
Flight Controller Optimization of Unmanned Aerial Vehicles using a Particle
Swarm Algorithm

Nicolas Gomez1, Victor Gomez1, Enrique Paiva1, Jorge Rodas1 and Raul Gregor1

Abstract— In this paper, a simultaneous calibration algorithm
of the parameters of the attitude and altitude control for an
unmanned aerial vehicle (UAV) is proposed. The algorithm
is based on the multi-objective particle swarm optimization
(MOPSO) technique. This algorithm is implemented by using
the free PX4 software for the Pixhawk2 controller. The behavior
of the UAV is simulated given its physical characteristics by
means of a non-linear model and a search of the controller
parameters. This latter is based on a proportional (P) position
controller in cascade with a proportional-integral-derivative
(PID) speed controller of its height and each one of its Euler
angles. To perform this search, the PID gains Kp1, Kp2, Ki and
Kd of each of the degrees of freedom are used to define vectors
considered particle positions by the MOPSO algorithm, which
moves them through a search space to find sets of optimum
values according to Pareto, or the Pareto Front. The search is
carried out based exclusively on Pareto dominance concepts,
comparing parameters of step responses (overshoot, rise time,
root-mean-square error) of each of the degrees of freedom. In
order to show the efficiency of the proposal, simulation results
are provided by using the calibration methodology obtaining
good results.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) usually have on-board
computers that are used to stabilize and guide their flight.
This latter is controlled by radio frequency by using a
manual controller, a pre-defined trajectory or an algorithm to
accomplish specific tasks. The range of possible applications
presented by the UAVs is broad, for the ease they offer when
it comes to reaching places of difficult or dangerous access
for human beings, due to the height or hostile conditions of
the environment [1]. Moreover, UAVs have attracted as well
the control and automation community, which has to lead to
new controller development [2]– [5].

Today, there are a huge number of companies that
develop UAVs. This is one of the main reason why its
cost decrease progressively. In addition, there are several
communities dedicated to the collaborative development of
free software and hardware for personal, commercial, and
research applications of the UAVs. One of the control
devices that arise from these communities is the well-known
Pixhawk2, which uses the free PX4 autopilot software. This
device is a low-cost controller that has great support from
the open-source community and it is applicable to different
types of UAVs. One issue that has to be taken into account

1Nicolas Gomez, Victor Gomez, Enrique Paiva, Jorge Rodas and Raul
Gregor are with the Laboratory of Power and Control Systems, Facultad
de Ingenierı́a, Universidad Nacional de Asunción, Luque, Paraguay.
ni co182@hotmail.com, sebasg7@gmail.com,
engapaga222@hotmail.com, jrodas@ing.una.py,
rgregor@ing.una.py

to use the PX4-based controller is that it must be calibrated
first. The PX4 has a proportional-integral-derivative (PID)
controller for its attitude and altitude control that comes
as default in its firmware. This controller is commonly
calibrated with an automatic calibration algorithm (autotune)
for proper operation, with the necessity of a fine-tuning
performed empirically [6]– [8].

Automatic calibration requires a flight test, with a prepared
custom field needed for this end. Such calibration is
normally performed outside, resulting in the risk of the UAV
destabilizing in flight and ending up crashing due to wind or
other perturbations. In addition to all this, since a subsequent
manual calibration is necessary, the entire task can take a
long time, arising the possibility of depleting the UAV battery
charge only in its calibration.

In order to offer an alternative to the above-mentioned
issue, this paper proposes and implements a PID calibration
algorithm based on the multiple objective particle swarm
optimization (MOPSO) for Px4-based UAVs. A similar study
has been proposed in [9] to obtain the parameters of the
attitude controller of a UAV using a linearized simulation of
the UAV plant. The optimization was carried out by reducing
a single objective function composed of a weighted sum
of the objective values in each axis of the UAV’s attitude.
The objectives considered in each axis were the overshoot,
the steady-state error, and the difference of settlement time
with rising time. However, in this work, a nonlinear model
will be used for plant simulation. In addition, the proposed
optimization method will not consider a weighted sum of
the objective values, since this has as a disadvantage the
prioritization of some of the objective values only, making
it difficult to obtain the best values for all of the considered
objectives.

