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Abstract. We study the problem of performing data clustering in a distributed
setting, which is a problem that may arise in many practical areas such as ma-
chine learning and data analysis. The way in which the sites communicate and
the way data is allocated define a model of communication. We develop a pro-
tocol to compute distributed clustering in the Number-on-Forehead model of
communication complexity. In our model, we requiere that each site is aware
of all clusters in its own data and all data allocated among sites define a sun-
flower. We show that there exists a two round communication protocol for data
clustering where each site knows an approximation to all clusters. The cost of
our protocol is at most O

(
log
(
n
ε2

√
1− λ

))
bits of communication, where n is

the number data points, ε is an approximation factor and λ is a ratio of common
data points among sites.

1. Introduction
In several situations, algorithms need to work with data that is not centralized and allo-
cated in different sites. One way to deal with this situation is to design communication
protocols so that the sites can communicate among them. In our days where data analysis
is becoming more relevant in industry and academia, clustering is one of the main tools
for understanding data.

In clustering, the data set is often represented as points in Rd. One way to identify
clusters in data points is to represent them as a weighted graph G = (V,E,w) with a
cost function w. The goal is to find a partition of the vertex set of G, which can be seen
as a multicut problem [von Luxburg 2007]. Clustering has been studied previously in
distributed models like the coordinator model and blackboard model [Chen et al. 2016].

Let E1, E2, . . . , Es be a collection of data and let P1, P2, . . . , Ps be a collection of
sites. Each site Pi has data Ei assigned to it. In this work, we study a communication
model known as Number-on-Forehead (or NOF), where a site Pi knows all data except
its own Ei. This is a well studied model in communication complexity because of its
relevance in proving lower bounds in circuit complexity [Håstad and Goldmann 1991].
Our main goal is to have all sites compute the clusters of the vertex set of the input
graph G so that all of them can know to which cluster is own data belongs. We also
assume that data is allocated is such a way that the collection E1, E2, . . . , Es form a
sunflower [Erdös et al. 1961]. By exploiting the structure of the sunflower, we showed
that all sites can compute the clusters using a communication protocol that exchange
at most O

(
log
(
n
ε2

√
1− λ

))
bits of communication, where n is the total number data

points, ε is an approximation factor and λ is a ratio of common data points among sites.
To achieve this upper bound we used a well-known technique of spectral sparsification



of graphs [Batson et al. 2009, Lee and Sun 2018] and developed a technical lemma that
allows us to compute spectral sparsifiers in a distributed setting.

2. Preliminaries

We will introduce some standard notations from graph theory and communication com-
plexity which can be found in [Kushilevitz and Nisan 2006]. In the NOF model there
are s sites P1, P2, . . . , Ps and each one has its own input on the set {0, 1}r. Let Xj

be the set of possible inputs for the site Pj , and we want to jointly compute a function
f : X1 × X2 × ... × Xs → Z for some finite codomain Z. Each site can only see the
others sites’s input but cannot see its own input. Hence, a site Pj has access to the input
(x1, ..., xj−1, xj+1, ..., xs). The communication among the sites is written on a blackboard,
where everyone can see it. This is the so-called blackboard model of communication. The
maximum number of bits exchanged in the protocol over the worst-case input is the cost
of the protocol. The deterministic communication complexity of the function f is the
minimum cost over all protocols which compute f .

Let G = (V,E) be an input data graph. On the NOF model we let Ej denote
the set of edges that belong to Pj . Also, all sites know the vertices of G. Let Fj =
{E1, E2, ..., Ej−1, Ej+1, ..., Es} be the set of edges which Pj can see from the other sites.
Given a site Pj , the symmetric difference on Pj , denoted ∆j , is defined as the symmetric
difference between all sets in Fj .

