
Discrete-Time Sliding Mode with Time Delay
Estimation of a Six-Phase Induction Motor Drive
Y. Kali1, J. Rodas2, M. Ayala2, M. Saad1, R. Gregor2, K. Benjelloun3, J. Doval-Gandoy4 and G. Goodwin5
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Abstract—This paper investigates the problem of stator current
control in presence of uncertainties and unmeasurable rotor
current for a six-phase induction motor drive. An inner control
loop based on a robust discrete-time sliding mode with time
delay estimation method is proposed to ensure the finite-time
convergence of the stator currents to their desired references
while the proportional-integral controller is used for the outer
speed control. Sufficient conditions are established to ensure the
stability of the closed-loop system. Simulation results were carried
out to verify the performance of the proposed robust control
strategy for a six-phase induction motor drive.

Index Terms—Discrete-time sliding mode, time delay esti-
mation, multiphase induction machine, speed control, current
control, field oriented control.

I. INTRODUCTION

Multiphase drives have received a great interests from
power electronics community due to their good features in
comparison with the traditional three-phase drives such as
lower current/power per phase and lower torque ripple and
fault tolerant capabilities without adding extra hardware [1]–
[3]. Nowadays, they are extensively used for high-power and
reliable applications such as wind energy generation systems
and electric vehicles [3], [4]. Most of the control strategies
applied for multiphase drives are an extension of the three-
phase case such as proportional-integral pulse-width modula-
tion, proportional-resonant finite-control-set model predictive
control, predictive torque control, direct torque control, sen-
sorless, among others [5]–[12]. Recent works also extends the
above-mentioned techniques to the post-fault operation [13]–
[16]. However, little attention has been paid to robust nonlinear
controllers based on fuzzy logic and/or sliding mode control
(SMC) strategies [17]–[20].

Indeed, SMC is one of the robust proposed nonlinear control
techniques in literature. The aim of this technique is to force
the system trajectories to converge to a user-chosen switching
surface [21] in finite-time even in presence of uncertainties
and disturbances using discontinuous controller. However, to
ensure high performances, the switching gains should be
chosen as large as possible to reject the effect of the bounded
uncertainties. Therefore, this choice causes the major draw-
back of SMC, the well-known chattering phenomenon [22],
[23]. This phenomenon has a negative impact on the system
actuators which can lead to the deterioration of the controlled

system and/or the instability. To solve this problem, many
developments have been published, we cite in this context:

• Sliding mode based on a boundary layer [24]. The idea
consists on using continuous functions such as saturation
instead the signum function. This proposition allows
chattering reduction, but the finite-time convergence is
not guaranteed anymore which is very desirable while
critical convergence time is required.

• Observer-based sliding mode control [25], [26]. This
method reduces the problem of designing a robust con-
troller into the problem of designing a robust observer.
It means that if the uncertainties estimation is not exact,
the desired performances will be affected.

• Higher order sliding mode (HOSM) [27]–[29]. The basic
idea is to make the discontinuous term acting on the first
time derivative of the control input, then, by integrating
the control input becomes continuous. This approach
reduces the chattering phenomenon and allows higher
precision. However, the required informations (first time
derivative of the selected sliding surface ) are increased
which make the implementation difficult.

Recently, a promising idea that consists on combining
sliding mode control with time delay estimation (TDE) method
for uncertain nonlinear systems [30], [31]. The proposed
method has been successfully tested on a redundant robot
arm. The basic idea is to estimate matched uncertainties that
are assumed to be Lipschitz using delayed states and inputs
informations. Then, the estimated terms are added in the
equivalent controller in order to allow a small choice of the
switching gains of the discontinuous controller.

Nevertheless, the real time implementation is generally
performed through discrete systems [32]. For this reason,
the development of the controller should be done in discrete
time. Therefore, it is suitable to use the six-phase IM model
in discrete time representation during the design procedure
because the inherent properties of the sliding mode method
might not be maintained after discretization.

Therefore, in this paper, a discrete-time sliding mode control
(DSMC) with TDE method is proposed for the inner current
control loop of a rotor field oriented control (RFOC) of a
six-phase induction motor (IM) drive. The rest of the paper



is organized as follows. Section II presents the mathematical
model of the system while controller design is explained in
Section III. Simulation results are provided in Section IV.
Section V draws some conclusions.