This paper takes as a starting point [10], [11] to
theoretically perform the tuning PID procedure for a
quadrotor UAV. Obtained simulation results are based on a
commercial FlameWheel F450 brand quadcopter.

II. MATHEMATICAL MODEL

A. Descriptive equations of the model

The system of interest in this paper is the quadrotor.
The model that describes the system is characterized for
being nonlinear. The system has, in total, 12 states that
are described next. Three position states (“north” pn, “east”
pe, “down” pd), aligned with inertial frame of reference.
In addition, three linear velocity states (u, v, w) and three
angular velocity states (p, q, r) aligned with the body frame.
At last, three angular position states (“roll” φ, “pitch” θ,



“yaw” ψ), aligned with the vehicle reference frame. The
equations that represent a generic UAV [12] can be described
as follows:

ṗnṗe
ṗd

=
cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


uv
w

 (1)

u̇v̇
ẇ

 =

r v − q wpw − r u
q u− p v

+ g

−sθcθ sφ
cθ cφ

− 1

m

00
f

 (2)

φ̇θ̇
ψ̇

 =

1 sφ sθ/cθ −cφ sθ/cθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


pq
r

 (3)

ṗq̇
ṙ

 = I−1
pq

r

× I

pq
r

+

τφτθ
τψ

 (4)

where cx = cos(x) and sx = sin(x). m, g and I denote
the total mass of the UAV, the acceleration of gravity and
the inertia matrix, respectively. τ = [ τφ, τθ, τψ ]T denotes
the total external moments applied and is obtained from
(7). By using the UAV’s geometry represented in Fig. 1,
the total thrust f can be computed as f1 + f2 + f3 + f4.
The torque values τ1 and τ2 are computed according to
the axes’ directions in Fig. 2. This corresponds to (5)-(7),
where d denotes the UAV diameter and mi denotes the
torque generated by each propeller. Aerodynamic forces are
considered perturbations of the system, since they have small
influence compared to the ones produced by the motors and
the mass of the UAV.

Fig. 1. Position of each rotor of the quadrotor.

Fig. 2. Quadrotor orientation.

τφ1τθ1
τψ1

 =
d

2


−
√
2

2

√
2

2

√
2

2
−
√
2

2√
2

2

√
2

2
−
√
2

2
−
√
2

2
0 0 0 0



f1
f2
f3
f4

 (5)

τφ2τθ2
τψ2

 =

 0
0

−m1 +m2 −m3 +m4

 (6)

τφτθ
τψ

 =

τφ1τθ1
τψ1

+

τφ2τθ2
τψ2

 (7)

B. Determination of UAV body parameters

UAV’s mass was found by using a scale and is m =
1.3240 kg. The diameter d of the UAV is 46.7 cm . Since the
UAV is highly symmetrical, it is assumed that the moment
of inertia tensor I is diagonal. The moment of inertia of a
UAV from its center of gravity with respect to its axes of
rotation can be measured with the bifilar pendulum method,
described in [13]. To identify the main diagonal of the UAV
inertia tensor, at least three tests must be done along the
axes of Ix (roll), Iy (pitch) and Iz (yaw). The results so
obtained were Ix = 0.0124 kg m2, Iy = 0.0130 kg m2 and
Iz = 0.0237 kg m2.

C. Determination of UAV propulsive parameters

Due to the low speed of the incident wind in each
motor in a multicopter, and the high speed of response of
the motors, it was decided to perform a relatively simple
function to determine the thrust and torque produced by
each motor based on the value of the duty cycle Xi of
the pulse-width-modulated signals of each motor. These
functions, shown in (8) and (9), have a polynomial form.
Where fi and mi are the nth grade polynomial functions of
the thrust in N and torque in N m respectively with respect
to the Xi ∈ [1000, 2000]. In this work, n = 5 is considered.

fi =

k=n∑
k=0

Xk
i P

k
t (8)

mi =

k=n∑
k=0

Xk
i P

k
m (9)

These functions are obtained through a series of tests
of each motor in which several points are obtained, after
which a polynomial approximation is made to obtain the
coefficients P kt and P km.

