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Abstract—Field oriented control, with an outer speed loop
and inner current loops, has been the most common control
strategy for multiphase drives. For the inner current control,
the proportional-integral pulse-width modulation and finite-
control-set model predictive control have been the most analyzed
implementations. The present work proposes an alternative for
the inner current control based on the modified super-twisting
algorithm with time delay estimation. Simulation results were
carried out to verify the performance of the proposed robust
control strategy for a five-phase induction motor drive. A stability
analysis is also presented.

Index Terms—Super-twisting algorithm, time delay estimation,
multiphase induction machine, speed control, current control,
field oriented control.

I. INTRODUCTION

Multiphase drives have been selected as a real competitor of
the traditional three-phase drives for high-power and reliable
applications such as wind energy generation systems and elec-
tric vehicles [1]–[3]. Most of the control strategies applied for
multiphase drives are an extension of the three-phase case such
as proportional-integral pulse-width modulation (PI-PWM),
proportional-resonant (PR), finite-control-set model predictive
control (FCS-MPC), predictive torque control (PTC), direct
torque control (DTC), sensorless, among others [4]–[10].
Recent works also extends the above-mentioned techniques
to the post-fault operation [11]–[14]. However, little attention
has been paid to robust controllers based on fuzzy logic or
sliding mode control (SMC) strategies [15].

Nowadays, SMC is one of the robust proposed nonlinear
controllers based on high gain switching controller that forces
the system trajectory to converge to a user-chosen surface [16].
However, to ensure robustness, the switching gain should be
larger than uncertainties that are assumed to be bounded.
Therefore, the choice of an excessive switching gain causes
the well-known chattering phenomenon [17], [18]. This phe-
nomenon has a negative impact on the actuators of the system
and can deteriorate the controlled systems if the control has a
physical sense.

To overcome this phenomenon, the most famous proposed
method is higher order sliding mode (HOSM) [19], [20].
Since introduced, many algorithms have been proposed to
improve the HOSM control such as twisting algorithm, sub-
optimal algorithm, global algorithm, super-twisting algorithm

(STA) and others [20]–[22]. However, all these algorithms
except STA, increase the required measurements which make
the implementation difficult. The STA has provided good
results [23], [24] without a prior knowledge of the values
of the state derivatives. However, this technique requires the
knowledge of the uncertainties. These bounds are overesti-
mated which make the choice of the gains too large.

Motivated to deal with all these problems, this work
proposes a combination of STA and time delay estimation
(TDE) [25]. Although, TDE has a very simple structure, its
effectiveness has been demonstrated through many applica-
tions [26], [27]. TDE provides an estimation of uncertainties
and disturbances by observing the inputs and the states of the
system one step into the past while STA will be used to ensure
finite-time convergence of the sliding surface to zero and to
reduce chattering.

In this paper, STA with TDE is proposed for the inner
current control loop of a rotor field oriented control (RFOC) of
a five-phase induction motor (IM) drive. The rest of the paper
is organized as follows. Section II presents the mathematical
model of the system while controller design is explained in
Section III. Simulation results are provided in Section IV.
Section V draws some conclusions.

II. MATHEMATICAL MODEL OF FIVE-PHASE IM

The considered system consists of a symmetrical five-phase
IM drive fed by a five-phase converter as depicted in Fig. 1.
Its mathematical model can be found in [6]. This continuous-
time system can be defined by a set of differential equations
given by:

Ẋ1(t) = A1X1(t) +H1X3(t) +B1U1(t) (1)

Ẋ2(t) = A2X2(t) +B2U2(t) (2)

Ẋ3(t) = A3X1(t) +H3X3(t) +B3U1(t) (3)

Y (t) = [X1(t), X2(t)]
T
. (4)

The stator is and rotor ir currents are selected as state
variables in the α − β and x − y sub-spaces as follows:
X1(t) = [isα, isβ ]

T , X2(t) = [isx, isy]
T and X3(t) =

[irα, irβ ]
T . The stator voltages are the input vectors defined



as: U1(t) = [usα, usβ ]
T and U2(t) = [usx, usy]

T while the
rest of matrices are defined as follows:

A1 =

[
−Rs Lr

Ls Lr−M2 M M
Ls Lr−M2 ωr

−M M
Ls Lr−M2 ωr −Rs Lr

Ls Lr−M2

]
(5)

