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Abstract

The School Feeding Program of Paraguay (PAEP) has the function
of providing food for children in elementary schools. Due to there are
no efficient supply plans to aid local suppliers, we are interested in to
minimize the purchase and transport costs and to maximize the lo-
cal purchase subject to the school demand satisfaction in the benefited
area. This study has identified sub-problems: the purchase of products
from local family farms (pp), the vehicle routing problems (VRP) for
multi-products picking (P) from the farms and multi-products deliv-
ery to schools (D). In this study have been designed four mathemati-
cal models based on Mixed Linear Programming: a three-stage model,
two two-stage models, and a one-stage model. The experimental re-
sult (based on real data of a rural zone) shows that the multi-stage
approaches use less computational time than the one-stage; however,
the economic costs increase slightly.
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1. Introduction

The provision of fresh fruit and vegetables to schools in the interior of
the country, within the framework of the PEAP [1] may not have the best
supply processes management. The actual mechanisms could lead to dissat-
isfaction of demand, non-optimal allocation of suppliers, high logistical costs
and even risks of failure to meet the objectives. In this way, according to in-
formation gathered, there are no records regarding the determination of the
set of agricultural farms that can provide the set of schools in the benefited
area, nor are there geo-referenced data about the distances between schools
and farms. This paper addresses the problem raised to provide tools for
decision making. First, the data mentioned above were collected, and then
mathematical models were developed, which are of interest in this article.

From optimization this work focuses on the problem of determining the
purchase and transport of fruit and vegetable products necessary for the
elaboration of school menus established within the national government’s
policy. The initial analysis identifies three interconnected sub-problems:
(P1) the optimal purchase of products from local family farms, (P2) the
optimal routing of vehicles for the collection of multi-products from farms,
and (P3) the optimal routing for the delivery of multi-products to schools.

Given the complexity it is necessary to develop efficient optimization
models. Consequently, this paper proposes to study the problem considering
four strategies based on Mixed Linear Programming (MILP) [2]: a three-
phase strategy P1→ P2→ P3, two-phase strategies of two steps P1⊕P2→
P3 and P1 → P2 ⊕ P3, and of a single phase P1 ⊕ P2 ⊕ P3. The note
P1⊕ P2 indicates that the problems P1 and P2 were approached together
and therefore a single mathematical model is proposed, while P1 → P2
means that the problem P1 was solved first and its results are data entry
for the problem P2.

This work is organized as follows: section 2 presents the MILP models,
section 3 carries out experimental tests and discussions of the proposed
models, while section 4 presents conclusions and future work.



3

2. Proposed Models

Assumptions: A deposit (origin); a fleet of vehicles with different ca-
pacities; a vehicle can visit only once a subset of nodes (farms or schools);
several types of products (multi-products); more than one vehicle can pass
through a node for collection/delivery; split collection/delivery is allowed;
local purchase is prioritized.

Índexes: i, j, s, r node index; q indicates product, and k indicates
vehicle.

Constants: N number of nodes (farms, schools and product storage); K
number of available vehicles; Q quantity of product types; cext is cost of
external purchase; diq is cost of external purchase q asked by the i-th school;
dq is the total amount of product q asked; oiq is the quantity of the product
q which provides the i-th farm; Ck is the capacity of k-th vehicle; cciq is the
cost of purchasing a unit of the product q into i-th farm; ctij is the cost of
road transport (i, j); and bi indicates whether the i-th node is farm (bi = 1)
or school (bi = 0).

Decision variables : ziq ∈ R+ is the product quantity q to purchase from
the i-th farm; zijqk ∈ R+ is the product quantity q to be transported by the
k-th vehicle on the road (i, j); zextq ∈ R+ is the product quantity q to buy
externally in order to meet demand; xijqk ∈ R+ is the product quantity q
into the k-th vehicle on the road (i, j); yijk ∈ {0, 1} indicates whether the
road (i,j) it is used by the vehicle k; whereas uik is an auxiliary variable for
the elimination of sub-tours.

