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!is article introduces a novel descriptor technique denoted as Contour-Point Signature useful to  nd

correspondences of points selected from the outer contours of two arbitrary shapes, and to establish

a relationship to map of an ordered sequence of contour’s points from one shape to another. !e

proposal is proved to be invariant, to translation, scaling and rotation, it also induces a measure

which is proved to be nonnegative, unique, symmetric and identity-preserving. Experimental tests

were performed in shape detection under noise, with image retrieval from a MPEG-7 database and

le"er recognition. Numerical results show that the proposal is robust for noise perturbation, as well

as, have adequate accuracy and hit rate, even with coarse tuning for its parameters. !is makes the

method a"ractive to a wide range of applications.

Keywords: contour; feature extraction; shape representation-alignment; signature

1. Introduction

Shape matching and point correspondence recovery play a fundamental role in many

computer vision applications like object recognition, image database search, visual data

mining, image retrieval, image registration and other related areas 24,18,37,41. !ere are

several ways to carry out the shape matching task. Feature-based shape representation

techniques allow the matching to be conducted in some approach-dependent feature
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space, theymainly relies on shape descriptors. In contrast, in point-correspondence shape

matching, the similarity between shapes is measured using point-to-point matching, i.e.,

every point on the shape is treated as a feature point, shape alignment is inferred by com-

paring points in the feature space, then, the shape matching process is conducted on 2-D

space 45. An intermediate stage is the region-correspondence shape matching, in which

the main shape is divided in smaller regional shapes, and each individual region, or a

combination of them, is matched using feature-based techniques 38.

In the context of this work, a shape descriptor is a meaningful set of features produced

to describe some given shape a ributes, a empting to quantify the shape in ways that

agree with human intuition and perception 41. !ose features are believed to carry dis-

criminating and characterizing information about an object to be identi"ed (for details see
27,21,45). By its turns, a local descriptor is the extension of that concept to smaller parts

of a shape, for instance, a region, or even a point of the given shape. When dealing with

local descriptors, the entire shape is represented by a set of local descriptors.

!e identi"cation of objects from imagery is not a trivial task 1, and many shape

matching methods have been proposed in the past. Matching shapes in a manner that is

independent of scale, position, and orientation is achieved by characterizing them with a

set of extracted invariant features. Several techniques utilize moments to generate such

invariant features 13,17,33. Other methods include curve matching 16, active models 8,

curve evolution 19, discriminative learning 25, shape matrix 12,31, shape context 6,23,

skeletal context 40, algebraic and geometric approaches 9,10,28, Fourier descriptors 5,43,

curvature scale space 44, graph matching 4,7,32, dynamic programming 22,26, and more.

Further studies on shape matching are given in 24,39,35,34,36. Evaluation of shape descrip-

tors for image retrieval is given in 3. And an extensive overview of the current advances

in pa ern recognition is given in 18.

In this work we propose a point (local) descriptor which is more expensive than a

simple shape descriptor, however with broader applications. In this article it is used for

contour matching, in this sense, the only descriptor comparable with Contour-Point Sig-

nature (CPS) found in the literature in the context of shape comparison is the shape con-

text introduced at 6. !e CPS can be used to establish a relationship between any two

set of points. In particular, as it is formulated in this article, relationships between rigid

transformations of the sets of points (contour of images). We consider that this is an ad-

vantage. Our motivation for using a matching approach based on the outer contour of

an object’s shape, disregarding any internal holes and details, arises from the fact that it

ful"lls some important criteria 11 for good shape representation: (a) the contour remains

unaltered under rigid geometric transformations, i.e., for shapes undergoing translation,

scaling, and rotation; (b) it might match, to some extent, the human intuitive notion of

shape similarity 30; (c) an object’s contour remains invariant to extreme lighting con-

ditions and large variations in texture or color 29; and (d) its understanding is not very

di#cult and its implementation not complicated. In fact, the outer contour of a shape cap-

tures most of the information about the object it represents; humans can easily identify

objects and evaluate the similarity among them by just studying their silhoue es 2,30,

even if they are incomplete 14,15. !erefore, using the contour to characterize an object
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Figure 1.  e contour-point signature fQ for pointQ.

is, in some way, in agreement with our visual perception, and can considerably reduce

the amount of data to analyze, by discarding other information such as color, texture, etc.

 is article is organized as follows: in §2 a theoretical foundation of the proposed

descriptor is presented, with its construction and properties. In §3 a discretization of the

CPS is presented, andwe de!ne the correspondence of points and shapematching for CPS.