A sunflower or ∆-system is a family of sets F = {A1, ..., At} where (Ai ∩ Aj) =⋂t
k Ak for all i 6= j. A weak ∆-system is a family F with sets of size ` such that |Ai∩Aj| =

λ for all i 6= j for some λ [Kostochka 2000]. It is known that if F is a weak ∆-system
and |F | ≥ `2 − `+ 2, then F is a sunflower [Deza 1974].

Finally, we will introduce some standard notations of spectral sparsification tech-
niques which can be found in [Chen et al. 2016, Batson et al. 2009, Lee and Sun 2018].
Every undirected and weighted graph G has a positive semidefinite matrix associated
called its Laplacian with the form LG = BWBT where B is an signed vertex-edge in-
cidence matrix and W is the diagonal edge-weighted matrix. We say that a subgraph
H ⊆ G is an ε-spectral sparsifier of G if (1− ε)xTLGx ≤ xTLHx ≤ (1+ ε)xTLGx for all
x ∈ R|V |. If L is a graph Laplacian we say that xTLx is the quadratic form of L. Spectral
sparsifiers with approximation factor ε > 0 can be constructed in time Õ( qmn

5/q

ε4+4/q ) with a
number of edges O(qn/ε2), where n is the number of vertices, m is the number of edges,
and q ≥ 10 a constant [Lee and Sun 2018].

3. Results

In this section we present a communication protocol among s sites in the blackboard NOF
model for clustering. We model our data set using a complete undirected weighted graph
G = (V,E,w) with n vertices where the edges are allocated among sites.

We define an overlapping coefficient of the edges of G which can be seen as a
measure of how well spread out are the edges around the sites.

Definition 1 The overlapping coefficient on site Pj is defined as δ(j) =
|
⋂

i 6=j Ei|
|
⋃

i 6=j Ei| and the
greatest overlapping coeficient is defined as δ = maxj∈[s] δ(j).



In order to perform clustering with high accuracy, we need to make sure that
each sites knows at least a large part of the data graph G. In the following theorem we
present the analysis of a simple protocol that takes into account the greatest overlapping
coefficient δ and makes use of the sunflower organization of data.

Theorem 1 Let Pj be a site and let E = {Ei}i 6=j be a weak ∆-system with each |Ek| = `
for k = 1, 2, . . . , s, with a kernel of size λ. Suppose that s ≥ `2 − ` + 3. If site Pj sends
all the edges in ∆j , then every other site will know the entire graph G. The number of
edges this communication protocol sends is at most |

⋃
i 6=j Ei|(1− δ) + `.

Proof. We will prove this lemma by showing how each site constructs the graph G. First,
a given site Pj computes ∆j and writes it on the blackboard. Since s ≥ `2 − ` + 3, by
the result of [Deza 1974], we known that E is a sunflower with kernel A. At this point all
sites i 6= j know ∆j , therefore, they can construct G using the kernel A of E . In one more
round, one of the sites i 6= j writes Ej so that site Pj can also construct G.

In order to compute the communication cost of the protocol, first notice that δ =
λ/(|

⋃
i 6=j Ei|) = λ/(|∆j|+ λ), where we used the fact that the union of all edges in

every site equals the union of the symmetric difference and the kernel A. Then we have
that δ|∆j| = λ − δλ, which implies |∆j| = λ−δλ

δ
= |

⋃
i 6=j Ei||(1 − δ), where the last

equality follows from the fact that |
⋃
i 6=j Ei| = λ/δ. Finally, after Ej was sent to the

blackboard the communication cost is |
⋃
i 6=j Ei||(1− δ) + `.

Corollary 1 The communication complexity of the protocol of Theorem 1 is
O(log(`

√
s(1− δ)))

Proof. First, a site Pj sees s − 1 sites and |Ei| = ` for all i 6= j. Then |
⋃
i 6=j Ei| ≤∑

i 6=j |Ei| ≤ s`. Replacing the last result in Theorem 1 we get a total communication cost
of c ≤ log(s`(1− δ)) + log ` = 2 log(`

√
s(1− δ)).

