
AgriEngineering

Article

Definition and Application of a Computational Parameter for
the Quantitative Production of Hydroponic Tomatoes Based on
Artificial Neural Networks and Digital Image Processing

Diego Palacios , Mario Arzamendia , Derlis Gregor , Kevin Cikel, Regina León and Marcos Villagra *

����������
�������

Citation: Palacios, D.; Arzamendia,

M.; Gregor, D.; Cikel, K.; León, R.;

and Villagra, M. Definition and

Application of a Computational

Parameter for the Quantitative

Production of Hydroponic Tomatoes

Based on Artificial Neural Networks

and Digital Image Processing.

AgriEngineering 2021, 3, 1–18.

https://doi.org/10.3390/

agriengineering3010001

Received: 5 November 2020

Accepted: 15 December 2020

Published: 4 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Facultad de Ingeniería, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo C.P. 111421,
Paraguay; ingdfpr@gmail.com (D.P.); marzamendia@ing.una.py (M.A.); dgregor@ing.una.py (D.G.);
kcikel@ing.una.py (K.C.); rleon@ing.una.py (R.L.)
* Correspondence: mdvillagra@fiuna.edu.py

Abstract: This work presents an alternative method, referred to as Productivity Index or PI, to quan-
tify the production of hydroponic tomatoes using computer vision and neural networks, in contrast
to other well-known metrics, such as weight and count. This new method also allows the automation
of processes, such as tracking of tomato growth and quality control. To compute the PI, a series of
computational processes are conducted to calculate the total pixel area of the displayed tomatoes
and obtain a quantitative indicator of hydroponic crop production. Using the PI, it was possible
to identify objects belonging to hydroponic tomatoes with an error rate of 1.07%. After the neural
networks were trained, the PI was applied to a full crop season of hydroponic tomatoes to show
the potential of the PI to monitor the growth and maturation of tomatoes using different dosages of
nutrients. With the help of the PI, it was observed that a nutrient dosage diluted with 50% water
shows no difference in yield when compared with the use of the same nutrient with no dilution.

Keywords: artificial neural networks; digital image processing; precision agriculture

1. Introduction

Precision agriculture introduces efficiency to food production, achieving effectiveness
that increases along with the technological advances applied to it. With a growing world
population, the challenges in food production are increasingly demanding, and many
solutions lie in optimizations applied to production techniques. To optimize production, it
is necessary to make use of a parameter or indicator value showing the differences between
alternative ways of growing an agricultural product and that can determine the most
efficient agricultural methods. For example, weight is a widely used production indicator;
however, weight does not have discriminatory properties by itself; that is, product quality
can be measured by weight but only after carrying out some other filtering methods,
such as human observation. To achieve classification capabilities in conjunction with an
indicator or quantitative production parameter, it is necessary to resort to computational
techniques [1]. In this work, a new general production indicator is introduced, called
Productivity Index(PI), which is defined through the digital processing of images taken
from cultivation plots and the application of techniques based on neural networks. PI
provides a quantitative measure of production and facilitates quality control at the same
time. This is done by processing images at the pixel level where discrimination of objects
that do not meet certain restrictions takes place. Restrictions are established during the
training of a neural network that classifies valid pixels, which are counted to obtain a value
that represents the quantitative production of an agricultural plot. In this work, the PI
technique is applied to a complete season of a tomato cultivation, and it showed great
potential for optimizing crop production.

The application of technology in food production ranges from the use of IoT (Internet
of Things) [2] through automatic control based on wireless sensors [3] to cutting-edge arti-
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ficial intelligence techniques [4]. Currently, among the most popular artificial intelligence
techniques is deep learning [5], where a perceptron [6] allows the creation of neural networks
that facilitate the classification and identification of patterns. Techniques, such as computer
vision [7] and “electronic noses”, have been implemented for the quality control of tomato
crops to determine a maturity index for tomatoes [8]. Lin et al. [9] presented a review on
computational vision technologies applied to the detection of stress in greenhouse crops.
Lin [9] observed that the segmentation or identification of the target continues to be a
problem, which is an issue they addressed. The authors of Reference [9] also discussed
problems regarding the dosage of water and nutrients in crops, as well as the presence
of diseases and pests. Lin et al. [9] then concluded that, to tackle all these problems at
the same time, many different algorithms are needed for each crop in order to identify all
possible states of the objects of interest.

In this work, a novel algorithm based on neural networks is introduced to address
all those problems at the same time. The proposed neural network identifies, at the pixel
level, a target and then classifies it according to the training process the network received
based on its desired functionality. In this training process, the network learns to effectively
identify a target; detect diseases or lack of nutrients and water; and establish a parameter
that determines how productive the plot is. Most works in the literature only take consider
a certain aspect in food production. The authors of Reference [10] only carried out the
preparation and creation of a data set for the training of a neural network. The authors
of Reference [11] focused on the complete implementation of the automated acquisition
system. The authors of Reference [12] only performed disease detection. Computational
vision techniques have been applied to the identification of targets, for example, locating
apples in trees using stereoscopic vision [13], detecting tomatoes using the AdaBoost
classifier [14], and recognizing groups of tomatoes based on binocular stereo vision [15].

Precision technology and agriculture go together, as is evidenced by the research work
carried out in recent years where digital image processing has a high impact. Rezende Silva
et al. [16] proposed the use of aerial images of plantations, captured from unmanned aerial
vehicles, to monitor the health of crops through methods, such as NDVI (Normalized Dif-
ference Vegetation Index), in conjunction with a classification algorithm as a management
mechanism for cultivable areas. Image processing was also the main technique used by
Treboux and Genoud [17,18], who applied machine learning methods, such as the decision
tree ensemble. Kala et al. [19] implemented a SVM (Support Vector Machine) for the detec-
tion of plant diseases and optimal application of insecticides. Akila et al. [20] implemented
CRFT (Conditional Random Field Temporal Search) to detect plants and monitor their
growth. Sudhesh et al. [21] carried out a review on recognition, categorization, and quantifi-
cation of diseases in various agricultural plants through different computational methods.
Yalcin [22] used a deep learning approach to recognize and classify the phenological stages
of agricultural plants from their digital images.