H1 =

[
Rr

M
Ls Lr−M2 Lr

M
Ls Lr−M2 ωr

−Lr M
Ls Lr−M2 ωr Rr

M
Ls Lr−M2

]
(6)

A2 =

[
−Rs 1

Lls
0

0 −Rs 1
Lls

]
(7)

A3 =

[
Rs

M
Ls Lr−M2 −M Ls

Ls Lr−M2 ωr
M Ls

Ls Lr−M2 ωr Rs
M

Ls Lr−M2

]
(8)

H3 =

[
−Rr Ls

Ls Lr−M2 −Lr Ls

Ls Lr−M2 ωr
Lr

Ls

Ls Lr−M2 ωr −Rr Ls

Ls Lr−M2

]
(9)

B1 =

[
Lr

Ls Lr−M2 0

0 Lr

Ls Lr−M2

]
(10)

B2 =

[ 1
Lls

0

0 1
Lls

]
(11)

B3 =

[
− M
Ls Lr−M2 0

0 − M
Ls Lr−M2

]
(12)

where Rs and Rr are the stator and rotor resistances, respec-
tively. The inductances are represented by Ls = Lls + 3 Lm
for the stator and Lr = Llr + 3 Lm for the rotor being
Lls and Llr the stator and rotor leakage inductances, Lm the
magnetizing inductance and M is the mutual inductance. The
rotor electrical speed ωr and the rotor mechanical speed ωm
are related ωr = p ωm, being p the number of pole pairs.
The following Clarke matrix T1 is used to convert the phase
variables in the α−β, x−y and z sub-spaces with ϑ = 2π/5:

T1 =
2

5


1 cos(ϑ) cos(2ϑ) cos(3ϑ) cos(4ϑ)
0 sin(ϑ) sin(2ϑ) sin(3ϑ) sin(4ϑ)
1 cos(2ϑ) cos(4ϑ) cos(ϑ) cos(3ϑ)
0 sin(2ϑ) sin(4ϑ) sin(ϑ) sin(3ϑ)
1
2

1
2

1
2

1
2

1
2

 .

(13)

The generated electromagnetic torque is related to α − β
sub-space as shown in the following equation:

Te =
5

2
p M (irβisα − irαisβ) (14)

while the x− y components are related to the copper losses.
The rotor electrical speed has a relationship with torque as
follows:

Jm ω̇r +Bm ωr = p (Te − TL) (15)

being Bm and Jm the friction and the inertia coefficient,
respectively, and TL the load torque.

Then, by using another transformation matrix T2 the α− β
sub-space components are transformed in the dynamic com-
ponents d− q:

T2 =

[
cos (δr) −sin (δr)
sin (δr) cos (δr)

]
(16)

where δr is the rotor angular position referred to the stator.

III. CONTROLLER DESIGN

A. Outer Control Loop

The aim of the outer loop is to control the speed. To that end,
a PI controller with a saturator is used due to its simplicity.
For the outer loop, the PI speed controller is selected to obtain
the dynamic reference current i∗qs. Then, the process of the slip
frequency (ωsl) estimation is executed in the same way as the
indirect RFOC methods, from the reference currents (i∗ds, i

∗
qs)

in the dynamic reference frame and the electrical parameters
of the five-phase IM.

B. Inner Control Loop

The aim of the inner loop is to control the stator currents.
To that end, in the first part, a modified STA will be designed
to force the stator current in the α− β sub-space to converge
to their desired references in finite-time with high accuracy
even in presence of unmeasurable states (i,e. rotor currents).
In the second part, the classical STA will be used to control
the stator current in the x− y sub-space due to its simplicity,
its robustness and its finite-time convergence.

1) Control of Stator Current in α − β Sub-Space: To
quantify the control objective, let Xd

1 (t) = i∗sφ(t) ∈ R2

to be the desired trajectory with φ ∈ {α, β} and eφ(t) =
X1(t) −Xd

1 (t) = isφ(t) − i∗sφ(t) ∈ R2 be the tracking error.
Now, let us select the sliding surface [16] to be the error
variable as:

σφ(t) = eφ(t). (17)

Then, the time derivative of σφ(t) is calculated as follows:

σ̇φ(t) = ėφ(t) = Ẋ1(t)− Ẋd
1 (t)

= A1X1(t) +H1X3(t) +B1U1(t)− Ẋd
1 (t).

