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Abstract—The growing productivity gap between investment in
drug research and development (R&D) and the number of new
medicines approved by the US Food and Drug Administration
(FDA) in the past decade is concerning. This productivity problem
raises the need for innovative approaches for drug-target predic-
tion and a deeper understanding of the interplay between drugs
and their target proteins. Chemogenomics is the interdisciplinary
field which aims to predict gene/protein/ligand relationships. The
predictions are based on the assumption that chemically similar
compounds should share common targets. Here, we exploit
our understanding of the network-based representation of the
protein-protein interaction (PPI network) to introduce a distance
between drug-targets and could verify whether it correlates with
their chemical similarity. We build a fully connected graph
composed of US Food and Drug Administration (FDA) - approved
drugs using the Tanimoto 2D similarity based on fingerprints
from the SMILES representation of the chemical structure. Our
analysis of 1165 FDA-approved drugs indicates that the chemical
similarity of drugs predicts closeness of their targets in the human
interactome.

I. INTRODUCTION

The scientific discoveries in the past decade have been sub-

stantial in increasing our knowledge about the molecular basis

of diseases, the network-based structure of diseases [1] and the

mode of action of a small molecule1 in a disease pathway to

alleviate the symptoms. Despite the modern advances and huge

investment in modern technologies such as molecular biology

methods, high-throughput screening, structure-based drug de-

sign, combinatorial and parallel chemistry, and the sequencing

of the human genome, the number of drug approvals by the

US Food and Drug Administration (FDA) registered in a 10-

year period from 1999 to 2008 had experienced little effect of

these advances [2].

New medicines were discovered in different ways before

the genomics era in the 1990s. Fundamentally, because the

molecular mechanisms of diseases were mostly unknown. In

fact, common drugs such as aspirin, were found based on a

serendipitous way through the derivation of the pharmaco-

logically active natural substance from a plant extract. Eder

et al. [3] define these approaches as system-based, because

they consist on a hypothesis-agnostic assay that monitors

phenotypic changes in vitro or in vivo. The fact that the

modification of the proteins activity has a fundamental role

1Small molecule refers to organic compounds with low molecular weight
that may help to regulate a biological process. Most drugs are small molecules.

in the development of a disease has produced an important

shift in the drug discovery approach. The past decade, drug

discovery was driven mainly by a target-centric approach.

New technologies were developed for identification of target

proteins that are involved in the disease of interest (e.g.,

RNA interference) and compounds that are likely to interact

with these targets (e.g., high-throughput screening2 and virtual

screening3).

The dawn of the target-centric approach comes with its

drawbacks. The increased rise in late-stage attrition rates

in clinical trials in the last decade is concerning. It also

reveals that the ‘one gene, one drug, one disease’ paradigm

is ineffective [6]. For instance, Yıldırım et al. [7] compiled

data from DrugBank, a public database for FDA drugs that

includes approved and experimental drugs, and showed that

most drugs target a single protein. Nevertheless, many effective

drugs (such as those for cancer and schizophrenia) were shown

to act via modulation of multiple proteins rather than a single

protein and although this principle is known (as shown in Fig.

1) the rationale of the current paradigm in drug design remains

for practicality.

The inherent complexity of the problem is to find a relation-

ship between a ligand4 and its target proteins. Chemogenomics

is an interdisciplinary field that studies the ability of isolated

molecular targets to interact with chemical compounds [4]. It

attempts to build a relevant set of compounds libraries before

the high-throughput screening takes place. By integrating and

compiling data from drugs (structural, physical, and biological

properties) and structural classification of all known proteins,

it aims to predict relationships between drugs and proteins to

optimize the screening and thus contribute to a more rational

development. The predictions are based on the assumption that

chemically similar compounds should share common targets

and targets sharing similar ligands should share similarities in

their binding sites [8].

Our goal here is to broaden our understanding of the relation

between chemical similarity of drugs and their protein targets

2High-throughput screening is a large-scale, trial-and-error evaluation of
compounds in a parallel target-based or cell-based assay [4].

3Virtual screening uses computer-based methods to discover new ligands
based on their structure [5].