In precision agriculture, Convolutional Neural Networks (CNN) are recurring implemen-
tations in digital image processing, as can be seen in the works of Umamaheswari et al. [23]
and Li et al. [24], where CNNs are used to identify and differentiate weeds from the
target crop using a GPU (Graphics Processing Unit) to speed up the process. Furthermore,
Yang et al. [25] implemented CNNs to diagnose cold damage to crops through hyperspec-
tral images. Nardari et al. [26] presented a comparison of methods based on CNNs,
evaluating the complexity of the model and the performance based on multiple metrics
for the task of binary classification of tree segmentation in the environment. In addition,
Andrea et al. [27] and Abdullahi et al. [28] used CNNs to identify and classify maize and
target plants. The use of other types of neural networks can also be seen in the work by
Barrero et al. [29], who implemented weed detection in rice fields with perceptron-based
networks. Purwar et al. [30] applied Recurrent Neural Networks (RNN) in satellite images
to classify crop plots.

Most of the works in the literature aim to identify an objective and then classify it. This
work proposes to go a little further and quantify more precisely what is identified, which is
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achieved by discriminating pixels by their characteristics. The main idea is that pixels can
be discriminated through their RGB (Red, Green, Blue) values with a neural network as
a classification instrument. In a technologically advanced hydroponic greenhouse with a
controlled environment, it is possible to implement an automatic imaging system for plots
and apply digital image processing and artificial intelligence techniques. Furthermore, a
production indicator is also proposed in this work, which keeps an automatic record of
growth and development of crops and can make comparisons between plots to optimize
productive resources and make efficient application and dosing of nutrients.

Koirala et al. [31] presented a survey of deep learning techniques for the detection and
counting of objects through digital image processing. They also discussed the weight of the
object as a parameter, but they mentioned that only an approximate estimation can be done
from the image. The lack of precision for counting objects is especially troublesome when
the objects can vary in size, for example, in tomatoes. Five small tomatoes give the same
productivity as five large tomatoes if only the count is considered. Clearly, simply counting
objects is not a good metric of productivity. On the other hand, if weight is considered
instead, there is a control automation problem, i.e., weight does not discriminate by itself
the quality of the product. For example, 5 kg of rotten tomatoes would be the same as 5 kg
of healthy tomatoes.

Reis et al. [32] presented an identification system for grapes using images. Their main
idea is to use the RGB values of pixels to classify objects, which is achieved by defining
four main RGB coordinates for a given type of grape and a set of boundaries around those
coordinates in order to discriminate if a pixel belongs to the target object or not.

Inspired by the works of Koirala et al. [31] and Reis et al. [32], the main contribution of
this work is the definition of a metric called Productivity Index (PI) that uses the images taken
from agricultural plots of tomatoes grown with different nutrient dosages to record and
monitor their growth. PI is arguably more precise in terms of productivity than a simple
counting of objects, and, additionally, it can be used to automate quality control. In contrast
to other works in the literature, in this work, a neural network is used for classification and
identification of tomatoes. In addition, this work also presents a comparison of production
techniques using the PI with data obtained from perceptron-based neural networks.

The rest of this paper is organized as follows. Section 2 presents the techniques
used in this work, particularly the architecture of the neural network used, the stages
of data processing for the entire proposed system, and the definition of the productivity
index. Section 3 presents the results obtained by detailing the numerical values used in
the experiments and the experimental environment. Section 4 presents a discussion of the
obtained results and compares them against other works in the literature. Finally, Section 5
gives the conclusions of this work.

2. Materials and Methods

To achieve the goal of determining an effective computational indicator of quantitative
productivity (the Productivity Index (PI) proposed in this work), it is necessary at some
point in the process to discriminate or classify pixels within an image. The focus of this
work is on identifying a target fruit or vegetable product by examining the corresponding
pixels in an image, which is achieved with a perceptron-based neural network specifically
trained for classification. The identification of the objective is done through a binary
classification on the image. A complete tour of the image is made, and each pixel of the
image is classified accordingly, that is, a pixel belongs to the target product or not.

The complete process of determining the PI consists of two fundamental parts: (1)
the identification of valid pixels using a neural network for binary classification and (2) a
post-processing stage for confirmation or rectification of predictions of pixels. Once the
objects have been identified, a valid pixel calculation is made to obtain a number that is
proportional to the quantitative production of the hydroponic yield. A pre-processing step
can be included to have a better control of the environment captured in the image. Figure 1
shows the complete process proposed in this work.
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Figure 1. Productivity Index (PI) calculation process.

The entire process is based on the idea that pixels can be discriminated using a neural
network as belonging to a target object or not. The neural network is trained with labeled
data with valid pixels corresponding to the target and invalid pixels that do not belong
to the target. The training is supervised and the discrimination pattern is based on a 3 ×
1 array of integers, where the positions in the array correspond to the RGB (Red, Green,
Blue) value of a pixel of the image. Once the pixel identification process is over, there will
be some false positives and false negatives as predictions are not infallible. To overcome
these drawbacks, a post-processing step is performed where the environment of each pixel,
referred to as kernel in this work, is evaluated. A scope of a kernel that surrounds each
pixel and a siege percentage in the environment are computed to confirm the objective as
valid or make the corresponding correction. A siege percentage is defined as the relative
number of non-target pixels within a kernel. The general rule of thumb for discriminating
pixels is that the probability for a pixel to be valid is determined by the number of valid
pixels that surrounds it, that is, a low siege percentage. The values of the evaluation kernel
scope and siege levels that determine the validity of a pixel are determined with tests with
real data during the implementation of the algorithm. With a count of valid pixels, the PI
can then be computed.