II. SIX-PHASE IM AND VSI MODEL

The analyzed system consists of an asymmetrical six-phase
IM fed by two 2-level (2L) VSI shown in Fig. 1. After
using the vector space decomposition (VSD) approach, the
decoupling transformation T gives α − β subspace which
is related to flux/torque producing components and loss-
producing x − y subspace and a zero-sequence subspace. In
the rest of this paper, matrices and vectors will be denoted
by capital and small bold-face letters, respectively. Then, by
using an amplitude invariant criterion, T is defined as follows:

T =
1
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The discrete model of the system in state-space representa-
tion is represented by the following equations [7]:

x1(k + 1) = A1 x1(k) +H1 x3(k) +B1 u1(k) + n1(k) (2)
x2(k + 1) = A2 x2(k) +B2 u2(k) + n2(k) (3)
x3(k + 1) = A3 x1(k) +H2 x3(k) +B3 u1(k) + n3(k) (4)

y(k) = C x(k) (5)

being the stator and rotor currents state vector:

x(k) = [x1(k), x2(k), x3(k)]
T (6)

with:

x1(k) = [isα(k), isβ(k)]
T (7)

x2(k) = [isx(k), isy(k)]
T (8)

x3(k) = [irα(k), irβ(k)]
T (9)

while the stator voltages represents the input vectors:

u1(k) = [usα(k), usβ(k)]
T (10)

u2(k) = [usx(k), usy(k)]
T (11)

and the stator currents the output vector:

y(k) = [x1(k), x2(k)]
T (12)

= [isα(k), isβ(k), isx(k), isy(k)]
T (13)

and ni(k) ∈ R2 for i = 1, 2, 3 denote the uncertain vectors.
The stator voltages have a discrete nature due to the VSI model
and the relationship between them is represented as:

[usα(k), usβ(k), usx(k), usy(k)]
T

= Vdc TM (14)

Six-phase IM

VSI #1

VSI #2

..
..
..
.

Fig. 1. Scheme of the six-phase IM drive.

where the gating signals are S = [Sa, Sb, Sc, Sd, Se, Sf ],
being Si ∈ {0, 1}, Vdc is the DC-bus voltage and the VSI
model is:

M =
1

3


2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2

ST . (15)

The matrices A1, A2, A3, H1, H2, B1, B2 and B3 are
defined as follows:

A1 =

[
a11 a12
a21 a22

]
, A2 =

[
a33 0
0 a44

]
, A3 =

[
a51 a52
a61 a62

]

H1 =

[
h11 h12

h21 h22

]
, H2 =

[
h31 h32

h41 h42

]

B1 =

[
b1 0
0 b1

]
, B2 =

[
b2 0
0 b2

]
, B3 =

[
b3 0
0 b3

]
where:

a11 = a22 = 1− Ts c2 Rs a12 = −a21 = Ts c4Lm ωr(k)

h11 = h22 = Ts c4 Rr h12 = −h21 = Ts c4Lr ωr(k)

a33 = a44 = 1− Ts c3 Rs a51 = a62 = −Ts c4 Rs

a52 = −a61 = −Ts c5 Lm ωr(k) h31 = h42 = 1− Ts c5 Rr

h32 = −h41 = −c5 ωr(k) Ts Lr b1 = Ts c2
b2 = Ts c3 b3 = −Ts c4

being Ts the sampling time and c1 to c5 are defined as:
c1 = LsLr − L2

m, c2 = Lr

c1
, c3 = 1

Lls
c4 = Lm

c1

c5 = Ls

c1
. The electrical parameters of the systems are Rs,

Rr, Lr = Llr + Lm, Ls = Lls + Lm, Lr and Lm. The rotor
electrical speed (ωr) has a relationship with load torque (Tl)
and generated torque (Te) as follows:

Jm ω̇r +Bm ωr = P (Te − Tl) (16)

being Bm and Jm the friction and the inertia coefficient,
respectively, P the number of pole pairs and Te is:

Te = 3 P M (irβ isα − irα isβ) (17)

where M is the magnetizing inductance.



Fig. 2. Block diagram of the proposed speed control based on IRFOC
technique and the DSMC with TDE method for the inner current control.