To this end, an induced metric, as well as, a dissimilarity measure are introduced and their

theoretical properties are discussed.  e good mathematical properties of the proposal

are part of the novelty in this article, providing a theoretical framework for research in

this direction. Numerical results are presented at §4 where the optimal sampling and

the in"uence of noise perturbation in the data for the implementation e#ciency of the

proposal is analyzed. In addition, although the CPS can be used for many applications, in

this paper examples are presented for image retrieval and le$er recognition.

2. �e Contour-Point Signature

Consider a given point Q on the contour of a 2-D shape, Figure 1, which is considered a

simple closed curve, and start to rove along the contour in the counter-clockwise direction

starting from pointQ. For any other point P in the contour, distinct thanQ, we associate

the distance already traveled along the contour with the distance subtended by a line

segment from Q to P ; i.e., we relate the arc-length s from Q to P with the length of

the chord determined by these two points, discarding the chord orientation information.

Although the de!nition of a 2-D shape is readily available in the literature — e.g., 21 or
34— many times it has been stated in several "avors. Hence, it will be useful to include

its de!nition in the context of this work, and a summary of some of its properties for the

discussion to follow.

De nition 1. An object’s shape is represented by a simply connected, two-dimensional

compact set F ⊂ R
2, that is, a closed and bounded set of points from the plane R2.

De nition 2.  e contour Γ(F) ⊂ F of a shape F is a set of closed curves of the plane

R
2 formed by the points in the boundary of F . Each one of these curves is smooth except

in a !nite number of points, i.e., it is formed by recti!able Jordan’s arcs.

 e silhoue e of an object is the set of points bounded by the outer contour of its shape,
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which is the most external curve that encloses any other curve from the shape’s contour.

In this work, we will consider only the outer contour, that is to say, the silhoue e’s con-

tour, though we will still noted it as Γ(F). As has been de!ned above, this contour is

considered piecewise smooth because it is expected the existence of corners on the bor-

ders of an object. "e parametric functional for the contour is de!ned as follows.

De�nition 3. "e contour Γ(F) of a silhoue e F is represented by the functional

x(t) : [0, 1] 7→ Γ(F), (1)

one-to-one in the half-open interval [0, 1) being x(1) = x(0). "e parameter t is the

normalized arc-length such that the true arc-length s = t p, with p =
∫
Γ(F)

ds =
∫ 1
0
|x′(t)| dt, that is, the length of the perimeter of the silhoue e and x′(t) = dx(t)/dt.

To simplify the notation we consider the following conventions: (i) when expressing

the contour functional as x(t)  he parameter t ∈ R and 0 ≤ t < 1, i.e.,

t ≡

{
t, if 0 ≤ t < 1;

t− ⌊t⌋, otherwise;
(2)

where ⌊·⌋ is the #oor function, that is to say, the function that yields the largest integer

number less than or equal to its argument; and (ii) any arbitrary point on the contour can

be chosen as the starting point x(0), but once it has been chosen, it must be keep !xed

during the whole analysis.

Now we formalize the generic concept of contour-point signature:

De�nition 4. Given an object’s silhoue e F , and an arbitrated point Q in its contour

Γ(F), i.e., Q = x(tQ) ∈ Γ(F), 0 ≤ tQ < 1; the contour-point signature (CPS) associated

toQ, by fQ ∈ C[0,1], is the continuous positive de!nite function, piecewise di$erentiable,

bounded and compactly supported in [0, 1] de!ned by:

fQ(t) :=
1

‖F‖

∣∣x(tQ + t)−Q
∣∣, 0 ≤ t ≤ 1, (3)

where ‖F‖ is a silhoue e dependent norm devised to achieve the invariance to changes

of scale, | · | is some underlying norm embedded in R
2, that is, the second factor of the

right member of (3) is equivalent to an arbitrary distance function induced by such norm,

and tQ and t are normalized arc-lengths (de!ned at 2).

Note that fQ is piecewise di$erentiable because Γ(F), as de!ned previously, is piece-

wise smooth, and continuous since Γ(F) is a closed curve. In addition, observe that the

CPS captures the distribution of the length of the shortest path from that point to any

other point along that contour, discarding the information about the path’s trajectory.

"e choice of the norm | · | in (3) determine di$erent CPS , for instance, the Euclidean CPS

is obtained using the L2 norm for computing distances in the expression (3). We can see

immediately that contour-point signatures form a subspace of the normed space C∗[0,1],

therefore, any metric induced for some norm that can be embedded in C[0,1] will serve to

compare the closeness of contour’s points in the contour-point space.
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In addition with the characteristics already discussed, the CPS has the following prop-

erties.

