
Applying Transformation Templates to Diversify
User Interfaces Generated by Model-Driven

Engineering ?

Nathalie Aquino1, Luca Cernuzzi1, and Oscar Pastor2

1 Departamento de Electrónica e Informática,
Universidad Católica “Nuestra Señora de la Asunción”,

Tte. Cantaluppi y G. Molinas, Asunción, Paraguay
nathalie.aquino@uc.edu.py, lcernuzz@uc.edu.py

2 Centro de Investigación en Métodos de Producción de Software,
Universitat Politècnica de València,

Camino de Vera s/n, 46022 Valencia, Spain
opastor@pros.upv.es

Abstract. Model-driven engineering of user interfaces aims to manage
the inherent complexity of the development of user interfaces and to de-
crease the effort needed to develop them. However, from the end-user
perspective, user interfaces generated by model-driven engineering usu-
ally present usability problems and it is not always easy to customise
them. Transformation Templates arise as a means to improve model-
driven engineering of user interfaces, providing several design options
to customise user interfaces, at a concrete level. In this work we show
how to apply Transformation Templates to OO-Method/Integranova, a
model-driven engineering approach for the development of information
systems. We present different user interface designs that could be gener-
ated, targeting the web platform and devices with small screen. Some of
these new designs could have better usability properties than the original
design.

Keywords: Model-driven engineering, MDE, user interface, transfor-
mation templates.

1 Introduction and Motivation

Historically, the development of graphical user interfaces has been challenging
in terms of skills, times and resources [1]. Recently, the wide variety of hardware
and software platforms from which interactive systems are accessed to, as well
as the diversity of languages and tools for their development, have added more
difficulties to their implementation [2].

? This work has been funded by CONACYT through the PROCIENCIA program,
with resources from “Fondo para la Excelencia de la Educación e Investigación -
FEEI”, FONACIDE. This work has been developed under the project “Mejorando
el proceso de desarrollo de software: propuesta basada en MDD” (14-INV-056).



Model-driven engineering (MDE) of user interfaces helps to manage these
difficulties and diversities. In this context, several works can be mentioned, such
as UsiXML [3], Maria [4], Just-UI [5], among others. Meixner et al. [6] present
an interesting introduction to MDE of user interfaces. Meixner et al. [2] also
analyse its past, present and future.

However, the literature also reports issues related to MDE of user inter-
faces [7, 8]. In general, MDE does not provide the possibility of generating differ-
ent, customised user interfaces. Instead, generated interfaces are usually always
similar to each other, which could be good when standard patterns are impor-
tant, but which could also be an issue when end-users have special interactive
requirements that cannot be satisfied with the MDE process. Furthermore, the
literature has also reported usability problems in user interfaces generated by
MDE [9–11].

OO-Method [5] is an object-oriented and MDE method that allows the auto-
matic generation of software applications from conceptual models. It is supported
by a commercial tool named Integranova M.E.S. In a previous work, we have
analysed the usability of the user interfaces generated by OO-Method/Integranova
in different platforms (desktop, web) and devices (with small, standard and large
screens) [11]. We found that usability could be improved for the web platform
and devices with small screen (PDAs, tablets, smartphones, etc.).

Furthermore, we have also previously presented Transformation Templates [12]
as a means to improve MDE of user interfaces, providing several design options
to customise user interfaces at a concrete level.

Therefore, in this work we show how to apply the Transformation Templates
approach in OO-Method/Integranova, in order to show that different types of
user interfaces can be generated, considering the web platform and devices with
small screen. Some of these new designs could have better usability properties
than the original designs.

The rest of this paper is organised as follows: Section 2 briefly describes
the OO-Method/Integranova technology and presents the results of a usabil-
ity evaluation of user interfaces generated with these tools. Section 3 presents
the Transformation Templates approach. Section 4 applies the Transformation
Templates approach to OO-Method/Integranova and presents alternative user
interface designs that could be generated. Finally, Section 5 discusses about ben-
efits of the Transformation Templates approach and the expected improvements
in usability.

2 User Interfaces Generated by OO-Method/Integranova

This section presents an MDE software development method named OO-Method
and its corresponding tool, Integranova. Furthermore, the Presentation Model
of OO-Method is described. The section ends presenting a usability evaluation
of the user interfaces generated using this tool.



