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Distributed Spectral Clustering on the Coordinator Model
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Clustering is a popular subject in non-supervised learning. Spectral clustering is a
method for clustering that reduces dimensionality of data and guarantees a faster conver-
gence to almost optimal clusters. Given a set of n points in Rd, let G = (V,E) be an
undirected graph where each vertex represents a point in Rd and there is a nonnegative
weighted edge between each pair of vertices (u, v) representing the similarity between u
and v. The spectral clustering algorithm takes G as input and finds an almost optimal
partition of the vertices of G by manipulating the spectra of the graph Laplacian of G.

A Laplacian matrix of G is defined as LG = DG−AG, where DG is the weighted degree
matrix of G and AG is its adjacency matrix. If k is the optimal number of clusters, spectral
clustering works by first finding the first k eigenvalues and eigenvectors in ascending order
of LG. Then it runs any conventional clustering algorithm, like k-means, on the rows of a
matrix constructed with the first k eigenvectors as column vectors.

In real world situations data is not always centralized, but spread among several sites.
Achieving clustering in a decentralized setting is thus an interesting research subject.

A distributed protocol for spectral clustering was first proposed by Chen et al. [3]. In
the work of [3], each site knows a graph Gi = (V,Ei), where {Ei} is a partition of the
edge set and V is the entire set of vertices of G. Their protocol works as follows. Every
player builds a (1 + ε)-spectral sparsification of its graph Gi. A graph H is a (1 + ε)-
spectral sparsifier of G if (1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx, where x ∈ Rn, xT

is the transpose of x, and LH is the graph Laplacian of a graph H which is constructed
by random sampling over the edges with respect to some carefully selected probability
distribution over the edges of G. Then, after each player construct its spectral sparsifier
Hi = (V, Ẽi), it sends Hi to the coordinator. As a final step, the coordinator computes
G̃ = (V,∪si=1Ẽi) and applies the spectral clustering algorithm on G̃.

Chen et al. [3] showed that the total amount of communication between the players
and the coordinator is Õ(ns logc ns), where c ≥ 1 is a real constant. They also showed a
lower bound of Ω(ns) for the total amount of communication in the coordinator model for
any randomized protocol.

The work of Chen et al. [3] studied the case where each player knows the vertices
of the data graph G, but only a subset of the edges. In this work, we will study the
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communication complexity in the more extreme case where the vertex set is completely
partitioned. Let G = (V,E) be graph of the data points. In the coordinator model we have
s sites where site i, with 1 ≤ i ≤ s, knows a graph Gi = (Vi, Ei), where {Vi} and {Ei} are
partitions of the vertex set and the edge set of G, respectively. Each site can communicate
with the coordinator with messages but no site can communicate with another site. Then
after a finite number of rounds of communication, the coordinator computes an optimal
partition of V . The goal is to find a protocol where an optimal partition of V can be
computed using the minimum amount of communication. Formally there are s players and
one coordinator and the coordinator wants to compute some function f : X1×...×Xs → Z
where Xi is the set of available inputs for player i. A protocol Π is defined as a sequence
of binary strings sent by every player to the coordinator and back.

Furthermore, as a midpoint between Chen et al.’s work, we will study the case where
there is an overlapping between the data among sites. These works are the first steps
towards a communication-efficient full distributed protocol for graph clustering.
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