4The ligand is a substance that binds to the target protein to change its
biological response. It is another term to refer to a drug.
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Fig. 1. Paradigm of polypharmacology of the drugs. The small molecule
(drug) is a chemical structure that binds to the protein of interest yielding
to the expected clinical effect. However, the small molecule can also bind
to other proteins, called off-targets, producing side-effects. These off-proteins
may be involved in other biological processes or phenotypes.

in the context of networks. We combined information about

drugs and their targets to assess network-based relationships

between chemical similarity of drugs and closeness of their

targets on the human interactome. Our hypothesis is based on

the similarity property principle introduced by Johnson and

Maggiora [9] that establishes that similar chemical structures

are deemed to lead to similar biological outcomes [10].

II. MATERIALS AND METHODS

In this section we will introduce the methods and databases

which we have used so far. First, we will explain the bi-

nary representation for chemical structure and the Tanimoto

similarity measure to compute chemical similarity. Then, the

databases used for retrieving data about drugs, their targets,

and the interaction between protein targets.

A. Chemical structure as SMILES

The Simplified Molecular-Input Line-Entry System

(SMILES) is a specification in line notation for describing

the structure of chemical formulas using ASCII strings.

SMILES was developed by the Environmental Research

Laboratory-Duluth QSAR Research program to facilitate

the storage, retrieval, and modelling of chemical structures

and chemical information. This notation provides a flexible

and unambiguous method for specifying the topological

structure of molecules [11]. For example, Fig. 2 shows the

SMILES representation of the well-known acetylsalicylic acid

(aspirine).

Ideally, the representation of each chemical structure should

be unique and function as a fingerprint. The aim is to capture

the patterns that makes the molecule unique, and different or

similar to others. Usually, the molecule fingerprint is generated

using information from the molecule itself such as the atoms,

bonds, neighbours and so forth. This representation has been

widely used for the representation of chemical structure [12].

O       

O       H     O       

O       

H       3       C       

     SMILES REPRESENTATION  
CC(=O)OC1=CC=CC=C1C(O)=O

Fig. 2. SMILES representation of the acetylsalicylic acid (Aspirine). The
string is an unambiguous representation of the molecule using ASCII code.

B. Tanimoto similarity

There has been extensive debate about which similarity

measure is better to reflect the properties or activity values

of chemical compounds based on their 2D chemical structure

[13]. The Tanimoto similarity measure has proven to be

one of the most effective [14]. This similarity is compute

based on binary hash fingerprints obtained from the SMILES

representation of each drug. Mathematically, it can be defined

for two vectors of bits, HA, HB , each corresponding to the

fingerprints of Drugs A and B, respectively, as follows:

T (HA, HB) =

∑
i HA ∩HB∑

i HA +
∑

i HB −∑
i HA ∩HB

(1)

where∑
i HA is the number of bits “on” in HA;∑
i HB is the number of bits “on” in HB ;∑
i HA ∩HB is the numbers of bits “on” in both HA and

HB ;

For instance, an intuition of the structure-based similarity

is shown in Fig. 3. Drug A and Drug B are chemically

equal in the area highlighted in green. For each drug a 2048

bits hash has been computed (binary fingerprint) from the

SMILES representation. Using these fingerprints, we compute

T (DA, DB) for each pair of drug.

C. Protein-protein interaction network

The protein is a biomolecule that performs a function within

a living organism. It is a fundamental part of the machinery of

the cell. Normally, proteins interact with other proteins to form

complexes or catalyzed reactions such as the enzymes. There

have been experimental efforts to build a network in which

nodes are human proteins and a link between two proteins

is related to the likelihood of interaction. The interaction

between proteins is an important resource because it may

provide insights into protein function and for understanding

the principles of cellular functional organization [15].

Biogrid is a repository with data compiled through com-

prehensive curation efforts. The database contains information

about known interactions among proteins [16]. For human,

there are 9476 proteins. In the PPI network, every link has a
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Fig. 3. Example of similarity between two drugs. Each drug is represented
with a hash fingerprint (obtained from the SMILES). The area highlighted in
green is where the chemical structure is the same. For instance, the Tanimoto
similarity for these two drugs is 88%.

binary value (connected or not) that implies that two connected

proteins are likely to interact. We build a matrix that contains

all the shortest paths between every pair of human proteins.