(18)

The standard form of STA in [28] is expressed as:

σ̇φ(t) = −Γ1Λ(σφ(t)) sign(σφ(t)) + ξ(t)

ξ̇(t) = −Γ2 sign(σφ(t))
(19)

where Λ(σφ(t)) = diag
(
|σφ,1(t)|0.5, |σφ,2(t)|0.5

)
, Γ1 =

diag(Γ11,Γ12) and Γ2 = diag(Γ21,Γ22) are diagonal posi-
tive matrices where the coefficients will be fixed later and
sign(σφ(t)) = [sign(σφ,1(t)), sign(σφ,2(t))]

T with:

sign(σφ,i(t)) =

 1, if σφ,i(t) > 0
0, if σφ,i(t) = 0
−1, if σφ,i(t) < 0

(20)

By resolving (19) using (18), the control input is obtained
as:

U1(t) = −B−1
1

[
A1X1(t) +H1X3(t)− Ẋd

1 (t)
]

+B−1
1 [−Γ1Λ(σφ(t)) sign(σφ(t)) + ξ(t)] .

(21)

Since the states X3(t) are not measurable, the control
performance will be affected. Then, assuming that the unmea-
surable states are slow varying during a small L period of
time, X3(t) can be estimated using TDE method [25], [27]
as:

X̂3(t) = H−1
1

[
Ẋ1(t− L)−A1X1(t− L)−B1U1(t− L)

]
(22)
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Fig. 1. Block diagram of the proposed speed control based on RFOC technique and the modified STA for the inner current control.

where L is the estimation time delay. Clearly the accuracy of
X̂3(t) improves as L decreases. In practice, the smallest pos-
sible value of L is the sampling time period. The time delayed
Ẋ1(t− L) can be obtained by the following approximation:

Ẋ1(t− L) =
1

L
[X1(t− L)−X1(t− 2L)] (23)

Theorem 3.1: The proposed modified STA for the stator
current in α− β sub-space (1) is given by:

U1(t) = U1(t− L)−B−1
1 A1 (X1(t)−X1(t− L))

−B−1
1

[
Ẋ1(t− L)− Ẋd

1 (t)− ξ(t)
]

−B−1
1 Γ1Λ(σφ(t)) sign(σφ(t))

(24)

where the gains Γ1i and Γ2i for i = 1, 2 satisfy:

Γ1i > 2, Γ2i >
Γ3
1i + 4δ2i (Γ1i − 2)

4(Γ2
1i − 2Γ1i)

(25)

with δi > 0. In addition, the proposed controller ensures the
convergence of the sliding surface σφ(t) to zero in a finite-time
Tc smaller than:

Tc,max = 2

√
λmax{P}
λmin{Q}

V
1
2 (η(0)) (26)

Proof. Substituting the calculated control input in (24) in
the stator current system (1) leads to:

σ̇φ(t) = −Γ1Λ(σφ(t)) sign(σφ(t)) + ξ(t)

ξ̇(t) = −Γ2 sign(σφ(t)) + ε̇(t)
(27)

where ε(t) = H1[X3(t)−X̂3(t)] is the TDE error. Now, let us
decompose the above closed-loop error dynamics into 2 sub-
systems as:

σ̇φ,i(t) = −Γ1i|σφ,i(t)|0.5 sign(σφ,i(t)) + ξi(t)

ξ̇i(t) = −Γ2i sign(σφ,i(t)) + ε̇i(t).
(28)

Then, for the stability analysis, the following Lyapunov
function in quadratic form is selected [28]:

V (t) = ηT (t)Pη(t) (29)

where η(t) = [η1i(t) η2i(t)]
T with η1i(t) =

|σφ,i(t)|0.5sign(σφ,i(t)) and η2i(t) = ξi(t) and P is a

positive definite symmetric matrix. Except at σφ,i = 0, the
selected Lyapunov function is continuous and differentiable,
definite positive and radially bounded by choosing P as:

P =
1

2

[
Γ2
1i + 4Γ2i −Γ1i

−Γ1i 2

]
(30)

One has:

