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Abstract. In this paper we introduce classically time-controlled quantum
automata or CTQA, which is a slight but reasonable modification of
Moore-Crutchfield quantum finite automata that uses time-dependent
evolution operators and a scheduler defining how long each operator will
run. Surprisingly enough, time-dependent evolutions provide a significant
change in the computational power of quantum automata with respect to
a discrete quantum model. Furthermore, CTQA presents itself as a new
model of computation that provides a different approach to a formal study
of “classical control, quantum data” schemes in quantum computing.
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1 Introduction

A well-known hardware model for a future design of quantum computers is the
QRAM model proposed by Knill [6]. The idea is that a quantum device will be
attached to a classical computer controlling all operations. Several programming
languages have been designed and studied using this model (e.g. [4, 5, 9, 12,13])
where the classical part constructs the circuit and the quantum part manipulates
the quantum state. This scheme is the so-called “classical control, quantum-data.”

To understand the capabilities and limitations of quantum computers with
classical control it is interesting to conceptualize a formal model of quantum com-
putations that incorporates in some way the idea of a classical control. The most
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simple model of computation currently known is the finite-state automaton, and
it is, arguably, the best model to initiate a study of new methods of computation.

The first model of a quantum automaton with classical control was studied by
Ambainis and Watrous [2] and consisted in a two-way quantum automaton with
quantum and classical inner states, with the addition that the input tape head
is also classical. Ambainis and Watrous showed that for this model of quantum
automata there exists a non-regular language that can be recognized in expected
polynomial time, whereas for the same language any two-way probabilistic
automaton requires expected exponential time. Another way to introduce classical
components in quantum computations is in the context of quantum interactive
proof systems (QIP) with quantum automata as verifiers [8, 11, 14, 17]. These
works showed that having a quantum automaton interacting with a prover that
can be quantum or classical does indeed help the automaton to recognize more
languages.

In all cited works of the previous paragraph, the classical control is imple-
mented via discrete circuits, that is, a “program” decides what gates to apply
to which qubits. However, a quantum computer could do more than just apply
discrete matrices. Indeed, the Schrödinger equation, which is the equation gov-
erning the time-evolution of all quantum systems, is defined over a continuous
time, and whose solutions are time-dependent unitary operators.

In this work we present a new type of classical control where all unitary
operators of a quantum automaton depend on time, and their time-evolutions
can be adjusted or tuned in order to assist the automaton in its computations.
In order to control the time of each unitary operator we introduce an idea of
a scheduler that feeds the automaton with a time schedule specifying for how
long each unitary operation must be executed. We call this model classically
time-controlled quantum automata or CTQA.

The automaton model used for CTQAs is the so-called “measure-once” or
“Moore-Crutchfield” quantum automaton [7], where only one measurement is
allowed at the end of any computation. Brodsky and Pippenger [3] proved that
Moore-Crutchfield quantum automata are equivalent in computational power to
classical permutation automata, which is a much weaker and restricted model
of a deterministic finite-state automaton. The class of languages recognized
by Moore-Crutchfield automata includes only regular languages and there are
many natural regular languages that do not belong to this class. For example,
the languages Lab = {anbm | n,m ≥ 0} and L1 = {x1 | x ∈ {0, 1}∗} are
not recognized by any permutation automaton or Moore-Crutchfield quantum
automaton. In this work we show that even though a CTQA uses a quite restricted
model of quantum automata, when time evolutions of unitary operators can be
controlled by an external classical scheduler, more languages can be recognized.
In fact, we show that non-recursive languages are recognized by CTQAs if we
allow unrestricted time schedules (Theorem 2). Since arbitrary time schedules
give extreme computational power to a quantum automaton, we study the
language recognition power of CTQAs when assisted by computationally restricted
schedulers. When the scheduler is implemented via a deterministic finite-state
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automaton we show that CTQAs can recognize all regular languages (Theorem 3)
and even non-regular languages (Theorem 4). We also show the existence of two
languages recognized by CTQAs that can be concatenated as long each CTQA
uses “similar” schedulers and different alphabets (Theorem 10).