Four thrust and torque tests have been carried out on each
of all four motor-propeller pairs of the UAV. In each test, 20
operating points were extracted. After that, an average of the
values obtained at each working point of the tests carried out
in each motor-propeller pair have been made. After obtaining
these averages, a polynomial regression was made with the
order n specified above, obtaining the coefficients of the
polynomials that define the functions fi and mi respectively.



The polynomials obtained for the thrust and torque with this
method are:

Pt = [−2.315−14, 1.680−10,−4.860−7, 0.001,−0.505, 143],

Pm = [−3.32−16, 2.41−12,−7.01−9, 1.02−5,−0.007, 2.07].

D. Studied controller

Fig. 3 shows the PX4 attitude control structure [6]. It
consists of a control block of the Euler angles of P-type
in closed-loop, in cascade with an angular velocity control
of the PID-type in closed-loop.

The altitude control is analogous to the attitude one,
although a constant “hovering thrust control” value is added
to the output of this controller. That thrust control value
is such that the UAV could fly without acceleration on the
altitude axis when this controller has a zero output. For this
work, the hovering thrust control value is held with its default
value. All controllers operate at the same time in parallel. The
input reference are the desired Euler’s angles in degrees and
the altitude in meters, as well as the rate of change of every
one of them in degrees per second and meters per second,
respectively. The control efforts are the moments in each
direction that, after being projected to the body frame, are
used to find the thrust of each motor-propeller pair. The gain
values Kp1, Kp2, Ki and Kd are the control parameters to be
optimized for each controller in this paper by using MOPSO
algorithm. As there are 4 degrees of freedom (roll, pitch,
yaw, and vertical thrust), there are a total of 16 parameters.

E. Quadrotor UAV modelling test

For comparison of the modeled and real-life UAV
behaviors, a series of flights of the UAV where made
to manually find proper roll axis P-PID controller values.
Because all of the attitude and altitude controllers were not
calibrated, the UAV could crash just before takeoff. For this
reason, the UAV was held by a pair of wires that prevented
the device to make pitch axis, yaw axis, lateral and up-down
movements. The determined parameters for the roll controller
were Kp1φ = 9.5611, Kp2φ = 0.3727, Kiφ = 0.1812 and
Kdφ = 0.0064.

After determining good parameters for the roll axis
controller and the obtained inertia and propeller-motor
parameters, a simulation for the roll axis behavior was made
in the Simulink © platform from MATLAB ©. As is shown in
Fig. 4, both of the simulation and real UAV roll axis behavior
are very similar in the rise time.

Fig. 3. Structure of the PX4 attitude controller [6].

0 0.5 1 1.5 2
0

10

20

30

40

Setpoint
Simulation
Flight Test

Fig. 4. UAV movement in the roll axis comparison.

III. CONTROL PARAMETERS OPTIMIZATION

A. Pareto dominance

In a multi-objective optimization problem D objectives
yi = fi(x), where i = 1,· · · ,D; have to be optimized, and
each objective depends of a vector x of K parameters
of decision variables. A decision vector u is said
to strictly dominate another vector v if fi(u) <fi(v)
∀i = 1,2,3,· · · ,D; furthermore u weakly dominates v if
fi(u) ≤ fi(v) ∀i = 1,· · · ,D.

The locus of the non-dominated vectors relative to a
specific problem is known as the Pareto Front of said
problem, these vectors are known as Pareto Optimals.