λmin{P}‖η(t)‖22 ≤ V (t) ≤ λmax{P}‖η(t)‖22 (31)

with λmin{P} and λmax{P} denote respectively the minimum
and maximum eigenvalues of P and ‖η(t)‖22 is the Euclidiean
norm of η(t). Therefore, the time derivative of V (t) is calcu-
lated as:

V̇ (t) = η̇T (t)Pη(t) + ηT (t)P η̇(t) (32)

where η̇(t) = [η̇1i(t), η̇2i(t)]
T with:

η̇1i(t) =
1

2|σφ,i(t)|0.5
σ̇φ,i(t), and η̇2i(t) = ξ̇i(t). (33)

Notice that |η1i(t)| = |σφ,i(t)|0.5. Then, η̇(t) is given by:

η̇(t) =
1

|η1i(t)|
(
Aη(t) +Bε̇i(t)|η1i(t)|

)
(34)

where:

A =

[
− 1

2Γ1i
1
2

−Γ2i 0

]
, B =

[
0
1

]
(35)

Substituting η̇(t) in V̇ (t) leads to:

V̇ (t) =
1

|η1i(t)|
ηT (t)

(
ATP + PA

)
η(t)

+
2ε̇i(t)

|η1i(t)|
|η1i(t)|BTPη(t).

(36)

Otherwise, assuming that the time derivative of TDE error
is bounded |ε̇i(t)| ≤ δi with δi > 0. Then:

2ε̇i(t)|η1i(t)|BTPη(t)

≤ ε̇2i (t)|η1i(t)|2 + ηT (t)PBBTPη(t)

≤ δ2i ηT (t)CTCη(t) + ηT (t)PBBTPη(t)

(37)



where C = [1 0]. Finally, using (36) and (37), one has:

V̇ (t) ≤ − 1

|η1i(t)|
ηT (t)Qη(t) (38)

where Q is calculated as follows:

Q = −(ATP + PA+ δ2iC
TC + PBBTP )

=

[
1
2Γ3

1i − 1
4Γ2

1i + Γ1iΓ2i − δ2i ?
− 1

2 (Γ2
1i − Γ1i)

1
2Γ1i − 1

]
(39)

where ? = − 1
2 (Γ2

1i − Γ1i). Using the gains in (25), the
conditions given in [29] are held:

1

2
Γ1i − 1 > 0, det(Q) > 0 (40)

As the conditions above are held, the obtained Q is symmetri-
cal positive definite. Therefore, V̇ (t) is negative definite. Then:

V̇ (t) ≤ − 1

|η1i(t)|
λmin{Q}‖η(t)‖22 (41)

where λmin{Q} is the minimum eigenvalue of Q. From this
above analysis, the stability of the closed-loop is proven.

Now, let us recall (31) and (38) to prove the finite-time
convergence. In a first part, using (31) gives:

V
1
2 (t)

λ
1
2
max{P}

≤ ‖η(t)‖2 ≤
V

1
2 (t)

λ
1
2

min{P}
(42)

In the other part, as |η1i(t)| ≤ ‖η(t)‖2, so using (38) and the
above equation gives:

V̇ (t) ≤ − 1

‖η(t)‖2
λmin{Q}‖η(t)‖22 ≤ −

λmin{Q}

λ
1
2
max{P}

V
1
2 (t) (43)

According to the equation above, the maximum convergence
time of the sliding surface can be set as in (26). This concludes
the proof.

2) Control of Stator Current in x − y Sub-Space: A
complete study of classical STA theory can be found in [28].
In this section, a brief presentation of its basic theory to control
the stator current in the x − y sub-space will be given. The
sliding surface here is selected as:

σxy(t) = exy(t) = X2(t)−Xd
2 (t) (44)

where Xd
2 (t) = [i∗sx(t), i∗sy(t)]T denotes the desired currents

and exy(t) represents the tracking error. Therefore, the time
derivative of σxy(t) is:

σ̇xy(t) = ėxy(t) = Ẋ2(t)− Ẋd
2 (t)

= A2X2(t) +B2U2(t)− Ẋd
2 (t)

(45)

The expression of the classical STA [28] is given by:

σ̇xy(t) = −K1Λ(σxy(t)) sign(σxy(t)) + π(t)

π̇(t) = −K2 sign(σxy(t))
(46)

where Λ(σxy(t)) = diag
(
|σx(t)|0.5, |σy(t)|0.5

)
, K1 =

diag(k11, k12) and K2 = diag(k21, k22) are diagonal positive
matrices and sign(σxy(t)) = [sign(σx(t)), sign(σy(t))]

T .
Then, the control input is obtained by resolving (46)

using (45).