2.1 Strategy P1→ P2→ P3

This model addresses the problems detected independently in three phases.
It should be noted that P2 and P3 are basically the Capacitive Vehicle Rout-
ing Problem (CVRP) but considering a divisible product whose basic model
can be read at [2, 3, 4]. The CVRP model is applied in phases 2 and 3 in
a similar approach to the VRP with Back-hauls (VRPB) [2]. In phase 2
the vehicles depart from the warehouse and load the products and return
with the full load. The farms to be visited and products to be collected are
determined in phase 1. In phase 3 the vehicles depart from the warehouse
and unload at the schools.
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For the first phase, the pp model is proposed for the problem P1.
Phase 1: pp model for P1

Minimize Z =

Q∑
q=1

N∑
i=1

ziq · cciq +

Q∑
q=1

zextq · cext (1)

s.t.

ziq ≤oiq ∀i; ∀q (2)

N∑
i=1

ziq + zextq =dq ∀q (3)

ziq ≥0 ∀i; ∀q (4)

The objective function (1) minimizes the total cost of purchase, while
the restriction (2) guarantees that the purchase does not exceed the offer
of each farm and (3) ensures that the demand for each product is met. In
the objective function, the inter purchase is prioritized when determining a
high cost per external purchase, i.e. cext >> cciq.

2.2 Strategy P1⊕ P2→ P3

In this model, the sub-problems P1 and P2 are jointly solved in Phase
1. P3 is solved in Phase 2 as a CVRP [2]. For the problem, P1 ⊕ P2, was
proposed a mathematical model that combines the products purchase (pp)
and the CVRP. In this scenario, a farm will be visited if a product is pur-
chased; this differs from the classic CVRP problems where each node must
be visited [4].

Phase 1: ppCVRP model for P1⊕ P2
Minimize Z=

Q∑
q=1

N∑
i=1

N∑
j=1
j 6=i

K∑
k=1

zijqk · cciq +

N∑
i=1

N∑
j=1
j 6=i

K∑
k=1

ctij · yijk +

Q∑
q=1

zextq · cext (5)
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s.t.

N∑
i=1
i 6=j

K∑
k=1

yijk ≤1; ∀j (6)

N∑
i=1
i 6=s

yisk −
N∑

j=1
j 6=s

ysjk =0; ∀s, ∀k (7)

uik − ujk +N · yijk ≤ N − 1; u1 =1 ∀i 6= j 6= 1; ∀k (8)

2 ≤ uik ≤N ; ∀i, ∀k
N∑

k=1

zijqk ≤oiq ∀i;∀j; ∀q (9)

N∑
i=1

N∑
i=1
i 6=j

zijqk + zextq =dq ∀q; ∀k (10)

N∑
i=1

N∑
i=1
i 6=j

Q∑
q=1

zijqk ≤Ck ∀k (11)

zijqk ≤M · yijk ∀i; ∀j; ∀q; ∀k (12)

zijqk ≥0 ∀i, ∀j,∀q,∀k (13)

yijk ∈{0, 1} ∀i, ∀j,∀k (14)

The objective function (5) minimizes the total cost of purchasing and col-
lecting products. With (6) it is indicated that a farm can be reached once
by a vehicle, (7) and (8) represent the balance restrictions and sub-tour
elimination respectively, (9) indicates that the purchase must not exceed
the offer of each product on each farm, (10) represents the total satisfaction
of demand, (11) is the vehicle’s capacity restriction, (12) activates the cost
of transporting the products.

2.3 Strategy P1→ P2⊕ P3
In this strategy, P1 is addressed in phase 1 using the same pp model pre-

sented in section 2.1. Phase 2 deals with VRP picking and multi-product
delivery (VRPmPD). The proposed model differs from the classic VRP with
Picking and Delivery, and also from VRP Back-haul [2].

Phase 2: VRPmPD model for P2⊕ P3

Minimize Z =

N∑
i=1

N∑
j=1
j 6=i

N∑
k=1

yijk · ctij (15)
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s.t.