2.1 OO-Method/Integranova and its Presentation Model

OO-Method [5] is a software development method that is MDE-compliant. It
involves models of the future interactive system at different levels of abstraction
and provides a transformation mechanism among them. It is supported by a
commercial software suite named Integranova M.E.S., which was developed by
Integranova Software Solutions 3.

Four system views are specified in the OO-Method development process: 1)
the Object Model; 2) the Dynamic Model; 3) the Functional Model; and 4)
the Presentation Model. Once these models are achieved, they are submitted
to model compilation. For different possible target computing platforms (C# or
ASP running on .NET or .NET 2.0; EJB, JSP, or JavaServer Faces running on
Java), the source code of a fully functional application is automatically generated
and structured according to a three-tiered architecture: interface, application,
and persistence.

The OO-Method Presentation Model is composed of interaction units, which,
in turn, are composed of elementary patterns.

Interaction units represent the main interactive operations that can be per-
formed on domain objects. There are four interaction units: 1) the Service Inter-
action Unit (SIU), which allows the modification of objects, their attributes, and
relationships; 2) the Population Interaction Unit (PIU), which shows a group of
similar objects; 3) the Instance Interaction Unit (IIU), which shows a single ob-
ject at a time; and 4) the Master/Detail Interaction Unit (MDIU), which shows
a hierarchical view of relationships among objects.

Elementary patterns are used to build interaction units and to restrict and
specify their behaviour. For example, if a PIU is being specified, then five ele-
mentary patterns could be attached to it: 1) the Filter pattern, which filters a
set of objects to display only the needed ones; 2) the Order Criterion pattern,
that specifies the order in which objects will be shown; 3) the Display Set pat-
tern, that restricts which attributes of objects are going to be presented; 4) the
Navigation pattern, which specifies navigation among objects; and 5) the Action
pattern, which specifies functions that can be triggered from a selected object.

As an example, Figure 1 presents a PIU generated by OO-Method/Integranova,
indicating its corresponding elementary patterns. The example corresponds to
an Expenses Report application that allows the expenses of the employees of an
organisation to be managed. In particular, this user interface corresponds to a
list of all the expense registries.

From the explanation of the OO-Method Presentation Model decomposition,
the SIU and PIU can be considered to be the most relevant interaction units of
the approach, since the MDIU is a composition of other interaction units, and
the IIU is a special case of a PIU in which just one object at a time is shown.
Therefore, in this work we focus on SIUs and PIUs.

3 http://www.integranova.com



(a) 

(b) 

(c) 

(d) 
(e) 

Fig. 1. User interface generated from a PIU with filter (a), order criterion (b), display
set (c), actions (d), and navigations (e). Corresponds to the list of expense registries
of the Expenses Report application.

2.2 Usability Evaluation of User Interfaces Generated by
OO-Method/Integranova

As earlier commented, we have previously evaluated the usability of user inter-
faces generated by OO-Method/Integranova. An exploratory usability evaluation
was carried out in an experimental controlled context. All details concerning this
empirical study (motivation, planning, operation, analysis of data, interpretation
of results) were reported in [11]. This section presents just a brief description,
including a summary of results.

Usability was examined in terms of satisfaction, effectiveness and efficiency.
The evaluation focused on interfaces generated from PIUs and SIUs of the previ-
ously mentioned Expenses Report application. Furthermore, the evaluation was
carried out using different platform versions of the interfaces (web and desktop)
and using devices with different screen sizes (small, standard and large).

Figure 2 and Figure 3 present two of the twelve different combinations of in-
teraction unit (PIU, SIU), platform (web, desktop), and screen size (small, stan-
dard, large) that were evaluated. Figure 2 corresponds to a PIU that presents
the list of expense registries of the Expenses Report application. Figure 3 cor-
responds to a SIU that allows new expense registries to be added. Both figures
correspond to the web platform and the device with small screen (an ultra-mobile
PC with 7” screen).

Table 1 summarises the results of this experiment. Perceptions of satisfaction
and effectiveness were good, although there is still room for improvements. Ef-
ficiency results were most affected by the use of different platforms and devices.