In the following subsections, each functional block of Figure 1 is explained. Section 2.1
describes the neural network architecture used in this work and how it was constructed.
Section 2.2 describes the post-processing stage of images. Section 2.3 defines the produc-
tivity index. Finally, Section 2.4 describes the pre-processing stage of images, which is
presented last because it is considered as an optional stage in the entire system.

2.1. Neural Network

For identification and classification purposes, this work uses a specially designed
and trained neural network. The virtues of this computational technique are well known
in applications of machine learning [33,34]. In Figure 2, the general outline of the neural
network model for a pixel classification process is presented. The pattern to identify is
formed by a vector of three components that represent the intensity levels of the red (R),
green (G), and blue (B) colors that make up a pixel. The output is binary, that is, it can take
only two values or states: “Belongs to the Target” or “Does not belong to the Target,” which
makes reference to whether a pixel is part or not of the fruit or vegetable product to be
identified in the image. The neural network is a Fully Connected Multilayer Perceptron (MLP),
that is, a perceptron-based artificial neural network fully connected between neurons
in different layers [6]. No assumptions are made regarding the characteristics of the
data; therefore, a fully connected network is used to let the network learn by itself those
characteristics through all possible combinations between layers.
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Figure 2. Neural network model for pixel discrimination.

The neural network of Figure 2 has a hidden layer with thirty neurons with the aim of
achieving the highest percentage of correct predictions with no overfitting; see Section 3.1
for the details of how this number was obtained. The activation function used is ReLU
(Rectified Linear Units) for the hidden layer and Sigmoid for the output layer. For training
the algorithm, Back-Propagation [35] is used, which adjusts the weights of each perceptron
in order to minimize the cost function represented by the mean squared error between the
obtained value and expected value contained in the training data. To reach a minimum
of the cost function, the optimization technique SGD (Stochastic Gradient Descent) [36] was
used, which was iterated over a thousand times to obtain a high percentage of correct
predictions in the network. The supervised training was carried out using more than two
million registers of data saved in a CSV file (Comma Separated Values).

The data set is divided in two groups, one for training (70%) and the other for evalu-
ation (30%), and it is made of patterns composed of 3 × 1 vectors representing the RGB
color intensities of a pixel. Using supervised training, the data is tagged with the correct
expected prediction output from the network, a “1” for pixels belonging to the target and a
“0” for non-target pixels; see Table 1 for an example.

Table 1. Data set example.

BLUE GREEN RED LABEL

· · · · · · · · · · · ·
0 36 19 0
7 46 30 1

34 77 62 0
· · · · · · · · · · · ·

The numerical values in the first three columns of Table 1 represent the intensity of
each RGB component of a pixel, and the last column represents the target (1) or non-target
(0) label. Once the training is finished, the network parameters are stored in a JSON data
format file (JavaScrPIt Object Notation). Then, in order to identify the target pixels in a
new image, it is only necessary to load the parameters of the trained network and run the
prediction for each of the pixels. The data set creation process is described as follows.

• Image reading: The first step is the reading of an image file. This is done through
the OpenCV library, which allows reading an image file that is then saved in a data
structure and manipulated through its predefined methods and functions.

• Component Pixel Path: Once the image has been read, all its pixels are traversed through
a programmed iterative cycle. In each cycle, the RGB intensity values of a pixel are
accessed and a visual presentation of the analyzed pixel is made via a computer screen
for analysis purposes. The numerical values of the RGB intensities receive a labeling
from an observer before being stored.

• Visual observation and classification of the pixel: The labeling of the data is done in a
“manual”, or rather “visual” way, and depends exclusively on the observer. The desire
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to implement human characteristics in artificial machines, and for the particular case
of computer vision, supervised training requires that the data be pre-classified by
a human observer before it is used for training in a neural network. Observing the
evaluated pixel of an image, an input is intered by an observer who labels the RGB
data trio as belonging to a pixel that corresponds to the target, or not belonging to the
target. Figure 3 shows an example of pixel tagging.

• Storage of training vector: Once the RGB data trio is tagged, it is stored in a file inside a
non-volatile device. The data thus obtained and stored are then used for training the
neural network. It is important to always store data with relevant, diverse, and large
amounts of information to improve training and increase the probability of correct
predictions by the network.

Figure 3. Pixel tagging example.

For the training to be successful, numerous relevant and varied data are needed, i.e., a
large quantity of quality data sets of images taken from scenarios of real operations of the
system, and with a wide diversification in the nuances of the information to be identified.
Once the neural network has been trained with a data set that meets the aforementioned
characteristics, it will be ready to make predictions on unknown data and categorize the
pixels of new images.

2.2. Post Processing

After making a prediction in the classification of pixels with the neural network in
operation after training, inevitably there will be some false positives and false negatives.
This problem can be corrected by applying a post-processing step with a verification algo-
rithm proposed in this work. The verification algorithm is based on the idea that a pixel is
also surrounded by pixels belonging to the target, and hence, these pixels also belong to
the target with high probability. To carry out the verification step, the environment of each
pixel of an image is analyzed and a siege percentage is calculated. Siege percentage is an
idea that represents the number of pixels different from a given evaluated reference pixel
within the analyzed environment of that pixel. If the siege percentage is high, then there is
a high probability that the reference pixel is incorrectly labeled after prediction.