We use this matrix later to find distances between pairs of

drugs-targets.

D. Drugbank database

The Drugbank database [17] is a unique bioinformatics

and cheminformatics resource that combines detailed drug

data (i.e. chemical, pharmacological and pharmaceutical) with

comprehensive drug target information (i.e. chemical structure,

SMILES representation, targets). The version 4.3 from the

27th of March 2016 contains 8203 drug entries, including 1991

FDA-approved small molecule drugs.

III. THE ADDRESSED QUESTION

In this paper we focus on the relationship between chemical

similarity of drugs and the distance of their protein targets on

the interactome. We related drugs by the similarity in their

chemical structure. The more similar structure, the more likely

they produce similar biological outcomes [9]. In addition,

proteins exert their functions by interacting with each other.

Interacting proteins are more likely to be involve or share

common biological functions than non-interacting ones [18].

Therefore, our hypothesis is whether chemical similarity of

drugs predicts closeness of their target proteins on the human

interactome.

In order to answer our question, we built two networks

(Fig. 4): (i) Chemical similarity network (ChemSIM), where

each node represents an FDA-approved drug and the weight

of the edges is the Tanimoto chemical similarity. ChemSIM

is a weighted fully connected graph; (ii) Interactome, which

contains each known protein-protein interaction. The dotted

arrows represent the mapping of each drug target on the inter-

actome in order to compute shortest path distances (minimum,

average and median) between each pair of drug targets. We are

interested in finding relationships between these two networks.
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Fig. 4. Mapping of the drugs-targets from the ChemSIM network to the PPI
network. ChemSIM is a fully connected graph, where each node represents
a FDA-approved drug and the weight of the edge is given by the Tanimoto
chemical similarity. In the PPI network, each node represents a known human
protein, and an edge represents interaction between the proteins (binary). The
arrows from ChemSIM to the interactome indicate the mapping.

IV. RESULTS

We have found that 1164 of the FDA approved drugs

have SMILES representations of their chemical structure and

at least one human target on the interactome. In order to

get the Tanimoto 2D chemical similarity from the SMILES

representation of the drugs, we use the RDKit, an open-

source cheminformatics software. The library was integrated

to iPython 2.7 to perform the calculations. The distribution

of the chemical similarity obtained in this fashion is shown

in Fig. 5. The distribution has a mean of μ = 0.36, and a

standard deviation of σ = 0.087. This means that most of the

drugs have less than 40% chemical similarity.

One of the properties of the PPI network is that there are

multiple paths between proteins. Hence, in order to compute

distances between proteins on the interactome, we calculated

the shortest path between every pair of proteins. Let us denote

the shortest path matrix as Dsp. In addition, drugs can have

more than one target on the interactome [7]. Hence, let us

denote the set of target proteins of DRUG A as PA, and any

element of the set as ai ∈ PA. We propose three different

metrics for measuring the distance (shortest path5) between

targets of DRUG A and DRUG B: minimum (dmin), average

(davg) and median (dmed) shortest path. Mathematically, the

different distances between protein targets of DRUG A and

DRUG B can be defined as follows:

dmin = min (Dsp(ai, bj)) ∀ai ∈ PA, bj ∈ PB (2)

5The shortest path between two proteins A and B in the PPI is the minimum
number of steps required to reach protein B from protein A.



davg =
1

| PA | × | PB |

|PA|∑
i

|PB |∑
j

(Dsp(ai, bj)) (3)

dmed = median (Dsp(ai, bj)) ∀ai ∈ PA, bj ∈ PB (4)

In Fig. 6 we show the distribution of values for the minimum

(μ = 2.74, σ = 1.09), average (μ = 3.59, σ = 0.83)

and median (μ = 3.64, σ = 0.87) distance. The mean of

the minimum distance is lower because it only considers

the closest target protein between the two sets. Notably, the

distributions of the average and median shortest path are

similar.
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Fig. 5. Distribution of Tanimoto chemical similarity. For 1164 FDA-approved
drugs retrieved from Drugbank, most of the drugs have less than 40%
similarity in their chemical structure.