Property 1. Starting point independence. Since the CPS for a point is related to the

point itself, which point is selected as the starting point of the contour functional has no

in uence in the result.

Proof. A change of the starting point can be expressed as a shi! of the parameter. Sup-

pose that we displace the starting point by an amount ∆t along the contour, such that

x̂(t) = x(t+∆t) and Q̂ = x̂(w). Consider also that Q̂ ≡ Q = x(u), i.e., both represent

the same point. Now,

f
Q̂
(v) =

1

‖F‖

∣∣x̂(v + w)− Q̂
∣∣ . . . by de"nition

=
1

‖F‖

∣∣x(v + w +∆t)−Q
∣∣ . . . by hypothesis

=
1

‖F‖

∣∣x(u+ v)−Q
∣∣ . . . ibidem

= fQ(v), (4)

which is the expression for the unshi�ed starting point, Equation (3).

Property 2. Invariance to translation. is property is inherent to CPS. Because a

point from the shape is subtracted from the other boundary points, the signature values

are relative distances, hence it is invariant to translation.

Proof. Suppose that we obtain a shape F̂ translating the shape F by an amount z, such

that x̂(t) = x(t) + z, Q̂ = x̂(u), and Q = x(u), then we have:

f
Q̂
(v) =

1

‖F‖

∣∣x̂(u+ v)− Q̂
∣∣ . . . by de!nition

=
1

‖F‖

∣∣[x(u+ v) + z]− [x(u) + z]
∣∣ . . . by hypothesis

=
1

‖F‖

∣∣x(u+ v)− x(u) + z− z
∣∣ . . . reordering

=
1

‖F‖

∣∣x(u+ v)−Q
∣∣ . . . substituting Q

= fQ(v), (5)

the same expression for the untranslated shape, equation (3).

Property 3. Invariance to rotation. As de!ned in (3), the parameter v relates each

function value to the location of a !xed point on the contour, and therefore a rotation of

the entire shape will not a"ect the relative positions of its points, the CPS is invariant to

rotation.

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



January 5, 2017 9:3 WSPC/INSTRUCTION FILE CPS-ws-ijig

6 A. J. Giangreco-Maidana, H. L. Ayala, C. E. Schaerer, W. Villamayor-Venialbo

Proof. Suppose that the shape F is rotated by an angle θ by mean of the rotation matrix

Rθ , such that x̂(t) = Rθx(t), Q̂ = x̂(u), and Q = x(u). Rotation matrices are unitary

matrices then, as a consequence, |Rθx| = |x|.

f
Q̂
(v) =

1

‖F‖

∣∣x̂(u+ v)− Q̂
∣∣ . . . by de nition

=
1

‖F‖

∣∣Rθx(u+ v)−Rθx(u)
∣∣ . . . by hypothesis

=
1

‖F‖

∣∣Rθ[x(u+ v)− x(u)]
∣∣ . . . factoring

=
1

‖F‖

∣∣x(u+ v)−Q
∣∣ . . . substituting Q

= fQ(v), (6)

in other words, the original expression given by equation (3).

Remark Rotation invariance is not always desired because it makes signatures lose

their discriminative ability if not measured relative to the same frame. Many applications

in fact forbid rotation invariance, for instance, distinguishing a “6” from a “9”.

Considering that the signature values are purely geometrical, when searching for a

shape’s norm we have many options to choose from, e.g., the shape’s perimeter length,

the square root of its area, the longest chord in the shape, etc. Some of them may be more

suitable than others in certain applications. It is important to remark that the CPS remains

invariant under rigid transformations, i.e. it satisfy the Properties 2, 3 and 4. !is means

the CPS is similarity invariant.

Property 4. Scale invariance. According to (3), CPS is obtained by normalizing dis-

tances by an appropriate norm ‖F‖ for the shape F .

Proof. Without loss of generality, suppose that the size of the shape F is changed by a

scale factor of k > 0, such that x̂(t) = k x(t), Q̂ = x̂(u), and Q = x(u). Let us take

the perimeter length as the norm, i.e. ‖F‖ = p and ‖F̂‖ = p̂, but p̂ =
∫ 1
0
|x̂′(t)| dt =

k
∫ 1
0
|x′(t)| dt = kp. Also consider that |kx| = k|x|. !en

f
Q̂
(v) =

1

p̂

∣∣x̂(u+ v)− Q̂
∣∣ . . . by de nition

=
1

kp

∣∣k x(u+ v)− kx(u)
∣∣ . . . by hypothesis

=
1

kp

∣∣k[x(u+ v)− x(u)]
∣∣ . . . factoring

=
k

kp

∣∣x(u+ v)− x(u)
∣∣ . . . by hypothesis

=
1

p

∣∣x(u+ v)−Q
∣∣ . . . simplifying

= fQ(v), (7)
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which is analogous to the expression given by equation (3).