B. PSO description

The PSO algorithm is a stochastic metaheuristic method
proposed in [14]. It was inspired in the social behavior of
animals, where has been noticed an influence of the behavior
of a swarm on the individuals of such. These interactions
offer a benefit to the search capability of every member of
the swarm and give, in general, good control of the trade-off
between convergence speed and exploration capability. In the
PSO algorithm, each particle xn in the swarm of N particles
has a velocity of vn, which determines its location in the
next iteration according to:

x(t+1)
n = x(t)n + χv(t)n + ε(t) (10)

where χ ∈ [0,1] is a constraint value that limits the
magnitude of the velocity of every particle and ε is a
stochastic vector in charge of increasing the exploitability
of the swarm, and it is known as the turbulence factor. The
velocity vn of each particle is modified so that these fly
towards their personal best Pn, in order to exploit the best
results obtained by the particle until that moment, and the
global best G, the best particle found by the whole swarm,
to obtain an exchange of information between the particles.
The concept of optimization (best) is established by a fitness
function f(xn). All of this is accomplished by updating the
velocity vector in the following way:

v(t+1)
n = wv(t)n + r1c1(Pn − x(t)n ) + r2c2(G− x(t)n ) (11)

where r1 and r2 are random uniformly distributed numbers
in the range of [0 1], c1 and c2 are control values



for establishing the influence of the global and personal
bests. Finally, w is a faction known as inertia, which
controls the trade-off relationship between convergence and
exploitability.

C. MOPSO description

The main difficulty in extending the PSO to multiple
objective problems is the choice of the best guides for
the swarm. One approach is to establish a single cost
function equal to a weighted sum of the different objectives
to be achieved [9]. In these cases, there is very little
control over the trade-off relationship between the different
objectives and there are great possibilities of falling to
local minimums. Therefore, as with other multi-purpose
algorithms, the concept of Pareto Optimals is used as the
fitness function for the algorithm, so that the user can choose
a desirable solution from the Pareto Front thus ensuring that
it is optimal. This has shown good results in previous works
[10], [15], [16]. As a consequence, that method was chosen
for the present work. A repository A of non-dominated
particles constitutes the Pareto front, and this repository is
consulted for the selection of global guides for each particle,
using the “SHR” and “PROB” methods described in [10] for
keeping the particles in the search space and for selecting the
best global guides respectively. In SHR, assuming that the
k-th component of a particle xn exceeds its corresponding
boundary U , the magnitude of vn is shrunk according to:

x(t+1)
n = x(t)n + σ(χv(t)n + ε(t)) (12)

with

σ =
x(t)
nk − U

χv(t)nk + εk
(13)

so that the particle arrives exactly at the limit of the search
space. In PROB, for each particle xn a global guide is chosen
among the particles of A that dominate xn. Then, the guide
is chosen randomly with a probability function proportional
to the inverse of the number of particles of the swarm that
are dominated currently by those particles. In case that xn
belongs to A, a particle of A is chosen randomly with the
same probability function as before.

D. Optimization procedure

To evaluate the tuning performance of the proposed
algorithm, the UAV and its controller were simulated by
using its model and the controller shown in Fig. 3. In order
to run the MOPSO algorithm, the script needs the following
three inputs: (1) the mass m of the UAV, (2) the moment of
inertia I of the UAV, and (3) the torque and thrust responses
of the propellers. Furthermore, the number of particles N ,
the number of generations G, the control factors c1, c2 and
w, the velocity constraint value χ and the boundaries of the
search space U have to be defined as well.

The UAV starts from standstill in every degree of freedom.
Then, the MOPSO algorithm analyzes the step response of
the UAV. The proposed PID tuning procedure is run once for
all four axes to obtain its corresponding tuned parameters.

The parameter search program can be summarized by the
pseudocode shown in Algorithm 1, where X is the set
of all the particles whose number is defined beforehand,
and V are the correspondent velocities of these particles.
After the parameter search is ended, the program will
display the choiced parameters according to the pre-defined
criteria. The values so obtained are then manually loaded
to the UAV through programs such Mission Planner© or
QGroundControl© open-source software suites.