A. Predicting the closeness of target proteins

We are interested in finding whether there is any relationship

between similar chemical structures of drugs and the closeness

of their protein targets. One way of connecting these two

networks is through prediction: can chemical similarity predict

closeness of protein targets on the interactome? In prediction

problems is common to have SCORES and TRUE LABELS (pos-

itive and negatives). The performance of the prediction is then

computed based on how well the score predicts the true labels.

This process is usually done by computing systematically the

True Positive Rate (TPR), which corresponds to the proportion

of positive data that are correctly considered as positive, and

False Positive Rate (FPR), which corresponds to the proportion

of negative points that are mistakenly considered as positive.

To combine TPF and FPR into a single metric, the score vector

is thresholded in many different points and used as a predicted

class. By changing the threshold in the score vector is possible

to plot the Receiver Operating characteristic (ROC) Curve,

which is a single metric that comprises the performance of the

prediction. The area under the ROC curve (AUC) is another

important metric used to measure the performance [19].

In our problem, the Tanimoto chemical similarity can be

used as SCORES for predicting TRUE LABELS (targets are

close, targets are not close). Since the method requires defining

true labels, which are essentially binary, is necessary to

threshold the distance matrices. Let us denote any of distance

matrices (minimum, average or median) as D, and an element

of the matrix as Dij . Notice that the matrix D is an N ×N
matrix, where N is the number of drugs, and each value

Dij represents the minimum, average or median distance

(equations 2, 3, 4). The binarized version of the distance matrix

is defined as follows:

BDT
ij =

{
1, Dij ≤ T
0, otherwise

(5)

where T = 0, 1, 2, 3, 4 is the threshold used to binarize the

distance matrices. For instance, for the minimum shortest path

distance, T = 0 means that the drugs share at least one target

on the interactome. For values T > 0, our notion of closeness

is relaxed. Notice that for a given value of T , we consider

also as a positive label all distances that are below the given

threshold.

The performance of the measure is evaluated by computing

the AUC for all the different thresholds T . In Fig. 7, we show

a comparative result. We can see that the average and median

distances outperform the minimum distance with more than

25%, yielding an AUC of 85%. The fact that the average and

median distances perform better than the minimum, can be

because they contain more information about the targets. The

minimum distance only takes into account the closest target,

ignoring the polypharmacology of the drugs. In addition, for

all the cases, the AUC decreases when the threshold increases.

This phenomenon is expected since our notion of closeness is

relaxed. From a biological point of view, the two first cases

(T = 0 and 1) are more interesting because the chemical

similarity can be used to predict whether two structurally

similar drugs have interactive targets on the interactome.

B. Visualization of Chemical Similarity Space

The fact that chemical similarity predicts the closeness

of their targets on the interactome can be observed more

intuitively by obtaining a 3D graphical representation of FDA-

approved drugs. One popular technique for embedding high

dimensional data into 3D space is t-SNE [20]. Fig. 8 shows

the embedding of drugs into 3D space. In the figure, each

point corresponds to a drug and the distance between two

drugs relates to the Tanimoto chemical similarity measure.

Most of the drugs are coloured in gray, but three pairs (red,

green and blue) have been chosen as an example. For every

pair of chosen drugs, we have checked the amount of targets



shared on the interactome, as summarize in Table I. In the

table, the values of chemical similarity are above the mean.

These particular examples, show that the higher the similarity,

the more targets they share, but this is not the general case.

TABLE I
EXAMPLE WITH THREE PAIRS OF DRUGS.