3. �e discrete CPS - descriptor

In this action we consider the image as a set of points (pixels) ordered in a matrix form

and the shape as a subset of it. Consider its contour A and some reference points on it

denoted as P = {P1, ..., PN}, Pi ∈ R
2 (see Figure 2). Given an arbitrary point P0, the

discrete CPS is de ned as follow

Figure 2. Reference points in the contour

fpi
(j) =

1

‖A‖
|pi − pr(j)|,

{
r(j) = i, i+ 1, . . . , N, 1, 2, . . . , i

j = 1, 2, ..., N + 1

where ‖A‖ is a convenient norm. In this work we adopt for ‖A‖ the square of the area

formed by the polygon with vertices points A. !e discrete CPS is shown in Figure 3.

Figure 3. CPS fpi for the point pi (b) and the relative chord of points pi and pj (a)

!e Contour point signature can identify an speci c point in the contour. !is how-

ever is not enough to characterize the complete contour. If it is desired to have an unique
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descriptor for the contour, this is desired, take the CP signature for each of the points in

P that describe discretely the contour. As a result it is obtained a matrix denoted as FPC

(feature countour point) where each column corresponds to a CP for an speci c point.

Although FPC matrix can be assembled, in the context of this work we avoid to assemble

this matrix and use directly the CPS for the points in P .

Given two contours A y B, with their corresponding reference points P =

{p1, ..., pN} andQ = {q1, ..., qN}, respectively.We seek for a correspondence betweenP

andQ. Hence, it is necessary to  nd a j ∈ N, such that {p1 → qj , p2 → qj+1...}where→

means the correspondence of points. !e correspondence of points between two shapes

is mainly important in the case of similar shapes with a rotation of one with respect to

another. We are interested in seeking a rotation to be"er relate the points between the

shapes.!is is an linear with restriction assignment problem. To this end, consider a point

pi ∈ P and qj ∈ Q. !e cost matrix C is de ned by its entries Ci,j = d(f, g) being the

distance between two descriptors f and g. Any distance function can be used for d(f, g);

in the context of this work we use R-measure introduced before. Hence, the cost matrix

C takes the form:

C =




d(f1, g1) d(f1, g2) . . . d(f1, gN )

d(f2, g2) d(f2, g3) . . . d(f2, g1)
...

...
...

...

d(fN , gN ) d(fN , g1) . . . d(fN , gN−1)




= [d(fi, gπ(i,j))]ij

and the correspondence problem is set as to  nd ̂ which minimize the functional cost

de ned as follows:

H(j) =

n∑

i=1

d(fi, gπ(i,j)) j = 1, 2, ..., n (8)

where π(i, j) = (i+ j − 2)mod(N) + 1 is a rotation. !en, the correspondence problem

can be summarizes as

H(̂) = min
j=1,...,n

{H(j)}, (9)

and it is equivalent to  nd the column j (denoted by ̂) in the cost matrixC withminimum∑
i Ci,j , since each column represents a rotation.

3.1. Correspondence of points

In Figure 4 it can be seen the contour in blue and its reference points in red (in a illustrative

way, N is small), and where ̂ = 6. Figure 5 shows the cost functional H(j) relative to

the shapes in 4 (with N = 10). Clearly the minimum of H(j) corresponds to ̂ = j = 6.

In Figure 6 it is show a geometrical interpretation the equivalence between a rotation

and each column of the cost matrix. Observe that each column of the cost matrix is equiv-

alent to a rotation of shapeB. Figure 6 (a) shows the shapeB in its original position which
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Figure 4. Correspondence of points

Figure 5. FunctionH(j).  e minimum ofH(j) at j = 6.

corresponds to the !rst column of the cost matrix. Figure 6 (b) shows a simple rotation

(one step), corresponding to the second column of the cost matrix.

It is important to remark that occasionally it is not necessary to compare at each

rotation all points, but only a fraction of them. We quantify this using a parameter δ,

so δ = 1 means the comparison of all points while δ = 0.5 the comparison of half

of them.  is parameter a"ects directly to the e#ciency of the method, as well as, the

computational complexity (execution time). Hence, the cost function takes the form:

H(j) =
∑

i

d(fi, gπ(i,j)) (10)

for each i = 1, 1 + (1/δ)N, ...1 + (k/δ)N, ..., N and j = 1, 2, ..., N , and where δ needs

to be determined.