Algorithm 1 Proposed MOPSO algorithm.
G,N, c1, c2, w, χ← define {Assign values to the control
factors.}
X,V,Pbn,Gb ← initialize() {Randomly initialize
particles and their velocities}
A← ∅ {Initially empty archive}
while t ≤ G do

while n ≤ N do
ε← random {Update turbulence factor}
Update v(t)n with (11) and x(t)

n with (10).

if x(t)n exceeds a boundary then
Enforce constraints with (12) and (13)

end if
[Kp1φ,Kp2φ,Kiφ,Kdφ,Kp1θ,Kp2θ,Kiθ,Kdθ, ...
Kp1ψ,Kp2ψ,Kiψ,Kdψ,Kp1pd,Kp2pd,Kipd, ...

Kdpd] ← x(t)n {Use the position of the particle as the
parameters for a new PID controller.}
Simulate UAV with its new controller’s gains.

x(t)n ← [Oφ, RMSEφ, RTφ, Oθ, RMSEθ, RTθ, ...
Oψ, RMSEψ, RTψ, Opd, RMSEpd, RTpd]
{Overshoot (O), root-mean-square error (RMSE)
and rise-time (RT) are used as objectives, these are
obtained from the UAV simulation}
if u 6� x(t)n ∀u ∈ A then

A ← u ∈ A | x(t)n 6≺ u {Remove particles

dominated by x(t)n from A}
A← A ∪ x(t)

n {Add x(t)n to A}
end if
if x(t)n � Pbn ∨ (x(t)

n 6≺ Pbn ∧ Pbn 6≺ x(t)n ) then
Pbn ← x(t)

n {Update personal guide}
end if
Gb← Aj {Update global guide for the next particle.
Here, j is an index from A chosen randomly using
PROB (see Subsection III-C).}
n := n+ 1

end while
t := t+ 1

end while
Select one of the particles from A as the final tuning.



IV. OBTAINED RESULTS

The platform Matlab-Simulink was used to simulate the
UAV-PX4 system and implement the MOPSO algorithm,
using as particles the gains 0 ≤ Kp1φ ≤ 12, 0 ≤ Kp2φ

≤ 0.5, 0 ≤ Kiφ ≤ 0.2, 0 ≤ Kdφ ≤ 0.01, 0 ≤ Kp1θ ≤ 12, 0
≤ Kp2θ ≤ 0.6, 0 ≤ Kiθ ≤ 0.2, 0 ≤ Kdθ ≤ 0.01, 0 ≤ Kp1ψ

≤ 5, 0 ≤ Kp2ψ ≤ 0.6, 0 ≤ Kiψ ≤ 0.2, 0 ≤ Kdψ ≤ 0.1,
0 ≤ Kp1pd ≤ 1.5, 0.1 ≤ Kp2pd ≤ 0.4, 0.01 ≤ Kipd ≤ 0.1
and 0 ≤ Kdpd ≤ 0.1 of the attitude and altitude controllers,
thus having a 16-dimensional search space for the particle
swarm. The values of the boundaries are found in [17]. As
an objective vector, the overshoot (OS), rise time (RT) and
root-mean-square error (RMSE) were used for each degree
of freedom, with a total of 12 dimensions for the solution
space, where the Pareto front can be visualized.

The number of particles used in the present work was
24, with 90 generations (iterations). Furthermore, w = 0.5,
c1=1, c2=0.9 and χ=1 were used as search parameters. All
the mentioned PSO parameters were empirically chosen. To
avoid local minimums, in order to give place to occasional
big leaps for the particles, a perturbation using a Laplacian
distribution:

p(εk) ∝ e(−|εk|)/β,

with β = 0.1 has been used to define the components of
the turbulence factor [10]. For this work, 4 calibration tests
were made to test the repeatability and reliability of the
prposed algorithm. Figs. 5-7 show the obtained Pareto front
for the 4 axes. Note that the figures are related to OS, RT
and RMSE. The size of the particle represents the value of
control performance on the altitude axis.