In the following, we will slightly modify the protocol of Theorem 1 to improve its
communication cost together with an application of spectral sparsification. Note that the
number of optimal clusters or the optimal multicut in a graph depends on the spectrum of
the graph Laplacian [von Luxburg 2007], and therefore, it is important that all sites have
a good approximation in spectrum of the graph. We will use the following lemma (with a
short sketch of its proof) to construct a sparse graph that approximates the spectra of the
original graph so that we can perform clustering in a distributed manner.

Lemma 1 Let G = (V,E, f) be a weighted undirected graph with cost function f and
E1, ..., El ⊆ E for some fixed l where ∪iEi = E. Let Gi = (V,Ei, fi) be an induced sub-
graph of G. If Hi = (V, Êi, hi) is an ε-spectral sparsifier of Gi, then H = (V,

⋃
i Êi, h) is

an ε′-spectral sparsifier of G where h(e) = 1
c1c2

∑
i hi(e) and c1, c2 denote the minimum

and maximum number of sites in which an edge appears and ε′ ≥ c1−1+ε
c1

.

Proof sketch. Let LGi
be the Laplacian matrix of Gi. To prove the lemma we showed

that
∑s

i=1 LGi
can be written as a linear combination of graph Laplacians {LG′

j
}j≥0 with

coefficients in the discrete interval [c1, c2]. Then we showed that the quadratic form of this
linear combination can be bounded from below and above by (1 − ε)/c2 and (1 + ε)/c1
times the quadratic form ofLG, respectively. Finally using ε′ we obtain thatH is a spectral
sparsifier of G.



Theorem 2 Let Pj be a site and let E = {Ei}1≤i≤s be a weak ∆-system with each
|Ek| = ` for k = 1, 2, . . . , s, and suppose that s ≥ `2 − ` + 3. There exists a communi-
cation protocol where after two rounds of communication every site knows an ε-spectral
sparsifier of the entire graph G with communication cost O

(
log
(
n
ε2

√
1− δ

))
.

Proof. From [Deza 1974] we know that E is a sunflower with a kernel A of size λ. First, a
site Pj computes a spectral sparsifierHj = (V, ∆̂j) of the induced subgraphGj = (V,∆j)
using the spectral sparsification algorithm of [Lee and Sun 2018]. This way we have that
|∆̂j| = O(n/ε2) where 0 < ε ≤ 1/120. Then site Pj writes ∆̂j on the blackboard. Any
other site i 6= j constructs an ε-spectral sparsifier H ′i = (V, Êj) of G′i = (V,Ej). By
Lemma 1, the graph H = (V, ∆̂j ∪ Êj) is a ε′-spectral sparsifier of G. In a second round,
a given site Pi writes Êj on the blackboard. Finally, site Pj receives Êj and by Lemma 1 it
can also construct an ε′-spectral sparsifier for G. Finally, the communication complexity
is upper-bounded by O

(
log
(
n
ε2

(1− λ)
)

+ log
(
n
ε2

))
= O

(
log
(
n
ε2

√
1− λ

))
.

Acknowledgment. This work is supported by Conacyt research grant PINV15-208 and
POSG17-62.

References
Batson, J. D., Spielman, D. A., and Srivastava, N. (2009). Twice-ramanujan sparsifiers.

In Proceedings of the 41st annual ACM symposium on Theory of computing (STOC),
pages 255–262.

Chen, J., Sun, H., Woodruff, D., and Zhang, Q. (2016). Communication-optimal dis-
tributed clustering. In Proceedings of the 30th International Conference on Neural
Information Processing Systems (NIPS), pages 3727–3735.

Deza, M. (1974). Solution d’un problème de Erdös-Lovász. Journal of Combinatorial
Theory, Series B, 16(2):166–167.

Erdös, P., Chao, and Rado, R. (1961). Intersection theorems for systems op finite sets.
Quarterly Journal of Mathematics, 12(1):313–320.
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