The rest of this paper is organized as follows. In Section 2 we introduce the
notation used throughout this paper and briefly review some relevant results
from quantum automata theory. In Section 3 we present a formal definition of
CTQAs together with some basic properties. In Section 4 we present our results
about restricted time schedules. Finally, in Section 5 we conclude this paper and
present some open problems.

2 Preliminaries

In this section we briefly explain the notation used in the rest of this work and
review some well-known definitions and results on quantum automata.

We use R to denote the set of real numbers and C the set of complex numbers.
The set of all nonnegative real numbers is denoted R+

0 . The set of natural numbers
including 0 is denoted N.

Given any finite set A, we let CA be the Hilbert space generated by the finite
basis A. Vectors from CA are denoted using the ket notation |v〉. An element of
the dual space of CA is denoted using the bra notation 〈v|. The inner product
between two vectors |v〉 and |u〉 is denoted 〈v|u〉.

Let Σ be a finite alphabet and let Σ∗ denote the set of all strings of finite
length over Σ. A string x ∈ Σ∗ of length n can be written as x = x1 . . . xn where
each xi ∈ Σ. The length of x is denoted |x|. A language L is a subset of Σ∗.
The concatenation of two languages L1 and L2 is denoted L1 · L2. We also let
L∗ = ∪k∈NLk where Lk is the language L concatenated with itself k times.

A quantum finite automaton (or QFA) is a 5-tuple M = (Q,Σ, {ξσ | σ ∈
Σ}, s, A) where Q is a finite set of inner states, ξσ is a transition superoperator1

for a symbol σ ∈ Σ, the initial inner state is s ∈ Q, and A ⊆ Q is a set
of accepting states. On input x ∈ Σ∗, a computation of M on x = x1 . . . xn
is given by ρj = ξxj (ρj−1), where ρ0 = |s〉〈s| and 1 ≤ j ≤ |x|. The most
restricted model of QFA currently known is the so-called Moore-Crutchfield
QFA or MCQFA [7]. A MCQFA is a 5-tuple M = (Q,Σ, δ, s, A), where all
components are defined exactly in the same way as for QFAs except that the
transition function δ : Q×Σ ×Q→ C defines a collection of unitary matrices
{Uσ | σ ∈ Σ} where Uσ has δ(q, σ, p) in the (p, q)-entry and each Uσ acts on
CQ. Physically M corresponds to a closed-system based on pure states.2 For any
given input w, the machine M is initialized in the quantum state |ψ0〉 = |s〉 and
each step of a computation is given by |ψj〉 = Uwj |ψj−1〉, where 1 ≤ j ≤ |w|.
The probability that M accepts w is pA,M (w) =

∑
qj∈A |〈qj |ψ|w|〉|

2. This is

1 A superoperator or quantum operator is a positive-semidefinite operation that maps
density matrices to density matrices [10].

2 Pure states are vectors in a complex Hilbert space normalized with respect to the
`2-norm.
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equivalent to M performing a single measurement of its quantum state at the
end of a computation. The class of languages recognized by MCQFAs with
bounded-error is denoted MCQFA. Brodsky and Pippenger [3] showed using a
non-constructive argument that MCQFA coincides with the class of languages
recognized by permutation automata; see Villagra and Yamakami [15] for a
constructive argument of the same result. Ambainis and Freivalds [1] studied
quantum automata with pure states where measurements are allowed at each
step of a computation. We denote by 1QFA the class of languages recognized
by quantum automata with pure states and with many measurements allowed.
Ambainis and Freivalds [1] showed that MCQFA ( 1QFA by proving that the
language Lab = {a}∗ · {b}∗ /∈MCQFA. The class of regular languages is denoted
REG and it is known that 1QFA ( REG [1].

