss of all simulated vehicles. These times are defined in [8]
as follows.

• Waiting Time (WT). Average time spent standing still.
• Time Loss (TL). Average time lost due to driving slower

than desired.

One important thing to note here is that WT is always less
than or equal to TL.

From the 12 numbers, the first 7 numbers represent the
traffic demand on the simulated geographical region, and each
of these 7 numbers the represent the amount of vehicles
inserted in 7 different points on the map for 25 minutes. See
Figure 2 to see the particular map that was studied in this
work.

The remaining 5 numbers in the array represent the traffic
lights configuration in 5 different points on the map; see Figure
3.

This way, a simulation can be understood as a mapping
from a set of arrays of 12 numbers to a set of pairs denoting
TL and WT.

Figure 2. Map for the geographical zone of interest. Each point F1 to F7 are
the insertion points of all cars that must be specified in SUMO.

When the TDGS ends its execution, a set of simulation
results is obtained that is usable by data manipulation libraries
like Pandas. At the same time, Pandas eases the integration
with a training software written with TensorFlow.

B. Design and Training of a Network

The idea in this work is to replace SUMO with a DNN.
Since a simulation by SUMO can be seen as a function
mapping 12 numbers to a waiting time and time loss, it is
expected that a DNN can “learn” this function.

Considering that the training of a neural network takes time
and deciding for a network architecture is by trial-and-error,
a software was developed that automates this entire process.
From a finite pool of possible architectures, the software
selects the neural network with the least validation error.



Figure 3. Map for the geographical zone of interest with the position of traffic
lights.

Figure 4 shows a high-level description of the algorithm that
trains neural networks by batch.

The entire process of Figure 4 can be explained as follows.
The algorithm starts by receiving data obtained from the
TDGS, which was explained in the previous subsection. The
output data of the TDGS is divided in two groups.

• Training data. This set of data is used for the training of
neural networks. Usually, an 80% of the available data is
used for training according to the literature, which is the
same criterion used in this work.

• Validation data. This set of data are not used during
training, but it is used to assess the performance of the
trained neural network.

The next step in the algorithm of Figure 4 “DNN Archi-
tectures” is to construct a list of neural network architectures
to be evaluated. The parameters that were taken into account
are:

• Hidden units. This is a list of numbers where each number
indicates then amount of neurons for each hidden layer.

• Optimizer. This is the optimizer that will be used. In this
work the Adagrad [9] optimizer was selected. The ad-
vantage of Adagrad is that variations in the learning rate
can be introduced in order to adjust it to the application
the user has in mind.

• Dropout. This is the chance of discarding a neuron during
training. For this work, values 0 and 0.01 were tested.

After choosing a neural network architecture, the selected
network is trained with the chosen parameters. Then, the
results are saved in a file registering the performance of
the network. This way, it is easy to find any overfitting
in the model. After training all networks from the list of
candidate architectures, the network with the best performance
is selected.

In order to compare each neural network against each other
and decide if a network is precise enough to replace SUMO,

this work employed a set of widely use performance metrics
that are common in the literature [10] which are (i) Mean
Absolute Error (MAE), (ii) Root-Mean-Square Error (RMSE),
and (iii) precision. These metrics show how good each network
is for the given set of data.

One last thing to note is that in the algorithm of Figure 4
two different lists of neural network architectures were tested,
one list for the time loss and another list for the waiting time.
This way, each tested network is only trained with respect
to one type of time. Details of the experiments realized on
different DNN architectures are given in the appendix.

C. Results for the Neural Networks

After training and validating all networks using the al-
gorithm of Figure 4, the best networks for TL and WT
were selected. Table I present the networks with the best
performance for each time feature.

For the networks shown in Table I, the results presented in
Table II were obtained and compared against SUMO.

The results presented in tables I and II can be considered as
promising, since a relatively small loss in precision translate
to a large gain in execution time.

The importance of these results rely on the fact that many
applications require a fast execution of traffic simulation.
Hence, having a reliable and efficient simulator of traffic opens
up many new avenues of research for optimizing traffic flow.
In the next section, this work presents an application for
optimizing the configuration of traffic lights using a genetic
algorithm.

IV. OPTIMIZATION OF TRAFFIC LIGHTS

In this section, an application of a DNN for traffic prediction
is presented. The goal is to find an optimal traffic light
configuration that minimizes the time loss.

A. Design of a Genetic Algorithm

Recall that a genetic algorithm is an optimization algorithm
that for a finite number of iterations applies so-called “genetic
operations” to a finite set of feasible solutions. The set of
feasible solutions is called a population and each feasible
solution is called an individual. The set of genetic operations
are selection, crossover, and mutation. The fitness of an
individual is how desirable the individual is during selection.

In this work, the goal is to find a configuration of traffic
lights in the geographical region of study that minimizes the
time loss. Thus, the objective function (and hence the fitness of
an individual) to be minimized is time loss, and an individual is
any arbitrary configuration of traffic lights. The DEAP library
for Python2 was used.

The size of a population is 100 and the stopping criterion
of the genetic algorithm is 20 iterations. The number 20 was
selected because during the experiments of this work, it was
observed that there is no considerable improvement of the
population after 20 iterations. The initial population is created
using randomly selected configurations of traffic lights. The

2https://github.com/deap



Figure 4. Algorithm for testing different DNN architectures.

Table I
DNN ARCHITECTURES WITH THE BEST PERFORMANCE.