The verification algorithm reads an image pixel by pixel, and each pixel is taken as a
reference pixel. The kernel defines the surroundings of a reference pixel evaluated in that
iteration of the algorithm. Given a positive integer k, a kernel with respect to a reference
pixel is defined as the set of pixels that are contained in a rectangular window of size
(2k + 1)× (2k + 1) that is centered at the reference pixel. The number k is called the size
of the kernel; see Figure 4 for an example. As each pixel in the kernel is examined, the
number of pixels different from the reference pixel is counted. This count is interpreted as
a percentage, which, if it is equal to or greater than an established siege percentage threshold,
then the predicted tag value of the reference pixel is updated. The kernel and siege
percentage threshold are established experimentally in this work and will be discussed in
later sections.
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Figure 4. Reference pixel path during an iteration with a kernel size of 2, one painted in blue and
another painted in orange.

The verification algorithm is shown in Figure 5. There are two main loops, one that
goes through all the pixels in the image, and another nested loop that goes through the
kernel for each reference pixel. The “Travel” variable keeps track of each pixel in the kernel
until the entire kernel is traversed, while the “Error” variable keeps track of the different
pixels compared to the reference pixel.
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Figure 5. Verification algorithm.

The verification algorithm of Figure 5 validates the pixels identified as belonging to
the target and rectifies the false negatives. With a similar argument, false positives can be
rectified, that is, correctly labeling a pixel as not belonging to the target when the network
wrongly identified it as belonging to the target. Figure 6 shows an example of the neural
network prediction and a corresponding post-processed image.
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Figure 6. Neural network prediction and its corresponding post-processing step.

2.3. Productivity Index

To quantify the production of the plots or cultivation tables automatically, a compu-
tational production index is defined referred to as a Productivity Index or PI. The PI is
defined as a quotient between the number of valid pixels in the image that correspond to a
target and the total number of pixels, that is,

PI =
number of valid pixels
total number of pixels

. (1)

The process of computing the PI involves traversing all pixels in the post-processed
image and counting those labeled as valid pixels, that is, pixels corresponding to tomatoes
in this work. The PI is then calculated by dividing the number of valid pixels by the total
number of pixels in the image to obtain as a result the proportion of pixels in the image
that correspond to the target, which in this work corresponds to tomatoes.

In this way, the PI represents a quantity of tomatoes produced on the plot, that is, a
quantitative productivity.

2.4. Pre-Processing

The pre-processing step is explained last because it is an optional functional block of
the entire system, and it is only used when there is no physical control of the environment.
The environment control refers to the manipulation of everything that appears in the
images during the process of taking photographic samples of the crops. The control of the
environment can be done manually in the same cultivation site, taking care that everything
that appears in the image does not interfere in a correct calculation of the PI. This situation
is done by avoiding any foreign object with the same range of RGB intensities as tomatoes,
for example, a red tube for irrigation. Some further control of the environment can also be
done computationally with a pre-processing step where targets are first identified before
performing a classification at the pixel level. The identification of tomatoes can be done
with a Convolutional Neural Network (CNN) trained to identify tomatoes [4,37]. A pre-
selection of targets with Faster R-CNN focuses the PI calculation only on tomatoes, thus
avoiding any foreign object that may introduce errors in the calculation of the PI. Table 2
shows the hyperparameters for the Faster R-CNN with a ResNet architecture [38]. Figure 7
shows some examples for the valid targets training data set and Figure 8 for the invalid
targets training data set.
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Table 2. Faster R-CNN hyperparameters.

Hyperparameter Value

Anchor box scale [0.25, 0.5, 1.0, 2.0]
Anchor box aspect ratio [0.5, 1.0, 2.0]

Anchor box height stride 16
Anchor box width stride 16

Iterations 200,000
Learning rate 0.0003

Momentum for SGD 0.9

Figure 7. Valid targets.

Figure 8. Invalid targets.

3. Results

The essence of this work lies on identifying whether objects in an image are tomatoes
or not. The main goal is to quantify valid pixels in the image, thus obtaining an indicator
or index of production quantity. The computational implementation is done with the
programming language Python version 3.6, along with its libraries for scientific computing
applications: Keras in its version 2.2.4 for neural networks, and OpenCV in its version 4.1
for digital image management.

Figure 9 shows results of the behavior of the trained neural network. Invalid pixels
are painted in black and valid target pixels are displayed. As can be seen in Figure 9,
the prediction is not perfect and false positives and false negatives appear, that is, pixels
identified as valid targets when in fact they are not, and pixels identified as invalid when
in fact they are. The post-processing verification algorithm can check these predictions and
rectifies them.

Figure 9. Results of the prediction of the trained neural network with no post-processing.
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3.1. Siege Percentage Threshold, Kernel Size, and System Error Rate

To calculate the precision and accuracy of the models and obtain a fair estimation of
the siege percentage threshold and kernel size, it is necessary to find the deviation between
the observed values and the real values. For this purpose, an image is “manually painted”,
simulating the ideal detection of the pixels corresponding to “tomatoes.” This way, the
manually painted image can be used as a reference to measure different pixels when the
post-processed image and the ideal image are compared against each other. Thus, a pattern
for calculating the system’s error can be established. Figure 10 shows an example of an
original image and its respective ideal detection pattern.

Figure 10. Original image and reference pattern, painted ideally.

Several tests have been carried out to choose the best combination of post-processing
parameters and the neural network model with the least prediction errors. The kernel size,
the siege percentage threshold value, the number of hidden layers of the neural network,
and the number of neurons per layer have been varied. Figure 11 shows the test results for
the calculation of the average error of the processing of 200 samples with a neural network
model with a single hidden layer of 30 neurons. The error rate is calculated as the number
of pixels different from the ideal pattern in relation to the total number of pixels of a image.
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Figure 11. Average system error rate with kernel values between 7 and 10, and Siege Percentage
Thresholds equal to 20%, 40%, 60%, and 80%.

The kernel size and siege percentage threshold values with the minimum system error
rate that are used in this work are a kernel size of 10 pixels and a siege percentage threshold
of 60%. Figures 12 and 13 show each step of image processing. Figures 14 and 15 also show
two examples of a final result after all processing stages.
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Figure 12. Original image (left) and Neural Network output (right).