DrugBank ID ChemSIM Shared Targets PPI

DB04575 DB04574 0.58 1
DB00367 DB00294 0.91 3
DB00318 DB00295 0.99 7

t-SNE ChemSIM Network
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     DB04574 (1-Target): menopause treatment,

     DB04575 (8-Targets): hormone replacement

          Shared 1 target PPI

      DB00318 (10-Targets): codeine,

      DB00295 (13-Targets): morphine 

             Shared 7 targets PPI        

     DB00367 (6-Targets): progestational hormone,

     DB00294 (3-Targets): steroidal progestin 

                    Shared 3 targets PPI

Fig. 8. Embedding of drugs chemical similarity in 3D space using t-SNE.
Each point represents a FDA-approved drug. Drugs are coloured in gray. We
have highlighted three pairs of chemically similar drugs (red, green, blue).
For each pair, we have checked how many targets each of them have, and
how many targets they share (if any). The chemical similarity measure can be
used as an indication of closeness between drug targets on the interactome.

V. DISCUSSION

Diseases are abnormal conditions that affects the phenotypes

of an organism. Typically, defects in multiple genes (and hence

proteins) are the causes of diseases. These proteins are called

disease proteins because the alteration of multiple proteins

can produce changes in the phenotype. In order to cure

diseases, pharmaceutical companies design molecules that can

target disease-associated proteins. The still long and expensive

process of drug discovery requires a deeper understanding

of the relation between the chemical structure of the drugs

and their target proteins. An understanding of the molecular

interaction between a drug and its targets can help to contribute

to a more rational and effective design process [2, 7, 21]. Here,

we investigated the relation between chemical similarity and

the distance, at interaction level, between their protein targets.

The systematic analysis in a large set of FDA-approved drugs

show that chemical similarity implies closeness of protein

targets on the interactome.

In order to understand the relationship between the chemical

similarity of the drugs and the interaction distance of their

targets, we computed several distances between drug targets on

the interactome. To relate chemical similarity with closeness

of their targets on the interactome we addressed as a prediction

problem, where chemical similarity is used as a score to

predict closeness of their targets. The experiments show that

chemical similarity performs better in prediction of average

and median distances (AUC ∼ 0.85, T = 0) than minimum

distance (AUC ∼ 0.60, T = 0). The average shortest path

distance performs slightly better than the median distance for

values of the threshold T > 0. Fig. 9 shows a comparison of

chemical similarity distribution for all the pairs of drugs, and

for those with average shortest path equal to zero. The two

distributions are different (Student’s t-test P < 10−4). We

observed that 67% of the pairs of drugs with average shortest

path zero have scores in the 95th percentile, indicating that

higher similarity value are correlated with shared targets on

the interactome.

These findings suggest that chemically similar drugs tend

to target the same protein complex, because protein com-

plexes are dense regions containing many connections in

PPI networks [22]. The multi-therapeutic category nature of

chemically similar drugs can be explained by these findings,

given that the protein complex can act in different disease

pathways. Furthermore, drugs can have different efficacies

depending on the disease pathway in which the protein is

acting [23].

Chemical similarity provides a powerful information about

the relation between drugs. It has been widely used for drug

target prediction and drug repurposing [24, 25] sometimes

integrated with other evidence such as side-effect similarity

[25]. It would be interesting to use the knowledge presented

here to enrich machine learning techniques for drug-target

prediction or drug re-purposing.
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Fig. 6. Distribution of minimum, average and median shortest paths between
drug targets on the human interactome. Top The minimum shortest path only
accounts for the closer targets (eq. 2). The illustration shows that there is
only two steps between the closer targets; Middle The average shortest path
sum up all the possibles shortest paths between targets and divided by the
product of the cardinality (eq. 3). The illustration shows that all the targets
are considered for the computation of this distance; Bottom median shortest
path compute the median of the vector of shortest path between all the targets
(eq. 4).
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Fig. 7. Performance comparison for the shortest path distance metrics. We
have used the chemical similarity to predict binary relationships between drug
targets distances on the interactome using different thresholds T . Tanimoto
chemical similarity performs better at predicting average and median dis-
tances than minimum distance.
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Fig. 9. Comparison of chemical similarity distributions. Distribution of
Tanimoto chemical similarity for all pairs of drugs (blue bars) vs distribution
of Tanimoto chemical similarity for drug pairs with average shortest path zero
(red bars) on the interactome. 67% of the pairs of drugs with average shortest
path distance zero, have scores in the 95th percentile.
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