Network Architecture Training
Feature Hidden layers Neurons Learning rate Dropout

WT 12 100 0.001 0.01
TL 4 500 0.01 0.01

Table II
BEST DNN ARCHITECTURES AGAINST SUMO.

Metric SUMO WT DNN TL DNN
Precision 100% 92.61% 95.44%

Execution time 39.68s 0.0177s 0.0177s

details of the genetic operations that are used in this study are
given below.

• Selection. Individuals are selected using a tournament
approach, where all individuals have the same probability
of being selected. In each round of a tournament, for
100 rounds, two individuals are randomly selected with
repetition and the one with the best fitness is promoted
to next stage.

• Crossover. Two individuals are chosen for
crossover following the order produced by the
selection stage. Here, the simulated binary
crossover was used invoking the function
cxSimulatedBinaryBounded(ind1,ind2,eta,
low,up) of DEAP, where ind1 and ind2 are the two
individuals to be crossed, eta=15, low=[10, 10,
10, 0, 0] and up= [600, 600, 600, 10,
10].

• Mutation. Here polynomial mutation was used
which is implemented via the DEAP function
mutPolynomialBounded(individual, eta,
low, up, indpb) where individual is the
individual to be mutated, eta=15, low=[10, 10,
10, 0, 0] and up= [600, 600, 600, 10,
10], and indpb=0.1 is the probability that an

attribute of the individual is mutated.

The fitness of each individual is computed using the DNN
selected for the time loss as reported in Table I. Using SUMO,
instead of a DNN, would result in unreasonable computation
times for the genetic algorithm because a SUMO simulation
must be executed each time the fitness of an individual is com-
puted. As mentioned before, the huge savings in computation
time is compensated with a small loss in precision.

B. Results for the Genetic Algorithm

In order to test the genetic algorithm, several scenarios of
traffic demand were studied. The traffic demand is specified by
assigning a number to each source point F1 to F7 in Figure 2.
The values of traffic demand used in this work are considered
as moderate traffic.

Table III shows the different scenarios of traffic demand
that were tested and the improvement in time loss using the
genetic algorithm. The column Gen0 of Table III shows for
each scenario the average time loss for the initial population.
Similarly, the column Gen20 shows for each scenario the
average time loss for the last population of the algorithm. The
last column on the right is improvement in solution quality of
the last population with respect to the initial population.



Table III
RESULTS OF THE GENETIC ALGORITHM FOR DIFFERENT SCENARIOS.

Traffic demand scenarios Time Loss Improvement
F01 F02 F03 F04 F05 F06 F07 Gen0 Gen20
400 400 400 400 400 400 400 392 304 22.45%
300 100 100 100 100 100 100 253 221 12.65%
100 300 100 100 100 100 100 285 226 20.70%
100 100 300 100 100 100 100 246 225 8.54%
400 100 300 100 100 100 300 324 230 29.01%
400 200 300 200 200 200 300 350 250 28.57%
600 200 300 200 200 200 600 356 272 23.60%
100 300 300 200 600 200 400 352 285 19.03%
400 100 300 200 600 200 400 356 294 17.42%
150 150 150 150 150 150 150 300 228 24.00%

On average, there is an improvement in quality solution
of approximately 20.6%. This result is promising since it
shows that the proposed approach of using DNNs with ge-
netic algorithms, or any other more sophisticated optimization
algorithm, can be used to search for strategies to tackle traffic
congestion.

V. CONCLUSIONS AND FUTURE WORKS

This work presented a method of simulating traffic using
deep neural networks. Software tools like SUMO can be used
also to simulate traffic, but simulation can take a very long
time. Using neural networks this work showed that at the
expense of some loss in precision, there is a incredible gain in
computation speed. This fact allowed to use the neural network
simulator inside a genetic algorithm that optimizes the average
time loss of cars on a given geographical map. If a simulator
like SUMO was used instead, the genetic algorithm approach
would be very difficult to use due to the high computation
times of the simulation.

The results presented in this work are in the initial stages,
and further studies can help in a deep understanding of the
methods presented here. A short list of interesting research
paths is given below.

1) Precision of DNNs for different geometries of maps.
Different map geometries carry different difficulties.
Even though the results presented in this work are
promising, a characterization of map geometries and the
impact on the precision of DNNs will reveal for which
type of maps the DNN approach works or not.

2) Impact of traffic parameters on the architecture of
DNNs. In Section III, a study of different DNNs was
presented in order to find the best network for the given
traffic demand for the given map. The network archi-
tecture, however, can be affected by the map geometry,
the traffic demand parameters, and the configuration of
traffic lights. A study of how the number of hidden
layers and number of neurons depend on the traffic could
discover the power of DNNs as traffic simulators.

3) Test different evolutionary algorithms. This work pre-
sented a very simple evolutionary algorithm for the
optimization of traffic lights. Since traffic is non-linear,
any evolutionary algorithm could also work. A study

comparing different metaheuristics like ant colony op-
timization, particle swarm optimization, etc, could give
clues at the best optimization algorithm for traffic lights
configuration.

4) Multiobjective optimization of traffic lights. To optimize
traffic lights, the time loss was considered in this work,
and the waiting time was discarded since it is always
less than or equal to the time loss. However, during
the experiments of this work, the simulation of vehicles
showed that waiting time is independent of time loss,
even though time loss is an upper bound on waiting
time. It is an interesting problem to optimize simulta-
neously both times and find solutions using powerful
metaheuristics.
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