Figure 13. Post-processing output (left) and final processed image (right) with errors marked in blue.

Figure 14. Original image (left) and final processed image (right).

Figure 15. Original image (left) and final processed image (right).

3.2. Application of PI on a Complete Tomato Growing Season

Once the PI is computed for each image of the crop plot sampled over time, a time
curve is obtained that describes the growth of cultivated products and allows objective
comparisons between agricultural plots.

For this work, tomatoes were grown in a hydroponic greenhouse in three different
plots, each with a different nutrient dosage. The concentration of the final nutrient solution
was modified from a commercial solution based on the Hoagland solution [39]. Plot 1
received the commercial nutrient dosage of 100%, plot 2 with a diluted dosage of 75%, and
plot 3 received a diluted dosage of 50%. Using the PI, it is possible to determine whether a
diluted nutrient solution affects the quantitative production of the plots. Then, it is another
goal of this work to establish an optimal dosage for greater effective production.

Since the sowing of tomatoes, photographs were taken of the plots with a sampling
period of one day, and images were always taken from the same distance as recommended
by the proposed method, which was 1 meter in this case. Additionally, each plot was
divided into 8 subplots to cover the entire extension of the crops. The length of the plot
is 16 meters approximately, and photos were taken along the plot from both sides. The
PI resulting from a complete parcel in a single temporal sample event is the result of the
average PI for each sub-parcel and the average PI of both sides. The temporal registration
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of the PI is represented through curves that will be shown later as results and that will
serve to analyze and compare the different production techniques.

In summary, the PI is calculated each day for each of the three plots, and for each day
16 photographs are taken, since there are 8 subplots and one photograph is taken from
each side. This gives us a total of 48 photographs; thus, the PI for a day is computed by
averaging the PI of each individual photograph.

Digital images are in JPEG format with a dimension of 5120 × 3840 pixels encoded
in 8-bit RGB per channel. The digital camera used was an AKASO Brave 4 4K 20MP. As
an example, Figure 16 shows the original image of one sample, the pre-processing with
CNNs, and its processing with the proposed method identifying objective pixels.

Figure 16. Original image, Convolutional Neural Networks (CNN) pre-processing, and pixel-level processing of sample 38
with 75% diluted nutrient dosage.

Figures 17 and 18 show the photographic samples and the digital processing of the first
sampling event and an intermediate event, respectively. The processing of the first sample
in Figure 17 presents a totally black screen, indicating that the target is not perceived with
the algorithm. Over time, tomatoes begin to ripen, and the target is identified by computing
the PI, as shown in Figure 18, thus achieving a record of growth and productivity through
the PI curves. Daily photographic samples were taken from sowing to harvest, and the
resulting PI processing gave rise to a time curve that determines the growth of tomatoes
and describes the evolution of quantitative productivity.

Figure 17. First photographic sample of the first sub plot with 50% of commercial nutritional solution and its digital
Productivity Index (PI) processing with the date and time of the sampling.
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Figure 18. Photographic sample of the first sub plot with 50% of commercial nutritional solution and its digital PI processing
with the date and time of the sampling.

A drawback that occurs when calculating the PI over time is what is called, in the
context of this work, as the Harvesting problem, which influences the accuracy of the PI
calculation as time passes. An early harvest can cause the PI measurement at that moment
to drop when, in reality, the productivity is the same or increases, that is, productivity
measurement errors are introduced due to the extraction or fall of very mature targets. In
order to overcome the harvesting problem, a method of accumulating the PI is proposed
according to

PI(accumulated)i =
n=i

∑
n=1

∆PIn where ∆PIn = PIn − PIn−1 > 0, (2)

and PIn is defined as the instantaneous PI at time step n. The time curve of PI actually
shows the accumulation of PI over time, which translates into cumulative productivity
regardless of whether the instantaneous calculations record a PI reduction due to early
harvest. The accumulated PI at a given instant i is calculated with the sum of ∆PIn, from
the first sample to that of instant i, as long as ∆PIn is positive. Thus ∆PIn represents the
difference of instantaneous PIs between consecutive samples. The value of PIi − PIi−1
must necessarily be positive in order to be included in the summation, since a negative
value represents an early harvest, and, after it is identified in this way, it must be ignored
in the calculation to avoid incurring productivity measurement errors.

The calculation explained in the previous paragraph was performed with the three
plots, and the resulting curve is presented in Figure 19.

Looking at the time curves of the three plots, relevant information regarding their
productivity can be obtained. In the first stage of growth, it is observed that a nutritional
solution at 50% shows higher productivity, even reaching 23.5 times more production than
the plot with 100% nutritional solution on day 19, and it is also 11.2 times more productive
than the 75% plot on the same day. In the middle time stages, the productive superiority of
the solution is maintained at 50% with respect to the others until day 33, in which the 75%
solution begins to look more productive; meanwhile, the 100% solution stays very inferior.
In the final stages, the 75% and 50% solutions show higher productivity than the 100%
solution, these being 1.5 and 1.4 times more productive, respectively. The 75% solution
presented the highest final productivity, being 1.1 times more productive than the 50%
solution.

Table 3 shows three types of productivity magnitudes for the three plots in their final
stages, two of which are commonly used, like weight and count, and the third which
is the PI proposed in this work. As can be seen, there is a certain correlation between
the three magnitudes, where all of them reflect the superiority of the solution with 75%
concentration, followed by the solution at 50%, and the solution at 100% with the slightly
worst productivity.
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Figure 19. Cumulative PI time curves of the three plots. The curves are the PIs with 50% diluted dosage (blue), 75% diluted
dosage (green), and non-diluted dosage (orange).

Table 3. Count, weight, and PI comparison table.

