Bias correction of global irradiance modelled with the Weather Research and Forecasting model over Paraguay

Angel Rincón¹, Oriol Jorba², Miguel Frutos¹, Leopoldo Alvarez³, Fernando P. Barrios¹ and <u>Juan A. González¹</u>

¹ Engineering Faculty, National University of Asuncion (FIUNA), Asuncion (Paraguay).
² Earth Sciences Department, Barcelona Supercomputing Center (BSC-CNS), Barcelona (Spain).
³ Department of I+D, Harmattan Solutions, Santa Cruz de Tenerife (Spain).

EuroSun 2016 Palma de Mallorca (Spain) 11 - 14 October 2016.

Topics outline

INTRODUCTION

METHODOLOGY

RESULTS

SUMMARY & CONCLUSIONS

Introduction: Solar Energy and Numerical Weather Prediction (NWP)

Increased contribution of solar energy to power generation sources.

Increase the reliability of available solar energy in the global energy participation.

NWP models simulate the earth-atmosphere system by solving fluid mechanics and thermodynamic equations in a nonlinear computing environment

Introduction: Model simulations of global solar irradiance (GHI)

Systematic errors for simulations of radiative transfer schemes

- 1. Miscalculation of location of the clouds and total cloud water content in the atmosphere;
- 2. Incorrect specification of the optical thickness of aerosols;
- 3. Decrease of atmospheric water vapor absorption for clear skies conditions.

 NWP models combined with statistical post-processing to reduce the systematic errors and satisfy the requirements of solar irradiance forecasting (Heinemann, 2006).

Methodology: Annual simulation of WRF-ARW meteorological model (v3.7.1/2015)

WRF-ARW model is run in hindcast mode over South American continent

• Initialization and boundary conditions are provided by Reanalysis DS090.0 (NCEP/NCAR, 1994).

The GHI hourly simulations consist of 365 daily runs to simulate the entire year 2015.

<u>Methodology:</u> Radiometric ground stations of PARAGUAY

FECOPROD agroclimatic network

Application of Quality control of the dataset (Roesch et al., 2011):

- 1. "Physically possible": detecting extremely large errors
- 2. "Extremely rare": error data in short time periods under very rare conditions.

<u>Methodology:</u> Solar irradiance evaluation of WRF-ARW model – 2015

GHI (W m⁻²)

Overestimation between 200 and 1000 W m⁻² for the whole year.

Hourly distribution: Interquartile range

Systematic overestimation for the whole daily cycle (12:00-19:00h UTC).

Annual systematic errors of Dudhia Scheme

> MBE = 47 W m² rMBE = 21 % RMSE = 178 W m² rRMSE = 81 %

Similar systematic errors in other work:

- Mathiesen and Kleissl (2011)
- Lara-Fanego et al. (2011)
- Ruiz-Arias et al. (2008)
- Zamora et al. (2005)

MBE > 50 W m⁻² (rMBE = 12-15 %) RMSE > 130 W m⁻² (rRMSE = 32-33 %)

Methodology: Post-processing methods / Model Output Statistics (MOS)

MOS (Glahn & Lowry, 1972) is a technique that has the ability to predict the systematic error through polynomial regression and is applied to improve correlations between simulations and observations.

Fourth order polynomial regression

 $Bias_{c} = \varepsilon + \alpha_{1} \cdot k_{t}^{*} + \alpha_{2} \cdot \cos(SZA) + \alpha_{3} \cdot (k_{t}^{*})^{2} + \alpha_{4} \cdot k_{t}^{*} \cdot \cos(SZA) + \alpha_{5} \cdot (\cos(SZA))^{2} + \alpha_{6} \cdot (k_{t}^{*})^{3} + \alpha_{7} \cdot (k_{t}^{*})^{2} \cdot \cos(SZA) + \alpha_{8} \cdot k_{t}^{*} \cdot (\cos(SZA))^{2} + \alpha_{9} \cdot (\cos(SZA))^{3} + \alpha_{10} \cdot (k_{t}^{*})^{4} + \alpha_{11} \cdot (k_{t}^{*})^{3} \cdot \cos(SZA) + \alpha_{12} \cdot (k_{t}^{*})^{2} \cdot (\cos(SZA))^{2} + \alpha_{13} \cdot k_{t}^{*} \cdot (\cos(SZA))^{3} + \alpha_{14} \cdot (\cos(SZA))^{4} \qquad (eq. 1)$

<u>Methodology:</u> Post-processing methods / Kalman Filter

Kalman Filter* (Kalman, 1960) establishes a dynamic linear relationship by estimating the previous error and a correction factor proportional to the forecast error.

- Kalman only needs a short training period (15 days for this work).
- Kalman is not likely to predict sudden changes in the forecast error caused by rapid transitions from one weather regime to another (Monache et al., 2011).

Results: Post-process application

Results: Post-process application

11/15

Results: Kalman-to-MOS bias correction

12/15

Results: Kalman-to-MOS bias correction

Comparison of results between raw model and Kalman-to-MOS

Season	Bias		RMSE	
	WRF	Kalman-to- MOS	WRF	Kalman-to- MOS
SUMMER	68 W m ⁻²	-1.1 W m⁻²	207 W m ⁻²	169 W m ⁻²
	(27%)	(-1.5%)	(71%)	(61%)
SPRING	60 W m ⁻²	0.8 W m ⁻²	198 W m ⁻²	175 W m ⁻²
	(29%)	(0.3%)	(75%)	(68%)
AUTUMN	12 W m ⁻²	-0.8 W m ⁻²	150 W m ⁻²	147 W m ⁻²
	(6%)	(-0.4%)	(83%)	(81%)
WINTER	21 W m ⁻²	-1.8 W m ⁻²	132 W m ⁻²	126 W m ⁻²
	(11%)	(-1.4%)	(67%)	(64%)
YEAR	47 W m ⁻²	-1.5 W m ⁻²	178 W m ⁻²	156 W m ⁻²
	(21%)	(-0.7%)	(81%)	(70%)

 Significant improvement of the mean error with the fit Kalman-to-MOS, especially for spring and summer.

SUMMARY & CONCLUSIONS

- Systematic WRF model overestimation errors of GHI presented in wide angle zenith ranges to cloudy and clear skies for spring and summer (incorrect location of clouds and total cloud water).
- Improvement of GHI WRF simulation using post-processing techniques (MOS & Kalman) year 2015 - Paraguay domain.
- The fit of Kalman-to-MOS provides better results reducing the errors of the raw model up to 97% of bias.
- Future application in the estimation of energy production of solar devices in Paraguay.

CENTRO DE COMPUTACION DE LA FIUNA Prof. Dr. Sergei Nikolaevich Sispanov **DIRECCION DE INVESTIGACIÓN**

Thanks for your attention

Dr. Angel Rincón arincon@ing.una.py

MSc. Juan A. González jgonzalez@ing.una.py

- Project 14-INV-289 of CONACYT.
- The simulations were performed in the supercomputer cluster hosted by the Department of Engineering at the National University of Asuncion (FIUNA), Paraguay.
- FECOPROD agroclimatic network has provided the observations for this study.

15/15

Facultad