In general, the web platform obtained worse results than the desktop plat-
form. And the device with the small screen obtained worse results than devices
with standard or large size screens.



Upper part of the screen 

Lower part of the screen 

Fig. 2. User interface generated from a PIU that lists the expense registries of the
Expenses Report application, as it was seen in the web platform and device with small
screen

Upper part of the screen 

Lower part of the screen 

Fig. 3. User interface generated from a SIU that allows new registries to be added in
the Expenses Report application, as it was seen in the web platform and device with
small screen



Table 1. Summary of results of a usability evaluation of user interfaces generated by
OO-Method/Integranova

Usability Aspect Results

Satisfaction
- The perception of satisfaction was good for user interfaces gen-
erated from PIUs and SIUs.
- Devices with different screen sizes have not affected the satis-
faction perceived using interfaces generated from PIUs or SIUs.
- Different platforms have not affected the satisfaction related
to user interfaces generated from PIUs. In the case of SIUs,
satisfaction was slightly better using the desktop platform than
the web platform.

Effectiveness
- Subjects reached high percentages of task completion (means
above 80%) when using interfaces generated from PIUs and
SIUs. The achieved effectiveness is good.
- The effectiveness related to interfaces generated from PIUs has
not been affected by the use of devices with different screen sizes
or diverse platforms.
- The effectiveness related to interfaces generated from SIUs has
been affected by different combinations of device and platform.
Effectiveness was better using the combination of small screen
with desktop platform than using the combination of standard
size screen with web platform.

Efficiency
- The efficiency related to interfaces generated from PIUs and
SIUs has been affected by the use of devices with different screen
sizes. In the case of PIUs, efficiency was better using the large
screen than using the small screen. In the case of SIUs, efficiency
was better using standard or large screens than using the small
screen.
- The efficiency related to interfaces generated from PIUs and
SIUs has been affected by different platforms. In both cases,
efficiency was better using the desktop platform than using the
web platform.

Currently, the OO-Method Presentation Model allows a user interface to
be specified in a way that is independent from platforms and devices, and the
transformation logic is internally defined in the Integranova tool, which generates
the user interface code. It can be considered that the tendency to have better
results for standard or large screens and for the desktop platform is related to
the fact that the OO-Method/Integranova approach is mainly used to develop
organisational information systems [5]. It can also be considered that the device
with the small screen obtained worst results because the kinds of user interfaces
that people are used to using in small devices are different from the types of user
interfaces generated with Integranova.

Therefore, the OO-Method/Integranova approach should incorporate enhance-
ments in order to generate multi-device/platform user interfaces with improved
usability.



3 Transformation Templates

A Transformation Template [12] aims to explicitly specify the structure, layout,
and style of a user interface, according to preferences and requirements of end-
users, as well as in line with different hardware and software computing platforms
and environments in which the user interface will be used.

The main concepts that characterise the Transformation Templates approach
are related to context, to user interface models, and to the Transformation Tem-
plates themselves.

Context refers to the context of use of an interactive system. We have de-
fined context according to the Cameleon Reference Framework [13], which is
widely accepted in the human-computer interaction community. According to
this framework, a context of use is composed of the stereotype of a user, who
carries out an interactive task, with a specific computing platform in a given sur-
rounding environment. Conceptualising context, we can define Transformation
Templates for different contexts of use.

A user interface meta-element represents, in a generic way, any meta-element
of a user interface meta-model. A user interface element represents an element of
a user interface model. These generic representations allow the Transformation
Templates approach to be used with different MDE approaches.

A parameter type represents a design or presentation option related to the
structure, layout or style of the user interface. Defining a parameter type sub-
sumes specifying the list of user interface meta-elements that are affected by
it, as well as its value type. The value type refers to a specific data type (e.g.,
integer, URI, colour, etc.) or to an enumeration of the possible values that a
parameter type can assume. A parameter type, with all or a set of its possible
values, can be implemented in different contexts of use. In order to facilitate
decision-making regarding these implementations, we propose that each possible
value receive an estimation of its importance level and its development cost for
different relevant contexts of use. In this way, possible values with a high level
of importance and a low development cost can be implemented first in a given
context, followed by the other options if appropriate. Furthermore, for each rele-
vant context of use, usability guidelines can be assigned to each possible value of
a parameter type. These guidelines will help user interface designers in choosing
one of the possible values by explaining the conditions under which the values
should be used.