Solution Count [units] Weight [g] PI [%]

Concentration 50% 73 4299 1.26
Concentration 75% 89 5867 1.38
Concentration 100% 60 3997 0.93

It is interesting to note that the 75% solution is 1.5 times more productive than the
100% solution, taking into account the three specified magnitudes. However, if we compare
it against the 50% solution, it is 1.2 times more productive considering the count, 1.4
times more productive considering the weight, and 1.1 times more productive considering
the PI. This difference, even between two well-known measures of productivity, is due
to the precision with which all these magnitudes measure the produced quantity (two
large tomatoes are heavier than two small tomatoes). The PI approach aims to be more
precise than the most common approach in computational vision where objects counts
are implemented. The PI aims to improve even measurement by weight, automating
quality control through pixel-level identification of healthy targets (one kilogram of healthy
tomatoes and one kilogram of rotten tomatoes have the same weight) and making it easier
to track the growth of tomatoes instead of doing it through weighing before harvest.

4. Discussion

The productivity index or PI was implemented using digital image processing with a
perceptron-based artificial neural network. It should be noted that the calculation of the
PI is made based on photographs taken automatically by a robotic system or by a human
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that acquires digital samples always from the same distance and pointing to the same
objective. This way, the automatic system creates the necessary context for the PI to make
sense and be able to provide necessary information regarding the growth of agricultural
products in the different plots. The PI also provides a computational numerical parameter
for comparisons between different crops and their agro-production techniques, such as
composition and dosage of nutrients, thus obtaining a reference for optimizing production.

Regarding the precision in the identification of objects in digital images, Reis et al. [32]
achieves a precision of 97% in the identification of red grapes using a pixel identification
method similar to this work. Villacrés and Auat [4] were able to identify cherries with a
precision of 85% using faster R-CNN. Si et al. [13] identified apples using stereoscopic
vision with a precision of 89.5%. Xiang et al. [15] achieved a precision of 87.9% in the
identification of groups of tomatoes using binocular stereo vision. Zhao et al. [14] showed
that, combining the AdaBoost classifier and color analysis, tomatoes can be detected with a
precision of 96%. With the Single Shot Detector, (SSD) the authors of Reference [40] showed a
precision of 95.99% in the detection of tomatoes. Other works, like Mu et al. [41], achieved
a precision of 87.83% using faster R-CNN, also in tomatoes. In this work, a specific neural
network was trained for the identification of pixels belonging to tomatoes and a verification
algorithm was programmed to optimize target detection achieving a success rate of 98.93%.
The nature of the computational technique used to calculate the PI allows to be adapted
for other scenarios and contexts. With the versatility of neural networks, the same concept
developed in the present work can be applied to detect other fruit and vegetable species
simply by retraining the network with another specific data set for the desired target crop.

Other works in the literature, besides identification, use the count of objects as pro-
ductivity parameter [4,14,40–43]. As explained before, counting of objects is not a precise
indicator for productivity, and that is one reason this works introduces the PI. Most of
the works in the literature focus on detecting objects and not on monitoring of objects,
which is what this current paper is emphasizing. For monitoring, there are works that keep
a register of the size of plants [20], controlling diseases [44], environmental control [11],
tracking the count of flowers and tomatoes [40,45], and keeping a registry of the volume of
tomatoes [46]. This last work of Fukui et al. [46] is the closest to the current paper, and one
important point to notice is that the authors of Reference [46] achieved good results in a
controlled environment inside a laboratory, whereas, in outside environments, the results
were not as expected. On the other hand, the results obtained in this work were performed
completely in a typical working environment of hydroponic tomatoes.

The PI was computationally applied over time through digital image processing with
a fully connected multilayer perceptron in three tomato crop plots and three different
nutrient dosages of a Hoagland solution. The control of the environment of the sampling
place was analyzed, and a computational method based on convolutional neural networks
was proposed to avoid erroneous measurements. In addition, an adequate mathematical
calculation was established to correct the Harvesting Problem caused by early harvests
during the processing of the curves. Through the innovative computational method of
PI calculation, three time curves of three different production techniques were obtained:
dosing of nutrients with commercial chemical compounds at 100%, diluted at 75%, and
diluted at 50%. With these time curves, the production of the plots was recorded and
analyzed. As a conclusion, it was observed that the plots with a nutrient dosage diluted to
75% showed higher productivity compared to the other two plots with different dosing
techniques, this being 1.1 times more productive than the plots with a dosage of 50% and
1.5 times more productive than those with a dosage of nutritional chemical compounds at
100%. The PI was compared with two well-known magnitudes of productivity, weight and
count, highlighting the advantages of this approach in precision and automation of quality
control.

In agronomic terms, it can be concluded through the PI that there is no significant
difference in productivity between the three solutions studied. Therefore, the results
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suggest that it is recommended to use a 75% solution to have a slight improvement in
productivity, as well as to potentially use a 50% solution to minimize production costs.

5. Conclusions

This work introduced a new computational parameter, a so-called Productivity Index
or PI, to quantify productivity of hydroponic tomatoes using neural networks and digital
image processing. The neural network presented an error rate of 1.07% in the identification
of pixels belonging to tomatoes. This neural network together with the PI was then used in
a full season of hydroponic tomatoes in order to test the entire system in a real working
environment. From the application of the PI in real scenarios, it is possible to conclude
that there is no difference in terms of productivity of a plot of tomatoes when a Hoagland
solution is diluted 50% with water or is not diluted at all.

One limitation of the approach is the poor detection of very green tomatoes, which
requires specializing the system for the detection of tomatoes before their middle ripening
stage. The neural network of this work is trained to detect tomatoes when they start its
red coloration process; when tomatoes are green they are not perceived by the network,
which will required a new training stage to detect green tomatoes and can potentially be
confused with invalid objects like leaves. This, however, can be considered as positive,
since the system can detect which exact moment in time a tomato plot enters its ripening
stage by observing the change in PI.