For each pareto front, the particle with the smallest
value of the norm of the vector [RMSEφ, RMSEθ,
RMSEψ , RMSEpd] was selected. The behavior of the flight
controller was simulated for each particle seletected from the
callibration tests and its results are shown in Figs. 8-11 and
Table I. The four particles show a very good behavior in
all axes. The average computation time was 45 min. using
a computer with a Intel® CoreTM i7-4720HQ processor and
16 GB of DDR3-1600 RAM.

Fig. 5. Pareto front of the rise time of the 4 axis controllers.

Fig. 6. Pareto front of the overshoot of the 4 axis controllers.

Fig. 7. Pareto front of the root-mean-square error of the 4 axis controllers.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

Setpoint
MOPSO callibration No. 1
MOPSO callibration No. 2
MOPSO callibration No. 3
MOPSO callibration No. 4

Fig. 8. Roll axis step response for the 4 MOPSO callibration tests.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

Setpoint
MOPSO callibration No. 1
MOPSO callibration No. 2
MOPSO callibration No. 3
MOPSO callibration No. 4

Fig. 9. Pitch axis step response for the 4 MOPSO callibration tests.



0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

Setpoint
MOPSO callibration No. 1
MOPSO callibration No. 2
MOPSO callibration No. 3
MOPSO callibration No. 4

Fig. 10. Yaw axis step response for the 4 MOPSO callibration tests.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

Setpoint
MOPSO callibration No. 1
MOPSO callibration No. 2
MOPSO callibration No. 3
MOPSO callibration No. 4

Fig. 11. Altitude axis step response for the 4 MOPSO callibration tests.

TABLE I
OBTAINED CONTROL PERFORMANCE BASED ON SIMULATION RESULTS

Performance value Test 1 Test 2 Test 3 Test 4
OSφ 0.87 % 3.35 % 0.01 % 1.60 %
RTφ 0.37 s 0.33 s 0.40 s 0.47 s
RMSEφ 2.40 deg 2.32 deg 2.38 deg 2.65 deg
OSθ 0.88 % 0.36 % 7.45 % 1.18 %
RTθ 0.32 s 0.33 s 0.20 s 0.45 s
RMSEθ 2.33 deg 2.42 deg 2.22 deg 2.65 deg
OSψ 14.85 % 14.45 % 0.04 % 15.78 %
RTψ 0.41 s 0.42 s 0.83 s 0.45 s
RMSEψ 3.34 deg 3.48 deg 3.83 deg 3.57 deg
OSpd 0.01 % 0.01 % 0.01 % 0.01 %
RTpd 1.50 s 1.39 s 1.90 s 1.52 s
RMSEpd 0.68 m 0.66 m 0.73 m 0.70 m

V. CONCLUSIONS

In this paper, an offline tuning procedure for a commercial
Px4-based UAV based on particle swarm optimization
has been introduced. Since Px4-based UAV needs to
be calibrated before it can be used, a technique based
on MOPSO has been proposed. The simulation results
show good performance considering the optimization of
the overshoot, rise time and root-mean-square error of
step response of the P-PID controllers. Note that the
proposed method can be easily extended to other multirotor

configurations (i.e. hexacopter, octocopter, etc). A possible
direction for future work could be the online experimental
implementation of the MOPSO.

ACKNOWLEDGEMENTS

The authors would like to thank to the Consejo Nacional
de Ciencia y Tecnologı́a (CONACYT) research project
(PINV15-0136).

REFERENCES

[1] H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri,
and A. Tuncer, “UAV-enabled intelligent transportation systems
for the smart city: Applications and challenges,” IEEE
Communications Magazine, vol. 55, pp. 22–28, Mar. 2017 doi:
10.1109/MCOM.2017.1600238CM.

[2] Y. Kali, J. Rodas, R. Gregor, M. Saad, and K. Benjelloun,
“Attitude tracking of a tri-rotor UAV based on robust sliding
mode with time delay estimation,” in Proc. ICUAS, 2018, doi:
10.1109/ICUAS.2018.8453472.