In addition, in many cases only small rotations of the original shapes must be con-

sidered. For instance, if we are interested to identify digits, if all possible rotations are

considered, the number ‘6’ will be identical to the number ‘9’. Hence in such a case, it is

necessary to consider only the !rst and last columns of the cost matrix C .  is equiva-

lent to consider only small rotations of the image with respect to the original image.  e

number of rotations is given by the parameter γ, where γ = 1, implies to consider all ro-

tations, while γ = 0.5 implies to consider only half of them. In Figure 7 can be observed

these variants.

Figure 8(b) shows several cost functionsH(j) (associated to di"erents δ values) rela-
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Figure 6. Interpretation of the cost matrix C .  e !rst three rotations are presented.

(a) (b)

Figure 7. Interpretation of γ - parameter: (a) all rotations, (b) γ rotations around the original shape.

tives to Figure 8 (a) (with N = 128). Observe that even with δ = 0.0625 the value of ̂ is

correctly identi!ed.

In case of rigid rotation there exist a correspondence is a simple rotation, although

in general, this is not the case. As it can be seen in Figure 4, where the correspondence

it is not a simple rotation. In addition, the cost matrix with the CPS C allows to !nd

a correspondence of points and a geometrical transformation between two shapes. In

addition the cost function H induces a dissimilarity measure. Both concept are going to

be discussed in the following section.
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(a) (b)

Figure 8. (a) Two  gures of dog with N = 128. (b) Cost functions H(j) for N = 128 and several values of

several values of δ.

3.2. A�ne transformation

Once the correspondence of points have been performed, to compare two contours A

y B, with reference points P = {p1, ..., pN} and Q = {q1, ..., qN}, respectively; we

use a transformation 6.  is is done to overlap the contour allowing us to measure the

similarity between them. An example it can be seen at Figure 9.  ere are several kind

of transformations that can be implemented. By simplicity, and since this part is not in

the scope of the article we use a homogeneous coordinate a!ne transformation which is

modeled by y = Tx.  e matrix T is obtained from matrices Q and P by T = QP ∗.  e

entries of P andQ are the coordinates of P andQ, respectively; and they have the form:

P =



1 p11 p12
...
...

...

1 pN1 pN2


 Q =



1 q11 q12
...
...

...

1 qN1 qN2




and P ∗ = P t(PP t)−1 is the pseudo inverse of P .  ere are other transformations that

Figure 9. In the le": original contourlA. In the right: ContourB (blue) and the contour transformed T (A) (red).

can be implemented.
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[A] [A1] [A2] [A3] [A4] [A5]

[B1] [B2] [B3] [B4] [B5]

Figure 10. Example of a group of test images.

3.3. Dissimilarity measure

 e numerical value used to qualify the dissimilarity between two shapes we denote as

dissimilarity metric, varying proportionally to the dissimilarity of the contours.  e ma-

trixH induces ametric distance function denoted by dCPS(A,B). Analogously, the a!ne

transformation induces a metric distance function dT (A,B).

3.3.1. Induced correspondence of points metric

 e similarity metric function induced by the correspondence of points between A and

B through the function H (introduced in Section 3.1) is given by

dCPS(A,B) = H(̂) =
∑

i

d(fi, fπ(i,̂)), (11)

being the minimum if the cost function de"ned (8). dCPS(A,B) has following properties:

Nonnegativity dCPS(A,B) ≥ 0.

dCPS(A,B) = H1(̂)

=
∑

i

d(fi, gπ(i,̂)) . . . by de"nition

≥ 0 . . . positive terms.

Identity dFCP (A,B) is re#exive, i.e. dCPS(A,A) = 0.

dCPS(A,A) = H1(̂)

=
∑

i

d(fi, fπ(i,̂)) . . . by de"nition

=
∑

i

d(fi, fi) . . . for j = 1

= 0 . . . zero terms.

Uniqueness dCPS(A,B) = 0 implies A = B.

dFCP (A,B) = 0

=
∑

i

d(fi, gπ(i,̂)) . . . by de"nition
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implying

d(fi, gπ(i,̂)) = 0 ∀i = 1, 2, ..., N . . . (d is positive)

 nally

d(fi, gπ(i,̂)) = 0 → fi = gπ(i,̂) → A = B.