Table 2 shows an example of the definition of a parameter type named Filter
Widget. This parameter type is useful for deciding how to present filters in PIUs.
Three different possible values have been defined: tabs, combo and accordion.
The parameter type has been associated to two contexts of use: desktop and
web platforms. Furthermore, Table 3 and Table 4 show that for each context
of use and each possible value, importance level and development cost have
been estimated, and usability guidelines have been proposed. These usability
guidelines were extracted from [14].

A transformation template gathers a set of parameters for a specific context of
use. Each parameter of a Transformation Template corresponds to a parameter



Table 2. Parameter Type: Filter Widget

Name Description Affects To Possible Values Contexts of Use

Filter Widget
Allows to select the widget
to be used to present filters
of a PIU

Filter
Tabs Desktop
Combo Web
Accordion

Table 3. Parameter Type: Filter Widget - importance level, development cost and
usability guidelines for the desktop platform

Value Importance Level Development Cost Usability Guidelines

Tabs high low The number of filters is not too big,
less than 8

Combo low low The number of filters is high
Accordion low low The number of panels should be

small, less than 8

type and has both, a value and a selector. A value is an instance of a value type.
The value of a parameter corresponds to a possible value of the corresponding
parameter type. A selector delimits the set of user interface elements that are
affected by the value of a parameter. We have defined different types of selectors
that allow the designer to choose a specific user interface element, all the user
interface elements of a certain type, the first or last element contained in a
specific type of user interface element, or other options.

As a simple example of a transformation template, Table 5 represents a frag-
ment of a transformation template defined for a context of use that addresses
a web platform and devices with small screens. This transformation template
uses the Filter Widget parameter type to specify that all filters of PIUs will be
displayed using accordions (first row), except for the filter with id=12, that will
be displayed using a combo (second row).

Transformation Templates add flexibility in MDE approaches because they
externalise the design knowledge and presentation guidelines, and make them
customisable according to the characteristics of the project being carried out. At
the same time, they diversify the kinds of user interfaces that an MDE approach

Table 4. Parameter Type: Filter Widget - importance level, development cost and
usability guidelines for the web platform

Value Importance Level Development Cost Usability Guidelines

Tabs high low The number of filters is not too big,
less than 8

Combo low low The number of filters is high
Accordion high low The number of panels should be

small, less than 8



Table 5. Transformation Template for web platform and devices with small screen

Parameter Value Selector

Filter Widget Accordion Filter
Filter Widget Combo Filter with id=12
... ... ...

Table 6. Parameter Type: PIU Layout

Name Description Affects To Possible Values

PIU Layout
Provides options for positioning
elementary patterns of a PIU

PIU
PIU layout 1
PIU layout 2
PIU layout 3

can generate. Furthermore, Transformation Templates defined for one project
can later be reused in other similar projects, targeting similar contexts of use.

It is worth noting that Transformation Templates do not replace any im-
plicit transformation logic or explicit transformation languages; instead, they
provide a higher-level tier for user interface designers to specify user interface
transformations.

4 Applying the Transformation Templates Approach to
OO-Method/Integranova

The definition of parameter types is among the first steps of the process to
incorporate Transformation Templates in an MDE approach for user interface
development. Therefore, this section presents some parameter types defined for
OO-Method/Integranova. Then, we use these parameter types to suggest alter-
native designs for generating PIUs and SIUs, considering the web platform and
devices with small screen.

4.1 Parameter Types for OO-Method/Integranova

Besides Filter Widget, which was previously presented, this section introduces
four more parameter types for OO-Method/Integranova. For space reasons, es-
timations of importance level and developments cost, as well as usability guide-
lines, are omitted.

Table 6 presents the PIU Layout parameter type, which allows different con-
figurations for the position of the elementary patterns that conform a PIU (filter,
display set, actions, navigations) to be chosen. Figure 4 presents a graphical rep-
resentation of the possible values.