[3] Y. Kali, J. Rodas, M. Saad, K. Benjelloun, M. Ayala, and R. Gregor,
“Finite-time altitude and attitude tracking of a tri-rotor UAV using
modified super-twisting second order sliding mode,” in Proc. ICINCO,
2018, pp. 445-452, doi: 10.5220/0006861904450452.

[4] E. Paiva, J. Rodas, Y. Kali, R. Gregor, and M. Saad,
“Robust flight control of a tri-rotor UAV based on modified
super-twisting algorithm,” in Proc. ICUAS, 2019, pp. 551-556, doi:
10.1109/ICUAS.2019.8797742.

[5] E. Paiva, M. Gómez, J. Rodas, Y. Kali, M. Saad, and R. Gregor,
“Cascade first and second order sliding mode controller of a
quadrotor UAV based on exponential reaching law and modified
super-twisting algorithm,” in Proc. RED UAS, 2019, pp. 100-105, doi:
10.1109/REDUAS47371.2019.89.

[6] N. Ortiz, E. Laroche, R. Kiefer, and S. Durand, “Controller tuning
strategy for quadrotor MAV carrying a cable-suspended load,” in Proc.
IMAV, 2016, pp. 1051-1056, doi: 10.1109/CEC.2002.1004388.

[7] D. Brescianini, M. Hehn, and R. D’Andrea, “Nonlinear quadrocopter
attitude control,” ETHZ, Zurich, Switzerland, Accessed: Jan. 16, 2020.
[Online]. Available: https://doi.org/10.3929/ethz-a-009970340.

[8] “Px4 tuning guide.” https://docs.px4.io/v1.9.0/en/config mc/
pid tuning guide multicopter.html (accessed Jan. 16, 2020).

[9] T. Mac, C. Copot, T. Duc, and R. De Keyser, “AR. drone UAV control
MOPSO tuning based on particle swarm optimization algorithm,” in
Proc. AQTR, 2016, pp. 1-6, doi: 10.1109/AQTR.2016.7501380.

[10] J. E. Alvarez-Benitez, R. M. Everson, and J. Fieldsend, “A MOPSO
algorithm based exclusively on pareto dominance concepts,” in Proc.
EMO, 2005, pp. 459-473, doi: 10.1007/978-3-540-31880-4 32.

[11] E. Paiva, M. Llano, J. Rodas, R. Gregor, J. Rodrı́guez-Piñeiro,
and M. Gómez, “Design and implementation of a VTOL flight
transition mechanism and development of a mathematical model
for a tilt rotor UAV,” in Proc. ICA-ACCA, 2018, pp. 1-6, doi:
10.1109/ICA-ACCA.2018.8609836.

[12] R. Beard and T. McLain, Small unmanned aircraft: Theory and
practice. Princeton, NJ, USA: PU Press, 2012.

[13] M. Krznar, D. Kotarski, P. Piljek, and D. Pavkovic, “On-line inertia
measurement of unmanned aerial vehicles using on board sensors and
bifilar pendulum,” INDECS, vol. 16, pp. 149–161, Jan. 2018.

[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
ICNN, 1995, pp. 1942-1948, doi: 10.1109/ICNN.1995.488968.

[15] C. Coello and M. Lechuga, “MOPSO: A proposal for multiple
objective particle swarm optimization,” in Proc. CEC, 2002, pp.
1051-1056, doi: 10.1109/CEC.2002.1004388.

[16] J. E. Fieldsend and S. Singh, “A multi-objective algorithm based
upon particle swarm optimization, an efficient data structure and
turbulence,” in Proc. UKCI, 2002, pp. 37 - 44, [Online] Available:
http://hdl.handle.net/10871/11690.

[17] “Px4 parameters.” https://dev.px4.io/v1.9.0/en/advanced/
parameter reference.html (accessed Jan. 16, 2020).