Theorem 3.2: The classical STA for the stator current in the
x− y sub-space (2) is given by:

U2(t) = −B−1
2

[
A2X2(t)− Ẋd

2 (t) + π(t)
]

−B−1
2 K1Λ(σxy(t)) sign(σxy(t))

(47)

Moreover, all current trajectories converge in finite-time to
their desired references, in a time smaller than:

Tc1,max =
2V

1
2 (0)

γ
(48)

where γ is a constant depending on the gains K1 and K2.
Proof. Refer to [28].

IV. NUMERICAL SIMULATION

A MATLAB/Simulink simulation program has been de-
signed for a five-phase IM in order to prove the effectiveness
of the proposed modified STA. Numerical integration using
first order Euler’s discretization method has been applied to
compute the evolution of the state space variables in the time
domain. The electrical and mechanical parameters of the five-
phase IM are detailed in Table I.

(a)

(b)

(c)

Fig. 2. Simulation results for a fixed speed reference ω∗
r of 100 rpm and a

reversal Speed tracking condition (a) ωr tracking, (b) isα tracking and (c)
isβ tracking.



TABLE I
ELECTRICAL AND MECHANICAL PARAMETERS OF THE FIVE-PHASE IM

PARAMETER VALUE PARAMETER VALUE
Rr (Ω) 6.77 M (mH) 656.5
Rs (Ω) 19.45 Nominal Speed (rpm) 1 000
Llr (mH) 100.7 Nominal Power (kW) 1
Lls (mH) 38.06 p 3

Bm (Nms/rad) 0.0221 Jm (Kg-m2) 0.109

In this simulation, a sampling frequency of 10 kHz, a torque
load of 2 Nm when ωr = 100 rpm and 0 Nm when ωr = −100
rpm and a fixed d current (i∗ds = 2.5 A) have been used. The PI
gains are chosen to be Kp = 9.18 and KI = 0.27. In addition,
the gains of the modified STA used for stator currents tracking
in α− β sub-space are:

Γ1 = diag(15, 15), Γ2 = diag(3, 3)

While the gains of the STA used for stator currents tracking
in x− y sub-space are:

K1 = diag(10, 10), K2 = diag(2, 2)

The behavior of the stator currents in the α− β and x− y
sub-spaces are shown in Fig. 2 and Fig. 3, respectively. The
controllers used ensures high accuracy tracking of the system
currents to their desired references in a finite-time. In the case
of the stator currents in the α − β sub-space, this is thanks
to a good estimation of the unmeasurable rotor currents and
disturbances.

(a)

(b)

Fig. 3. Simulation results of x − y stator currents and their references: (a)
isx and tracking and (b) isy tracking.

Then, the simulation results of the dynamic performance
using the proposed method are shown in Fig. 4. In this test,
the q stator current reference i∗qs is varying according to a

(a)

(b)

Fig. 4. Simulation results of d− q currents and their references: (a) ids and
tracking and (b) iqs tracking.

step profile. The measured d − q stator currents follow with
high accuracy their desired references, which confirms that the
proposed controller works well at different mechanical speed
and during transient states.

Furthermore, it can be seen that the control inputs in the
α− β are smooth and the chattering phenomenon is reduced
as depicted in Fig. 5.

Fig. 5. Simulation results of control input reference in the α− β sub-space.

V. CONCLUSION

In this paper, a speed control based on RFOC strategy with
an inner STA with TDE current control is proposed. One



of the main advantages of the proposed method is that the
unmeasurable currents are estimated simply and effectively
using TDE method while the STA provides smooth control
inputs and eliminates the hard nonlinearities caused by TDE
error. The efficiency of the proposed method is confirmed
by numerical simulations. The proposed controller provides
excellent performances in steady state as well as in dynamic
process. Furthermore, the average switching frequency of the
proposed method is even lower than the conventional SMC and
other controllers. Further research will be initiated for real-
time implementation and for the extension of the theoretical
part to other n-phase IMs.
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