III. PROPOSED CONTROLLER

A. Outer Control Loop

The aim of the outer loop is to control the speed. To that end,
a PI controller with a saturation is used due to its simplicity.
For the outer loop, the PI speed controller is selected to
obtain the dynamic reference current i∗qs(k). Then, the process
of the slip frequency (ωsl(k)) estimation is executed in the
same way as the indirect RFOC methods, from the reference
currents (i∗ds(k), i∗qs(k)) in the dynamic reference frame and
the electrical parameters of the six-phase IM.

B. Inner Control Loop

The aim of the inner loop is to control the stator currents.
To that end, the DSMC with TDE method will be designed to
force the stator current in the α− β and the x− y sub-spaces
to converge to their desired references in finite-time with high
accuracy even in presence of unmeasurable states (i,e. rotor
currents) and uncertainties.

1) Control of Stator Current in α − β Sub-Space: To
quantify the control objective, let xd1(k) = i∗sφ(k) ∈ R2

to be the desired reference with φ ∈ {α, β} and eφ(k) =
x1(k)− xd1(k) = isφ(k)− i∗sφ(k) ∈ R2 be the tracking error.
Now, let us select the sliding surface [21] to be the error
variable as:

σ(k) = eφ(k) (18)

To ensure ideal sliding motion, the following conditions must
be verified:

σ(k) = 0, σ(k + 1) = 0 (19)

where σ(k + 1) is obtained as:

σ(k + 1) = eφ(k + 1) = x1(k + 1)− xd1(k + 1)

= A1 x1(k) + H1 x3(k) + B1 u1(k)

+ n1(k)− xd1(k + 1)

(20)

As the classical sliding motion is not enough to ensure
robustness, the following reaching law is chosen:

σ(k + 1) = λ σ(k)− Tsρ sign(σ(k)) (21)

where λ = diag(λ1, λ2) with 0 < λi < 1 for i = 1, 2,
ρ ∈ R2×2 is a diagonal positive matrix and sign(σ(k)) =
[sign(σ1(k)), sign(σ2(k))]

T with:

sign(σi(k)) =

 1, if σi(k) > 0
0, if σi(k) = 0
−1, if σi(k) < 0

(22)

Hence, the DSMC law for the stator current in α−β sub-space
described in (2) is obtained as:

u1(k) = −B−1
1

[
A1x1(k)− xd1(k + 1)− λ σ(k) · · ·

· · · +H1x3(k) + n1(k) + Tsρ sign(σ(k))]
(23)

As the rotor currents x3(k) are not measurable and as n1(k)
is unknown, the control performance might not be satisfactory.
Then, assuming that x3(k) and n1(k) do not vary largely
between two consecutive sampling time and based on (2), they
can be estimated using TDE [28], [33] method as:

H1x̂3(k) + n̂1(k) ∼= H1x3(k − 1) + n1(k − 1)

= x1(k)−A1x1(k − 1)−B1u1(k − 1)
(24)

Definition 3.1: For a discrete system, a quasi sliding mode
is considered in the vicinity of the sliding surface, such that
|σ(k)| < ε, with ε is a positive constant called the quasi-
sliding-mode band width. To guarantee a convergent quasi
sliding mode, the following sufficient and necessary conditions
given in [28], [34] must be verified for i = 1, 2: σi(k) > ε⇒ −ε ≤ σi(k + 1) < σi(k)

σi(k) < −ε⇒ σi(k) < σi(k + 1) ≤ ε
|σi(k)| ≤ ε⇒ |σi(k + 1)| ≤ ε

(25)

Theorem 3.1: The DSMC with TDE method for the stator
current in the α− β sub-space given in (2) is given by:

u1(k) = B−1
1 [x1d(k + 1)−A1x1(k)−H1x̂3(k) · · ·

· · · −n̂1(k) + λ σ(k)− Tsρ sign(σ(k))]
(26)

ensures a quasi sliding mode if the following condition is met:

ρi >
1

Ts
δi for i = 1, 2 (27)

Proof. Substituting the calculated discrete-time con-
troller (13) in equation (9) leads to:

σ(k + 1) = E + λ σ(k)− Tsρ sign(σ(k)) (28)

where E = H1 (x3(k)− x̂3(k)) + (n1(k)− n̂1(k)) is the
bounded TDE error such as for i = 1, 2:

|Ei| < δi (29)