Table 7 presents the Display Set Layout parameter type, which allows to
specify if display sets are going to be displayed with tables or using a set of
independent fields.



Navigation Action

Filter 

Display Set 

PIU layout 2 

Filter 

Display Set 

Action 

Navigation 

PIU layout 1 

Filter 

Navigation 

Action Display Set 

PIU layout 3 

Fig. 4. Graphical representation of the possible values of PIU Layout

Table 7. Parameter Type: Display Set Layout

Name Description Affects To Possible Values

Display Set Layout
Allows to specify if a display set is
going to be displayed with a table
or with a set of independent fields

Display Set
Table
Reduced table
Independent fields

Table 8 presents the SIU Layout parameter type, which allows to specify
if input arguments of a SIU are going to be displayed in one or two columns,
or if they are going to be placed according to the current algorithm used by
Integranova.

Table 9 presents the Label Alignment parameter type, which allows the align-
ment of a label with regard to an input field to be specified.

4.2 Alternative Designs for PIUs and SIUs

This section presents two alternative designs for PIUs, as well as two for SIUs,
targeting a context of use composed by web platform and devices with small
screen. These alternative designs could be generated if, in the future, OO-
Method/Integranova incorporates the Transformation Templates approach and
implements the previously defined parameter types for the considered context
of use.

The first alternative design for PIU is presented in parts (a), (b), (c) and (d)
of Figure 5. This design is obtained using the following parameters and values:

Table 8. Parameter Type: SIU Layout

Name Description Affects To Possible Values

SIU Layout
Allows to specify if a SIU is going
to be displayed in 1 or 2 columns,
or following the standard
algorithm

SIU
Standard algorithm
1 column
2 columns



Table 9. Parameter Type: Label Alignment

Name Description Affects To Possible Values

Label Alignment
Allows the alignment of a label
with regard to an input field to be
specified

Filter Left
SIU Up

Inside

– PIU Layout = PIU layout 2, therefore, filters appear on top (in blue), fol-
lowed by actions (in orange) and navigations (in green) at the same level,
and the display set appears at the bottom (see Figure 5(a)).

– Filter Widget = Accordion, therefore, an accordion is used to present the
three different filters of this PIU. In Figure 5(b) and (d) the accordion is
closed. In (c) all filter options are displayed. In (b) one filter is open to be
used.

– Display Set Layout = Independent fields, therefore, registries are not dis-
played using a table, but as a sequence of independent fields (see Figure 5(a)).

– Label Alignment = Inside, therefore labels of input arguments in the filter
appear inside the input texts (see Figure 5(b)).

The second alternative design for PIU is presented in Figure 5(e). This design
is obtained using the following parameters and values:

– PIU Layout = PIU layout 3, therefore, filters appear on top, actions appear
to the left, the display set appears to the right, and navigations appear at
the bottom.

– Filter Widget = Tab, therefore, tabbed panels are used to display the three
different filters of this PIU.

– Display Set Layout = Reduced table, therefore, registries are displayed using
a table, but only four of a total of ten columns are displayed (see Figure 2),
providing also a link to access a different view with the missing columns.

– Label Alignment = Left, therefore labels of input arguments in the filter
appear to the left of input texts.

The first alternative design for SIU is presented in Figure 6(a). This design
is obtained using the following parameters and values:

– SIU Layout = 1 column, therefore, input arguments are presented in one
column.

– Label Alignment = Inside, therefore, labels of input arguments appear inside
the input texts.

The second alternative design for SIU is presented in Figure 6(b). This design
is obtained using the following parameters and values:

– SIU Layout = 2 columns, therefore, input arguments are presented in two
columns.

– Label Alignment = Up, therefore, labels of input arguments appear above
input texts.



Between presentation dates

Actions Navigations

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 22
date: Oct 12, 2018
cause: Car rental
more...

Between presentation dates

Actions Navigations

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 26
date: Oct 20, 2018
cause: Purchase of DCs
more...

id: 10
date: Nov 3, 2018
cause: Lunch
more...

id: 31
date: Nov 16, 2018
cause: Trip to Siena
more...

id: 11
date: Nov 10, 2018
cause: Hotel during client's visit
more...