Symmetry dFCP (A,B) = dFCP (B,A). It is enough to observe that the columns of the

cost matrices associated to dFCP (A,B) and dFCP (B,A) have the same entries

but with di!erent ordering. As a consequence, their corresponding matrices H

have the same values but with di!erent ordering.

dCPS(A,B) =
∑

i

d(fi, gπ(i,̂)) …by de nition

=
∑

i

d(fπ(i,̂), gi) …ordering the terms

=
∑

i

d(gi, fπ(i,̂)) …by hypothesis

= dCPS(B,A).

3.3.2. Induced a ne transformation metric

Using the a"ne transformation we de ne the following metric

dT (A,B) = ‖Q− TP‖∗ =

N∑

i=1

3∑

j=1

[Q− TP ]ij (12)

where ‖ · ‖∗ corresponds to the sum of the entries of the matrix (entrywise norm). #is

expression indeed the similarity of the contours represented by its points of reference.#e

computed value is the sumatory of the distances of the pointsQ (associated to the shape

B) and the corresponding points T P (associated to the shape A a$er the transformation

T ). #is metric is positive, re%exive and non-discernible but it is not symmetric.

Although the metric induced by the a"ne transformation is not symmetric, experi-

mentally it is observed certain symmetry and in many cases symmetry is not required 36.

In the context of this work we explore the convex combination (α+β = 1) of the induced

metrics de ned above the

d(A,B) = αdCPS(A,B) + β dT (A,B). (13)

Hence given a tolerance parameter threshold τ and themetric d(A,B), two shapesA y B

are similar if d(A,B) < τ .

4. Computational Results

#e computation of the similarity between two shapesA and B has the followings steps:

the selection of the discretization number N of reference points in both contours, the
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Table 1. Error whenN and α change. In bold is denoted the bestN which corresponds to the minimal error for

a prede ned parameter α.

N = 32 N = 64 N = 112 N = 128 N = 160 N = 256 N = 320

α=0 0.1625 0.0875 0.0500 0.0375 0.0500 0.0125 0.0250

α=0.1 0.1625 0.0875 0.0500 0.0375 0.0375 0.0125 0.0250

α=0.25 0.1625 0.0750 0.0500 0.0375 0.0375 0.0125 0.0125

α=0.5 0.1375 0.0625 0.0500 0.0375 0.0250 0.0125 0.0125

α=0.75 0.1250 0.0500 0.0250 0.0250 0.0125 0.0125 0.0125

α=0.9 0.1250 0.0500 0.0250 0.0125 0.0125 0.0125 0.0125

α=1 0.0375 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

computation of the respective CPS, the correspondence of points, the a!ne transforma-

tion and  nally, the computation of the dissimilarity function. In the experiments we use

the data base MPEG-7 created by the Moving Picture Experts Group which is used nor-

mally to evaluate algorithms for pairing images.

4.1. Optimal sampling number N , threshold τ and error E

In this section, we perform experiments with a training set obtained by selecting some

pairs of  gures from the standard data base MPEG-7 20. To this end, 40 groups of im-

ages are generated. Each group contain a imageA and 5 variations of it (A1,A2,A3,A4,

A5) and other variations B1, B2, B3, B4 and B5 of the image B di"erent of A. An exam-

ple of a group of images are shown in Figure 10. For each N we compute the distances

dA(i) = d(A,Ai) and dB(i) = d(A,Bi). We use the distance between similar images as

dA = max{dA(i)} and the distance between di"erent images as dB = min{dB(i)}. It is

possible to take images more di"erent for the similar class of images and take the mean

instead of max and min.

#e computed distances are shown at Figure 11 where the distances corresponding to

similar images are depicted as blue circles while those corresponding to di"erent images

are shown as red crosses for each of the 40 groups of images generated. #e objective is

to choseN and a threshold τ to be$er separate (with a green line in Figure 11) these two

sets of points (in blue and red). #is is obtained minimizing the error given by

E =
FP + FN

2× 40
, (14)

where FP (false positives) is the number of similar images considered di"erent due to the

threshold chosen (equivalently it is the number of blue points above the green threshold

line in Figure 11). FN (false negative) is the number of di"erent images considered sim-

ilar due to the threshold chosen (equivalently it is the number of red points below the

green threshold line in Figure 11). Hence we consider the error as the quotient between

the number of computed wrong distances and the total number of possible distances con-

sidered.
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Figure 11. Distance between similar images and di erent images for N = 64. Similar image distance denoted

in blue (O) , and di erent image distance in red (X)

Table 1 shows the error given by (14) as a function of α andN using δ = 1 and γ = 1.

Observe that for a speci!c α there is a number N which minimizes the error (14).