Now, let us choose ε = Tsρi + δi. Hence, equation (25) can
be rewritten as:

σi(k) > Tsρi + δi ⇒ −Tsρi − δi ≤ σi(k + 1) < σi(k)

σi(k) < −Tsρi − δi ⇒ σi(k) < σi(k + 1) ≤ Tsρi + δi

|σi(k)| ≤ Tsρi + δi ⇒ |σi(k + 1)| ≤ Tsρi + δi

(30)



1. Consider the first case where σi(k) > Tsρi + δi, then
σi(k) > 0, sign(σi(k)) = 1 and:

σi(k + 1) = Ei + λi σi(k)− Tsρi
σi(k + 1)− σi(k) = Ei + (λi − 1) σi(k)− Tsρi

(31)

Since the condition in (27) is verified, then σi(k + 1)−
σi(k) < 0⇒ σi(k + 1) < σi(k).
In addition, −Tsρi − δi ≤ σi(k + 1) can be written as:

Ei + λi σi(k)− Tsρi ≥ −Tsρi − δi (32)

Hence:
σi(k) ≥ 1

λi
(Ei − δi) (33)

which is is always true since σi(k) > 0 and (Ei−δi) < 0.
2. Consider the second case where σi(k) < −Tsρi − δi,

which means that σi(k) < 0 and sign(σi(k)) = −1.
Then, σi(k) < σi(k + 1) can be rewritten as:

σi(k) < Ei + λi σi(k) + Tsρi

(1− λi) σi(k) < Ei + Tsρi
(34)

which is always true since the condition (27) is verified.
Moreover, σi(k + 1) < Tsρi + δi can be rewritten as:

Ei + λi σi(k) + Tsρi < Tsρi + δi (35)

It is obvious that the above inequality is always true since
σi(k) < 0 and δi > Ei.

3. Consider the third case where |σi(k)| ≤ ε, then:
a. if σi(k) > 0, then |σi(k)| ≤ ε becomes:

0 < σi(k) < ε (36)

Multiplying by λi and adding Ei − Tsρi to all the
parts of the above equation leads to:

Ei − Tsρi < σi(k + 1) < Ei − Tsρi + λi ε

−ε < σi(k + 1) < ε

|σi(k + 1)| ≤ ε
(37)

b. if σi(k) < 0, then |σi(k)| ≤ ε becomes:

−ε < σi(k) < 0 (38)

Once again, multiplying by λi and adding Ei+Tsρi
to all the parts of (38) gives:

Ei + Tsρi − λi ε < σi(k + 1) < Ei + Tsρi

−ε < σi(k + 1) < ε

|σi(k + 1)| ≤ ε
(39)

Hence:
|σi(k + 1)| < ε = Tsρi + δi (40)

The conditions in (30) being verified, the existence of the
convergent quasi sliding mode is proved. Therefore, the
proposed discrete-time controller in (13) is stable.
This concludes the proof.

2) Control of Stator Current in x − y Sub-Space: The
complete study of DSMC with TDE is described in the
previous part. To control the stator current in the x − y sub-
space, the same methodology will be used. The sliding surface
here is selected as:

σ∗(k) = esxy (k) = x2(k)− xd2(k) (41)

where xd2(k) = [i∗sx(k), i∗sy(k)]T denotes the desired currents
and esxy

(k) represents the tracking error variable. Therefore,
σ∗(k + 1) is calculated as follows:

σ∗(k + 1) = esxy
(k + 1) = x2(k + 1)− xd2(k + 1)

= A2 x2(k) + B2 u2(k) + n2(k)− xd2(k + 1)
(42)

Finally, the discrete-time controller is obtained by substituting
the uncertain vector n2(k) by its estimate using TDE method:

n̂2(k) ∼= n2(k − 1)

= x2(k)−A2 x2(k − 1)−B2 u2(k − 1)
(43)

and by resolving:

σ∗(k + 1) = Γ σ∗(k)− Ts% sign(σ∗(k)) (44)

where Γ = diag(Γ1,Γ2) with 0 < Γi < 1 for i = 1, 2,
% ∈ R2×2 is a diagonal positive matrix and sign(σ∗(k)) =
[sign(σ∗

1(k)), sign(σ∗
2(k))]

T .
Theorem 3.2: If the controller gains are chosen for i = 1, 2

as follows:
%i >

1

Ts
δ∗i (45)

with δ∗i > 0 is the upper-bound of the TDE error E∗ =
n2(k) − n2(k − 1). Then, the following DSMC with TDE
method for the stator current in the x−y sub-space (3) ensures
a quasi sliding motion:

u2(k) = B−1
2 [x2d(k + 1)−A2x2(k)− n̂2(k) · · ·

· · · +Γ σ∗(k)− Ts% sign(σ∗(k))]
(46)

Proof. The stability analysis is similar to the one described
for the stator currents in α− β sub-space.