NavigationsActions

Between presentation dates

Actions Navigations

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 26
date: Oct 20, 2018
cause: Purchase of DCs
more...

id: 10
date: Nov 3, 2018
cause: Lunch
more...

id: 11
date: Nov 10, 2018
cause: Hotel during client's visit
more...

By total expenses

By status

(a) (c)

(d)

(b)

(e)

NavigationsActions

Between presentation dates

Initial date

Final date

Actions Navigations

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 26
date: Oct 20, 2018
cause: Purchase of DCs
more...

id: 10
date: Nov 3, 2018
cause: Lunch
more...

id: 11
date: Nov 10, 2018
cause: Hotel during client's visit
more...

Between presentation dates

Actions Navigations

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 22
date: Oct 12, 2018
cause: Car rental
more...

Between presentation dates

Actions Navigations

New expense report

Edit expense report

Close an expense report

Delete an expense report

id: 22
date: Oct 12, 2018
cause: Car rental
more...

id: 26
date: Oct 20, 2018
cause: Purchase of DCs
more...

id: 10
date: Nov 3, 2018
cause: Lunch
more...

Between presentation dates By total expenses By status

Initial date Final date Search

New

Edit

Close

Delete

Actions

Expenses lines Employee ProyectPayment typeExpenses currencyNavigations

Id Presentation date Cause Advances in currency more

22 Oct 12, 2018 Car rent 50.0 more...

26 Oct 20, 2018 Purchace of DCs 0.0 more...

10 Nov 3, 2018 Luch 0.0 more...

11 Nov 10, 2018 Hotel during clint's visit 30.0 more...

31 Nov 16, 2018 Trip to Siena 0.0 more...

Fig. 5. Alternative designs for PIU

5 Discussion

Applying the Transformation Templates approach to OO-Method/Integranova
we can obtain the following consequences: 1) the transformation logic becomes
explicit and customisable, since it can be expressed in transformation templates
by means of parameters with their corresponding values and selectors; 2) it be-
comes possible to target specific contexts of use, including specific platforms,
since transformation templates implies that a specific context of use must be
selected; 3) it becomes possible to generate different types of user interfaces, us-
ing the different possible values of parameter types, as presented in Section 4.2;
and 4) among the different user interfaces that can be generated using Trans-
formation Templates, some of them could have better usability properties than
the original designs, considering a particular context of use. At this point, it is
worth noting that currently, the Integranova tool has not implemented yet the
Transformation Templates approach, therefore these are expected benefits.



(b)

(a)

New Expenses Report Emproyee Administration

Employee

Expenses Currency

Project

Presentation Date

Advance

$

Cause

Ok Cancel

New Expenses Report

Employee

Expenses Currency

Project

Cause

Advance $

Presentation Date

Ok Cancel

Fig. 6. Alternative designs for SIU

Elaborating a little bit more about usability problems, it is useful to high-
light that our approach considers that for each context of use, usability guidelines
should be provided for all possible values of a parameter type. Therefore, when
defining a transformation template, the designer will be able to see these guide-
lines and to choose the most appropriate value, considering the corresponding
context of use. For instance, it could be possible that the alternative designs for
PIU presented in Figure 5 obtain better usability results than the design pre-
sented in Figure 2, since usability guidelines for small devices suggest that: 1)
the most relevant information (the content of the display set in this case) should
be presented first, in upper and central positions; 2) the use of tables should be
avoided. As a future work we plan to perform an empirical evaluation in order
to formally verify if these new designs improve the usability with regard to the
original ones.

Finally, we recognise that currently there is a trend to use responsive web
design when targeting to the web. However, it is still valid to follow guidelines
for specific hardware or software platforms. Furthermore, it should be taken into
account that the Transformation Templates approach is not specific for the web.
It can also be applied in desktop or native platforms.