N∑
i=1
i 6=j

N∑
k=1

yijk ≥1; ∀j (16)

N∑
i=1
i6=j

yijk ≤1; ∀j,∀k (17)

N∑
i=1
i 6=s

yisk −
N∑

j=1
j 6=s

ysjk =0; ∀s; ∀k (18)

uik − ujk +N · yijk ≤ N − 1;u1 =1 ∀i 6= j 6= 1; ∀k (19)

2 ≤ uik ≤N ∀i 6= j

xijqk ≤M · yijk ∀i, ∀j; ∀q,∀k (20)

N∑
j=1
j 6=i

Q∑
q=1

xijqk ≤Ck; ∀i, ∀k (21)

N∑
j=1
j 6=i

K∑
k=1

xijqk −
N∑

r=1
r 6=i

K∑
k=1

xriqk =bi · oiq + (1− bi) · diq ∀i, ∀q (22)

(

N∑
j=1
j 6=i

xijqk −
N∑

r=1
r 6=i

xriqk)(1− bi) ≥(
N∑

j=1
j 6=i

xijqk −
N∑

r=1
r 6=i

xriqk)bi ∀i; ∀q; ∀k (23)

xijqk ≥0 ∀i, ∀j,∀q,∀k (24)

yijk ∈{0, 1} ∀i, ∀j,∀k (25)

In (15) we seek to minimize the total cost of routing. The restrictions
(16) to (19) determine the conditions of a valid routing, where each node
must be visited by at least one vehicle, while each vehicle must visit one
node at most once (20) activates the cost of the product transport, (21)
indicates that the total capacity of the vehicle after visiting the node i must
not exceed maximum transport capacity. (22) ensures that the total quan-
tity of product at the farm/school is collected/delivered. (23) determines
that the vehicle load after visiting a farm/school should be higher/less than
the entry load.

2.4 Strategy P1⊕ P2⊕ P3

In this strategy, the three sub-problems are tackled together in a single
phase. For this purpose, a single mathematical model is proposed.

ppCVRPmPD model for P1⊕ P2⊕ P3
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Minimize Z=

N∑
i=1
i6=1

Q∑
q=1

N∑
k=1

xijqk · cciq +

N∑
i=1

N∑
j=1

N∑
k=1

yijk · ctij +

N∑
j=1

Q∑
q=1

N∑
k=1

x1jqk · cext (26)

s.t.

N∑
i=1
i 6=j

yijk ≤1 ∀j; ∀k (27)

N∑
i=1
i 6=s

yisk −
N∑

j=1
j 6=s

ysjk =0 ∀s; ∀k (28)

uik − ujk +N · yijk ≤ N − 1;u1 =1 ∀i 6= j 6= 1; ∀k
2 ≤ uik ≤N ∀i 6= j (29)

xijqk ≤M ·yijk ∀i, ∀j; ∀q; ∀k (30)

xi1qk ≤0 ∀i; ∀q; ∀k (31)

zijqk ≥0 ∀i, ∀j,∀q,∀k (32)

yijk ∈{0, 1} ∀i, ∀j,∀k (33)

The objective function (26) minimizes the total costs of purchasing and
transporting products. (27) to (29) indicate the conditions of a valid routing.
(30) is the activation of the transport cost. It should be noted that restric-
tions on loading products (22) to (23) used on the model P1 → P2 ⊕ P3
are applied entirely to this model.

3. Experiment

For this work, real data obtained from the Department of Caazapa,
Paraguay, have been used [5]. The data of the geographic coordinates has
allowed finding the matrix of distances and cost of transport (Table 1) [6].
Different instances of the whole set were taken. The computational tests
were solved using IBM ILOG CPLEX software on a portable computer with
2.20 GHz Intel Core i3 processor with 4 Gb RAM. In Table 2, the results are
presented; N indicates number of nodes and K number of vehicles. A small
set of nodes (N) has been taken, with Q=3 types of products offered on the
farms (onion, red pepper, and orange). The experiment consisted in testing
three instances of a set of nodes (N=7, N=9, and N=11) and vehicles (K=2
and K=3), whose capacities (kg) are 250 kg (k=1); 300 kg (k=2) and 250
kg (k=3). These capacities were selected for experimental purposes.