IV. NUMERICAL SIMULATION

A MATLAB/Simulink simulation program has been de-
signed for a six-phase IM in order to prove the effectiveness of
the proposed method. Numerical integration using first order
Euler’s discretization method has been applied to compute the
evolution of the state space variables in the time domain. The
electrical and mechanical parameters of the six-phase IM are
detailed in Table I.

In this simulation, a sampling frequency of 10 kHz, a torque
load of 2 Nm connected to the six-phase IM and a fixed
d current (i∗ds = 1 A) have been used. The PI gains are chosen
to be Kp = 9.17 and KI = 0.027.

In addition, the gains of the DSMC with TDE used for stator
currents tracking in α− β sub-space are:

λ = diag(0.5, 0.5), ρ1 = ρ2 = 30
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Fig. 3. Stator currents in α− β and x− y sub-spaces for a sampling frequency of 10 kHz: (a) Amplitude of 4.5 A; (b) Amplitude of 1.5 A.
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Fig. 4. Stator currents in α − β sub-space for transient and steady-state rotor speed for a sampling frequency of 10 kHz: (a) 1500 rpm of steady state
response; (b) Reversal condition of 500 to −500 rpm.

While the gains of the DSMC with TDE used for stator
currents tracking in x− y sub-space are:

Γ = diag(0.9, 0.9), %1 = %2 = 30

The behavior of the stator currents in the α − β and

TABLE I
ELECTRICAL AND MECHANICAL PARAMETERS OF THE SIX-PHASE IM

Rr 6.9 Ω Ls 654.4 mH
Rs 6.7 Ω P 1
Lls 5.3 mH Bi 0.0004 kg.m2/s
Llr 12.8 mH Ji 0.07 kg.m2

Lr 626.8 mH Nominal Power 2 kW
Lm 614 mH Nominal Speed 3000 rpm

x− y sub-spaces are shown in Fig. 3(a) and Fig. 3(b) for
different idαβs amplitudes. Fig. 4(a) exposes the stator currents
evolution in α − β sub-space for a transient and steady-
state rotor speed reference and Fig. 4(b) demonstrates the
stator currents behavior for a reversal condition where the
rotor speed reference changes from 500 to −500 rpm. The
proposed controllers ensure high accuracy tracking of the
system currents to their desired references in a finite-time.

To quantify the speed and currents tracking, the mean square
error (MSE) and total harmonic distortion (THD) are used as
figures of merit. For a 500 rpm of speed rotor reference, the
proposed controller obtains a MSE of 1.1460 rpm, 0.0550 A
and 0.1640 A for the measured speed, α−β and x−y currents
respectively. For a 1500 rpm of speed rotor reference, the
proposed controller shows a MSE of 1.1457 rpm, 0.0575 A



and 0.1860 A for the measured speed, α−β and x−y currents
respectively. As for the THD analysis, for 500 and 1500 rpm
of speed reference, it is obtained 5.3 % and 5.6 % for α− β
currents respectively.

V. CONCLUSION

In this paper, a speed control based on RFOC strategy with
an inner DSMC with TDE stator currents control is proposed.
The proposed method is based on TDE method that esti-
mates effectively and simply the unmeasurable rotor currents,
uncertainties and disturbances and on DSMC that provides
robustness against TDE error, finite-time convergence and
chattering reduction. The efficiency of the proposed DSMC
with TDE is confirmed by numerical simulations on a six-
phase IM drive. The proposed controller provides excellent
performances in steady state as well as in dynamic process.
Furthermore, the average switching frequency of the proposed
method is even lower than the conventional SMC and other
controllers. Further research will be initiated for real-time
implementation.
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