4.2. The e�ect of noise

To evaluate the robustness of the proposal we use several levels of noise in the contour of

the shape in the image. We consider the MPEG-7 CE-Shape-1 database which consists in

70 classes with 20 images every one. We divide in 20 sub-databases; in each one, there are

70 shapes from the 70 di erent classes according to their orders in the database. For every

level of noise, every shape is perturbed by normal noise, an example is shown in Figure

12. For every sub-database, we take one perturbed shape as a query and we compute its

distances with all the unperturbed shapes of the same subdatabase; if our method can

correctly identify the similar shape, then it is considered as a successful event.

Figure 12. Contour with several levels of noise

An example is presented at Figure 13. We repeat this procedure for all shapes of the

sub-database and for all sub-databases. "us, the best possible result is 70 in every sub-

database for each noise level.
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Figure 13. Comparison between a perturbed shape and it unperturbed sub-database.

Each perturbed images of each group is imposed to 15, 12, 10 and 8 dB noise levels.

Every point of the contour of the image is a ected by the noise. !e perturbation in the

contour is performed imposing a noise with normal distribution of mean µ and standard

deviation σ at each cartesian axis. !e parameter µ is computed using µ = (
∑m

i=1 ‖pi −

c‖)/m where {pi ∈ Z, i = 1, ...,m} is the set of reference points pi in the contour and

c is the centroid of the "gure; i.e., µ is the mean distance of all reference points pi of the

contour to the centroid c. !e standard deviation σ is given by the expression:

σ =
µ

SNR
, (15)

where SNR is the Signal Noise Ratio de"ned by the expression SNRdB :=

10 log10 SNR.

We also want to explore the sensitiveness of the identi"cation system with respect to

the fraction of comparison points δ at matching step (see §3.1). To this end, we consider

δ = 0.0625 and δ = 0.03125 (which corresponds to consider only approximately 6% and

3% of the total of reference points, respectively).

Table 2. E ectiveness (in %) face to noise perturbations. CPSM(N,α, δ).

Noise (in dB) 15.00 12.00 10.00 8.00

CPSM (128, 0.3, 0.03125) 99.35 98.42 97.35 90.57

CPSM (64, 0.3, 0.0625) 99.35 98.42 96.00 86.35

CPSM (128, 1, 0.03125) 99.42 97.35 87.92 60.28

CPSM (64, 1, 0.0625) 99.07 96.71 87.00 58.57

Chord Context 42 82.90 - - -
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Table 2 presents the e ectiveness measured as the number of correct identi!ed image

in comparison with respect to the total of images that can be identi!ed. As it can be

observed the for the number of sampled points N and the level of noise tested, the best

results are obtained for α = 0.3, and it is enough in this case to use a value of δ just only

of 0.03125. Observe also that in contraposition with the results obtained at §4.1, when a

larger value of α minimize the error, in this case, smaller values of α make the method

robust in front to noise. Observe that the performance of the identi!cation system for δ =

0.03125 has an e ectiveness of 90.57% (with α = 0.3) in the worse case scenario which

is a quite good result. Notice that for a !xing α, considering half of N and duplicating

δ to the value 0.0625 the results are quite similar (compare rows 1 and 2, and 3 and 4 of

Table 2, respectively), but it takes only the half time for the computation.

4.3. Image retrieval system

"eperformance of an image retrieval system is normally tested taking an arbitrary image

(consulting image) and computing the distance from this image to the rest of the images of

the data base. A#erwards the images are ordered based on the distance to the consulting

image.

In this experiment, we use the MPEG-7 data base, which contains binary images

grouped in classes in accordance to certain characteristics of the image; for instance, the

category car includes several images based on the same concept (cars) but with di er-

ences in their corresponding contours. "ere are 1400 images divided in 70 categories,

and each category has 20 images. "e data base is available freely a. For his experiment,

we use α = 0.3,N = 128, δ = 0.03125, γ = 1 and the dCPS as the distance function for

the correspondence of points.

We use the Bull Eye Percentage (BEP) test which is computed considering the cor-

rect images identi!ed between the 40 closer neighbor images. Notice that the possible

maximum value for each image is 20, therefore the number of total possible correct im-

age matches is 20× 1400 = 28000. Considering all images, we obtain a retrieval rate of

70.72 %. We consider this number imply a very good performance of the technique since

that any technique for enhancing the retrieval, such as multi resolution or adaptive tech-

niques, have been used and only a fraction of the reference points have been taken into

account.

We also study the retrieval rate behavior while the number of classes is reduced

(rBEP). At each step, classes with worst performance on the previous step are eliminated.

Results are presented at Table 3. As we can see, the performance is improved in a linear

way between 54 and 30 classes. We consider that our method achieves good results con-

sidering this database is very heterogeneous (it contains non rigid shapes, shapes with

internal contour).