As can be seen in Table 2, the cost suffers a slight reduction as the strat-
egy groups match up the models to the ppCVRmPD model. In terms of
computational solving time, this increases for the ppCVRmPD model. No-
tice that, for pp+CVRP+CVRP and ppCVRP+CVRP the number of nodes
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Table 1: Transportation costs (USD)
n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11

n=1 0 0.0001 22.854 19.910 19.564 37.223 7.531 3.463 10.994 11.686 11.946
n=2 0.0001 0 22.854 19.910 19.564 37.223 7.531 3.463 10.994 11.686 11.946
n=3 22.854 22.854 0 2.943 3.290 12.379 16.360 20.257 19.824 20.516 20.776
n=4 19.910 19.910 2.943 0 0.346 9.436 13.408 17.313 16.880 17.573 17.833
n=5 19.564 19.564 3.290 0.346 0 9.609 13.080 16.967 16.534 17.227 17.486
n=6 37.223 37.223 12.379 9.436 9.609 0 18.727 22.680 22.161 22.940 23.113
n=7 7.531 7.531 16.360 13.408 13.080 18.727 0 7.531 3.463 10.994 11.686
n=8 3.463 3.463 20.257 17.313 16.967 22.680 7.531 0 4.934 3.636 4.328
n=9 10.994 10.994 19.824 16.880 16.534 22.161 3.463 4.934 0 8.397 9.089
n=10 11.686 11.686 20.516 17.573 17.227 22.940 10.994 3.636 8.397 0 6.492
n=11 11.946 11.946 20.776 17.833 17.486 23.113 11.686 4.328 9.089 6.492 0

Table 2: Costs (USD) and time (sec.) totals of the proposed models
Instance pp+CVRP+CVRP ppCVRP+CVRP pp+VRPmPD ppCVRPmPD

N=7 USD 222.81 USD 131.23 USD 194.70 USD 194.70
K=2 0.131 s 0.087 s 4.07 s 2.05 s

N=9 USD 275.14 USD 246.70 USD 247.02 USD 219.45
K=3 0.144 s 0.122 s 888.056 s 370.079 s

N=11 USD 316 USD 286.60 - -
K=3 4 s 3 s - -

used in routing calculation is N/2 while for pp+VRPmPD and ppCVRPmPD
is N. For this reason a multi-stage model is scalable in comparison with
the one-stage model. In Table 2, considering N = 11, pp+VRPmPD and
ppCVRPmPD, they can not find solution due to computational resources
limitations. There is a trade-off between the quality of solution and perfor-
mance of models, i.e. the more compact the model, the more resources are
necessary.

As an illustration of how vehicle routing works, Figures 1 and 2 show how
products are collected and then delivered to schools. The supply/demand
of products of each node is indicated in the table. The values in the vehicles
indicate the quantity transported by each product on each road.
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Figure 1: ppCVRmPD routing for vehicle 1 (k= 1)

Figure 2: ppCVRmPD routing for vehicle 3 (k= 3)

Figure 1 illustrates routing for k=1, the same one goes to pick up 104
kg of product 3 (q=3) of farm 2 (n=2) and delivers it to the school 6 (n=6),
then does a pickup by n=4 and n=3 with 16.536 kg for q=1; 6.24 kg (q=2)
and 156 kg (q=156), leaving uncollected 31.8 kg (q=1) in n=4, with 12 kg
(q=2), 196 kg (q=3) in n=3. Figure 2 shows how k=3 goes on to pick up n=3
and n=4 where k=1 not collected, 12 kg (q=2) and 192 kg (q=3) for deliv-
ery to school 6 (n=6). The model has determined not to use vehicle 2 (k=2).
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4. Conclusion and Future Wok

In this work, mathematical models have been designed for the study
problem. Sequential strategies, set and intermediate combinations were
proposed. In addition, the joint approach ppCVRmPD achieves the best
solution at the cost of more computational time. In this context, as the
problem becomes more complex, the sequential approaches will be more
attractive to generate solutions in reasonable times.

From a general point of view, it is possible to plan the decisions to
purchase, collect and distribute the products (fruit and vegetables): the
quantities to be purchased, where it would be most convenient to purchase,
the number of vehicles needed, and which would be the optimal way to
collect and distribute in order to reduce the costs involved in the process.
It is worth mentioning that the model has been studied to be applied to
other districts of the country, with some modifications or new restrictions
that may appear, as well as consider time windows and multi-deposits, with
experiments for more nodes.
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