References

1. Myers, B.A., Rosson, M.B.: Survey on User Interface Programming. In Bauersfeld,
P., Bennett, J., Lynch, G., eds.: Conference on Human Factors in Computing
Systems, CHI 1992, Monterey, CA, USA, May 3-7, 1992, Proceedings, ACM (1992)
195–202

2. Meixner, G., Paternò, F., Vanderdonckt, J.: Past, Present, and Future of Model-
Based User Interface Development. i-com 10(3) (2011) 2–11

3. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.:
USIXML: A Language Supporting Multi-path Development of User Interfaces. In



Bastide, R., Palanque, P.A., Roth, J., eds.: Proc. of 9th IFIP Working Conference
on Engineering for Human-Computer Interaction jointly with 11th Int. Workshop
on Design, Specification, and Verification of Interactive Systems, EHCI-DSVIS
2004 (Hamburg, July 11-13, 2004). Volume 3425 of Lecture Notes in Computer
Science., Springer-Verlag, Berlin (2005) 200–220

4. Paternò, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Trans. Comput.-Hum. Interact. 16(4) (2009)

5. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software Pro-
duction Environment Based on Conceptual Modeling. Springer-Verlag New York,
Inc., Secaucus, NJ, USA (2007)

6. Meixner, G., Calvary, G., Coutaz, J.: Introduction to Model-Based
User Interfaces. Technical report, World Wide Web Consortium (2014)
http://www.w3.org/TR/mbui-intro/.

7. Montero Simarro, F., López-Jaquero, V., Vanderdonckt, J., González, P., Lozano,
M.D., Limbourg, Q.: Solving the Mapping Problem in User Interface Design by
Seamless Integration in IdealXML. In Gilroy, S.W., Harrison, M.D., eds.: Interac-
tive Systems, Design, Specification, and Verification, 12th International Workshop,
DSVIS 2005, Newcastle upon Tyne, UK, July 13-15, 2005, Revised Papers. Volume
3941 of Lecture Notes in Computer Science., Springer (2005) 161–172

8. Coutaz, J.: User interface plasticity: model driven engineering to the limit! In
Sukaviriya, N., Vanderdonckt, J., Harrison, M., eds.: Proceedings of the 2nd ACM
SIGCHI Symposium on Engineering Interactive Computing System, EICS 2010,
Berlin, Germany, June 19-23, 2010, ACM (2010) 1–8

9. Abrahão, S., Iborra, E., Vanderdonckt, J.: Usability Evaluation of User Interfaces
Generated with a Model-Driven Architecture Tool. In Law, E.L.C., Hvannberg,
E.T., Cockton, G., eds.: Maturing Usability - Quality in Software, Interaction and
Value. Human-Computer Interaction Series. Springer (2008) 3–32

10. Schramm, A., Preußner, A., Heinrich, M., Vogel, L.: Rapid UI Development for En-
terprise Applications: Combining Manual and Model-Driven Techniques. In Petriu,
D.C., Rouquette, N., Haugen, Ø., eds.: Model Driven Engineering Languages and
Systems - 13th International Conference, MODELS 2010, Oslo, Norway, October 3-
8, 2010, Proceedings, Part I. Volume 6394 of Lectures Notes in Computer Science.,
Springer (2010) 271–285

11. Aquino, N., Vanderdonckt, J., Condori-Fernández, N., Dieste Tub́ıo, Ó., Pastor,
O.: Usability Evaluation of Multi-Device/Platform User Interfaces Generated by
Model-Driven Engineering. In Succi, G., Morisio, M., Nagappan, N., eds.: Pro-
ceedings of the International Symposium on Empirical Software Engineering and
Measurement, ESEM 2010, 16-17 September 2010, Bolzano/Bozen, Italy, ACM
(2010)

12. Aquino, N., Vanderdonckt, J., Pastor, O.: Transformation Templates: Adding
Flexibility to Model-Driven Engineering of User Interfaces. In Shin, S.Y., Ossowski,
S., Schumacher, M., Palakal, M.J., Hung, C.C., eds.: Proceedings of the 2010 ACM
Symposium on Applied Computing (SAC), Sierre, Switzerland, March 22-26, 2010,
ACM (2010) 1195–1202

13. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for Multi-Target User Interfaces. Interacting
with Computers 15(3) (2003) 289–308

14. Galitz, W.O.: The Essential Guide to User Interface Design: An Introduction to
GUI Design Principles and Techniques. John Wiley & Sons, Inc., New York, NY,
USA (2002)