For analyzing the sensibility of the rate of retrieval of the method as a function of α,

we randomly !x 5 classes (bu$er&y, hammer, car, spoon and spring) while α varies. Two

ah$p://www.dabi.temple.edu/ shape/MPEG7/dataset.html
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Table 3. *rBEP (reduced BEP) variation with respect to the number of classes withN = 128.

Number of classes (best) 54 43 38 30

rBEP* 74.73 84.65 88.15 93.52

Table 4. Variation of *rBEP (reduced BEP) with respect to α. Computed with only 5 classes andN = 128.

α 0.1 0.25 0.5 0.75 0.9

rBEP* 79.7000 80.2500 82.9500 87.0000 87.7000

α 0.8 0.85 0.9 0.95 1

rBEP* 87.3000 88.4000 87.7000 89.2000 90.5000

Table 5. E ectiveness (in %) face to Le!er recognition

α 0 0.30 0.50 0.70 0.85 1.00

N=32 72.222222 76.353276 81.054131 87.037037 87.321937 85.612536

N=64 71.937322 78.347578 85.470085 88.603989 88.603989 86.182336

N=128 72.222222 80.911700 86.894587 88.746439 88.603989 86.182336

N=256 72.364672 83.618234 88.034188 88.888889 89.031339 86.324786

tables are presented. Table 4 shows the rBEP variation with respect to a large variation

of α and the results of the rBEP variation as a function of α around α = 0.9.

It can be observed that the best response of the method for image retrieval it is ob-

tained in this experiment for a value ofα = 1with a value of rBEP= 90.5."is experiment

denotes that the choice of the parameter α depends on the problem.

4.4. Le�er recognition

In this section we test the CPS method for an le!er recognition application. For this pur-

pose, we generate two di erent datasets. "e #rst one, a reference dataset, which consists

in 26 shapes of the alphabet."e second one is a test dataset consisting in the alphabet and

variations of them, making a total of 26× 27 = 702 shapes (27 variations of every le!er).

See Figures 14 (a) and (b). "e experiment consists of taking a shape from test dataset and

comparing it with all reference shapes. If the closest reference shape corresponds to the

same le!er, then it is considered as a successful match. We repeat for all the test shapes

and, thus, the best result possible is 702.

Table 5 shows the performance for every le!er under the best parameters"e param-

eters were considered as δ = 1 and γ = 0.25. We obtain a best performance of 89.03%

for a value of α = 0.85 and N = 256.

Figure 15 shows the rates of recognition for each le!er involved in the experiment.

Observe that certain le!ers present lower rates of recognition. "is is mainly due to the

linear deformation imposed on the distance function (13) does not enough deformation

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



January 5, 2017 9:3 WSPC/INSTRUCTION FILE CPS-ws-ijig

Shape descriptor Contour-Point Signature 19

(a) (b)

Figure 14. (a) Reference dataset. (b) An example of test dataset.

Figure 15. Rate of recognition of le ers.

discrimination on terms of measuring the energy of the deformation, and consequently

deforming a le er up to being very similar to another le er on the data base. In this

case, the proposal can be enriched using a more discriminating nonlinear function. It

can also be observed in this experiment, similar to the previous one, it can be observed

that the proposal method is problem dependent, i.e., the parameter α and others must to

be chosen, in principle, for a speci!c problem. Although this particularity, it can also be

noted that higher values of α improve the performance of the method. "is means that

the contribution of the CPS to the measure is important for the discriminating process of

the method.
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5. Conclusions

In this paper we introduced a new point descriptor named as Contour point Signature -

CPS - which has been proved to have good theoretical properties, as well as invariance

to translation, rotation and scale.  e CPS induces a distance function metric denoted by

dCPS(·, ·).  e numerical tests of the CPS and its induced metric show that it presents an

adequate performance if it is complemented with another metric. In this paper we have

used an induced a!ne transformation metric, and even for this simple metric the results

are competitive. Other complementary metrics can be used if the problem requires.

Another important observation is that the choice of the parameters for considering

all rotations (γ = 1) or only part of them (γ < 1), all points (δ = 1) or only part of

them (δ < 1), and the balance between the parts of the metric (α) is problem dependent.

 is means that the method has to be tuned for each speci"c problem and in some cases

enriched the metric to be used in the discriminating process if it is desired to have very

high rate of successes. In general this is true for all methods for the kinds of problems

considered in this paper. If however the CPSmethod is used in its simple form presented in

this article, then the method is very competitive and easy to implement computationally.
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