Regarding occlusions, two types can be noted: occlusions by invalid targets (branches,
leaves), and occlusions by valid targets (tomatoes obstructing other tomatoes). Invalid
target occlusions can be improved with good environmental control, periodic pruning,
or human intervention. Payne et al. [43] takes images from four different points of view
pointing to the same objective in order to obtain robust results even with occlusions. In this
paper, the photographs were taken only from two points of view considering that plots are
organized in lines. The proposed method of this work, however, offers improved solutions
of up to 50% in invalid target occlusions. This is due to the way samples are taken and
the process of computing the PI, that is, the samples are taken from both sides of the crop
line and the resulting PI from that subplot is calculated by averaging the instantaneous
PI of the image from each side of that subplot. Having two points of view facing each
other improves the field of vision when taking samples. Occlusions for valid objectives are
more complicated to solve, and they are beyond the scope of this work, which is why it is
proposed to study them in future works. The solution in general is to identify tomatoes that
are occluded, define their contours, and reconstruct them with an elliptical approximation.
Small occlusions in general are accepted and tolerated since they do not affect the PI when
using it as a means of comparison. This is because small occlusions can be considered as
“white noise” that affect all measurements equally.

The execution time of the entire process is approximately 3 minutes for each image.
A dedicated server was used in this work that stores the images and processes them
per day. Execution time can be reduced by implementing GPU (Graphics Processing
Unit) processing, thus parallelizing calculations. To achieve this, the program code must
be adapted to implement the same algorithm presented in this approach. One of the
advantages of using a neural network as a classification method is its ease of parallelizing
calculations with GPU programming. This implementation will be done in future works in
order to improve the system.

For future work, this study with image processing is intended to be validated with
other agronomical studies of the productivity and the physicochemical properties of crops.
Even though this work used Faster R-CNN, which is considered as a deep neural network,
further studies using other network architectures can improve our understanding of the
applications of deep learning for the detection and classification of fruits and vegetables.
Furthermore, it is expected to use optimization algorithms, like genetic algorithms, in order
to improve the model of the neural network.



AgriEngineering 2021, 3 17

Author Contributions: Conceptualization, D.G. and D.P.; Methodology, D.P.; Software, D.P. and
K.C.; Validation, R.L., D.G., and M.A.; Formal Analysis, D.G. and D.P.; Investigation, M.A. and D.P.;
Resources, D.G., K.C., and M.A.; Data Curation, K.C. and R.L.; Writing—original draft preparation,
D.P. and R.L.; Writing—review and editing, D.G., M.A., and M.V.; Visualization, D.G. and D.P.;
Supervision, D.G. and M.A.; Project administration, D.G.; and Funding acquisition, D.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by CONACYT (National Council of Science and Technology) of
Paraguay, providing the necessary funds to finance the project PINV15-068 “Image Processing of
Fruits and Vegetable Products in a Hydroponic Greenhouse”.

Acknowledgments: The authors thank the Faculty of Engineering of the National University of
Asunción for the support provided for the development of this project.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Szeliski, R. What is computer vision? In Computer Vision: Algorithms and Applications; Springer: London, UK, 2011 ; pp. 3–10.
2. Charumathi, S.; Kaviya, R.M.; Kumariyarasi, J.; Manisha, R.; Dhivya, P. Optimization and control of hydroponics agriculture

using IOT. Asian J. Appl. Sci. Technol. 2017, 1, 96–98.
3. Dae-Heon, P.; Beom-Jin, K.; Kyung-Ryong, C.; Chang-Sun, S.; Sung-Eon, C.; Jang-Woo, P.; Won-Mo, Y. A study on greenhouse

automatic control system based on wireless sensor network. Wirel. Pers. Commun. 2011, 56, 117–130.
4. Villacrés, J.F.; Auat Cheein, F. Detection and Characterization of Cherries: A Deep Learning Usability Case Study in Chile.

Agronomy 2020, 10, 835. [CrossRef]
5. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nat. Int. J. Sci. 2015, 521, 436–444. [CrossRef] [PubMed]
6. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65,

386–408. [CrossRef] [PubMed]
7. García, J.; Navalón, A.; Jordi, A.; Juárez, D. Visión artificial aplicada al control de la calidad. 3C Tecnol. 2014, 3, 297–308.
8. Durán, C.; Gualdron, O.; Hernández, M. Nariz electrónica para determinar el índice de madurez del tomate de árbol (Cyphoman-

dra Betacea Sendt). Ing. Investig. Y Tecnol. 2014, 15, 351–362.
9. Lin, K.; Chen, J.; Si, H.; Wu, J. A Review on Computer Vision Technologies Applied in Greenhouse Plant Stress Detection. In

Chinese Conference on Image and Graphics Technologies; Springer: Berlin/Heidelberg, Germany, 2013; Volume 363.
10. Zaborowicz, M.; Przybyl, J.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybyl, K. Computer image analysis in

obtaining characteristics of images: Greenhouse tomatoes in the process of generating learning sets of artificial neural networks.
In Proceedings of the SPIE 9159, Sixth International Conference on Digital Image Processing (ICDPI 2014), Athens, Greece, 16
April 2014.

11. Story, D.; Kacira, M. Design and implementation of a computer vision-guided greenhouse crop diagnostics system. Mach. Vis.
Appl. 2015, 26, 495–506. [CrossRef]

12. Wspanialy, P.; Moussa, M. Early powdery mildew detection system for application in greenhouse automation. Comput. Electron.
Agric. 2016, 127, 487–494. [CrossRef]

13. Si, Y.; Liu, G.; Feng, J. Location of apples in trees using stereoscopic vision. Comput. Electron. Agric. 2015, 112, 68–74. [CrossRef]
14. Zhao, Y.; Gong, L.; Zhou, B.; Huang, Y.; Liu, C. Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and

colour analysis. Biosyst. Eng. 2016, 148, 127–137. [CrossRef]
15. Xiang, R.; Jiang, H.; Ying, Y. Recognition of clustered tomatoes based on binocular stereo vision. Comput. Electron. Agric. 2014,

106, 75–90. [CrossRef]
16. Silva, G.R.; Escarpinati, M.C.; Abdala, D.D.; Souza, I.R. Definition of Management Zones Through Image Processing for Precision

Agriculture. In Proceedings of the 2017 Workshop of Computer Vision (WVC), Natal, Brazil, 30 October–1 November 2017; pp.
150–154.

17. Treboux, J.; Genoud, D. High Precision Agriculture: An Application Of Improved Machine-Learning Algorithms. In Proceedings
of the 2019 6th Swiss Conference on Data Science (SDS), Bern, Switzerland, 14 June 2019; pp. 103–108.

18. Treboux, J.; Genoud, D. Improved Machine Learning Methodology for High Precision Agriculture. In Proceedings of the 2018
Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–6.

19. Kala, H.S.; Hebbar, R.; Singh, A.; Amrutha, R.; Patil, A.R.; Kamble, D.; Vinod, P.V. AgRobots (A Combination of Image Processing
and Data Analytics for Precision Pesticide Use). In Proceedings of the 2018 International Conference on Design Innovations for
3Cs Compute Communicate Control (ICDI3C), Bangalore, India, 25–28 April 2018; pp. 56–58.

20. Akila, S.; Sivakumar, A.; Swaminathan, S. Automation in plant growth monitoring using high-precision image classification
and virtual height measurement techniques. In Proceedings of the 2017 International Conference on Innovations in Information,
Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–4.

http://doi.org/10.3390/agronomy10060835
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1037/h0042519
http://www.ncbi.nlm.nih.gov/pubmed/13602029
http://dx.doi.org/10.1007/s00138-015-0670-5
http://dx.doi.org/10.1016/j.compag.2016.06.027
http://dx.doi.org/10.1016/j.compag.2015.01.010
http://dx.doi.org/10.1016/j.biosystemseng.2016.05.001
http://dx.doi.org/10.1016/j.compag.2014.05.006


AgriEngineering 2021, 3 18

21. Sudhesh, R.; Nagalakshmi, V.; Amirthasaravanan, A. A Systematic Study on Disease Recognition, Categorization, and Quan-
tification in Agricultural Plants using Image Processing. In Proceedings of the 2019 IEEE International Conference on System,
Computation, Automation and Networking (ICSCAN), Pondicherry, India, 29–30 March 2019; pp. 1–5.

22. Yalcin, H. Phenology recognition using deep learning. In Proceedings of the 2018 Electric Electronics, Computer Science,
Biomedical Engineerings’ Meeting (EBBT), Istanbul, Turkey, 18–19 April 2018; pp. 1–5.

23. Umamaheswari, S.; Arjun, R.; Meganathan, D. Weed Detection in Farm Crops using Parallel Image Processing. In Proceedings of
the 2018 Conference on Information and Communication Technology (CICT), Jabalpur, India, 26–28 October 2018; pp. 1–4.

24. Li, N.; Zhang, X.; Zhang, C.; Guo, H.; Sun, Z.; Wu, X. Real-Time Crop Recognition in Transplanted Fields With Prominent Weed
Growth: A Visual-Attention-Based Approach. IEEE Access 2019, 7, 185310–185321. [CrossRef]

25. Yang, W.; Xie, C.; Hao, Z.; Yang, C. Diagnosis of Plant Cold Damage Based on Hyperspectral Imaging and Convolutional Neural
Network. IEEE Access 2019, 7, 118239–118248. [CrossRef]

26. Nardari, G.V.; Romero, R.A.F.; Guizilini, V.C.; Mareco, W.E.C.; Milori, D.M.B.P.; Villas-Boas, P.R.; Santos, I.A.D. Crop Anomaly
Identification with Color Filters and Convolutional Neural Networks. In Proceedings of the 2018 Latin American Robotic
Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), Joao Pessoa,
Brazil, 6–10 November 2018; pp. 363–369.

27. Andrea, C.; Daniel, B.; Misael, J. Precise weed and maize classification through convolutional neuronal networks. In Proceedings
of the 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; pp. 1–6.

28. Abdullahi, H.; Sheriff, R.; Mahieddine, F. Convolution neural network in precision agriculture for plant image recognition and
classification. In Proceedings of the 2017 Seventh International Conference on Innovative Computing Technology (INTECH),
Luton, UK, 16–18 August 2017; pp. 1–3.

29. Barrero, O.; Rojas, D.; Gonzalez, C.; Perdomo, S. Weed detection in rice fields using aerial images and neural networks. In
Proceedings of the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, Colombia,
31 August–2 September 2016; pp. 1–4.

30. Purwar, P.; Rogotis, S.; ChatzPIapadopoulus, F.; Kastanis, I. A Reliable Approach for Pixel-Level Classification of Land usage
from Spatio-Temporal Images. In Proceedings of the 2019 6th Swiss Conference on Data Science (SDS), Bern, Switzerland, 14 June
2019; pp. 93–94.

31. Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. Deep learning–Method overview and review of use for fruit detection and yield
estimation. Comput. Electron. Agric. 2019, 162, 219–234. [CrossRef]

32. Reis, M.J.C.S.; Morais, R.; Peres, E.; Pereira, C.; Contente, O.; Soares, S.; Valente, A.; Baptista, J.; Ferreira, P.J.S.G.; Bulas Cruz, J.
Automatic detection of bunches of grapes in natural environment from color images. J. Appl. Log. 2012, 10, 285–290. [CrossRef]
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