3 Definition and Basic Properties

A classically time-controlled quantum automaton (CTQA in short) is defined
as (Q,Σ, δ, τ, s, A,R), where Q is a finite set of inner states, Σ is an alphabet,
δ : Q×Σ ×Q× R+ → C is a transition function, τ : Σ∗ → (R+)∗ is a function
called time schedule function, s is an initial inner state, A ⊆ Q is the set of
accepting inner states, and R ⊆ Q is the set of rejecting inner states.

A CTQA has a single tape split into two tracks, where an upper track
contains the original input x and a lower track contains a time schedule string
τ(x) = (τ1, . . . , τ|x|) where each τi ∈ R+

0 .
Given an input x and a time schedule τ , the operation of the automaton is

as follows. Given any positive real number t, for each σ ∈ Σ we have

Uσ(t)|q〉 =
∑
p∈Q

δ(q, σ, p, t)|p〉,

where Uσ(t) is a unitary time-dependent evolution operator. Given an input x
of length n, the time schedule string maps x to a sequence of |x| positive real
numbers τ(x) = (τ1 . . . τn) where each τi indicates for how much time the unitary
operator Uxi must be executed.

A CTQA M starts in the quantum state |s〉 corresponding to the inner state
s and its tape is of the form

[ x
τ(x)

]
, where

[ x
τ(x)

]
= [ x1...xn

τ1...τn ] is a track notation
that denotes the contents of the two tracks of the tape, the input x and the time
schedule τ(x). At step i if the machine M is in the quantum state |ψi−1〉 and
scanning [ xiτi ], then the next quantum state |ψi〉 is given by

|ψi〉 = Uxi(τi)|ψi−1〉.

After scanning an entire input the machine M observes the quantum state
|ψn〉 with respect to the subspaces span(A) = CA, span(R) = CR and span(Q \
(A ∪ R)) = CQ\(A∪R). If we observe a quantum state in span(A), we say that
x is accepted by M . Similarly, if we observe a quantum state in span(R), x is
rejected by M ; otherwise, M answers “ I do not know.”
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Let ΠA be a projection onto the subspace span(A) and let

|ψn〉 = Uxn(τn) · · ·Ux1(τ1)|s〉.

The probability that M accepts x is defined as

pM,A(x) = 〈ψn|ΠA|ψn〉.

Similarly, if ΠR is a projection onto the subspace span(R), the probability that
M rejects x is

pM,R(x) = 〈ψn|ΠR|ψn〉.

Let λ ∈ (0, 1]. A language L is said to be recognized or accepted by M with
cutpoint λ if

L = {x ∈ Σ∗ | pM,A(x) ≥ λ}.

A CTQA A is time-independent if and only if for any given (q, σ, p) ∈ Q×Σ×Q
it holds that δ(q, σ, p, t) = δ(q, σ, p, t′) for all t, t′. Thus, if A is time-independent,
then Uσ(t) = Uσ(t′) for all σ ∈ Σ and t, t′ ∈ R+

0 .
The class of languages recognized by CTQA with cutpoint λ is denoted CTQλ.

The class of languages recognized by time-independent CTQA with cutpoint λ is
denoted t-CTQλ.

A language L is said to be recognized by M with isolated cutpoint λ if there
exists a positive real number α such that pM,A(x) ≥ λ + α for all x ∈ L and
PM,R(x) ≤ λ − α for all x /∈ L. Language recognition with isolated cutpoint is
easily described as recognition with bounded-error. Let ε ∈ [0, 12 ). We say that L
is recognized with bounded-error by M with error bound ε if pM,A(x) ≥ 1 − ε
for all x ∈ L and pM,R(x) ≤ ε for all x /∈ L. The class of languages recognized by
CTQA with bounded-error in the time-dependent and time-independent cases
are denoted BCTQ and t-BCTQ, respectively.

Theorem 1. t-BCTQ = MCQFA.

Proof. Let A = (Q,Σ, δ, q0, A,R) be a time-independent CTQA. Take B =
(Q,Σ, δ′, q0, A,R) where δ′(q, σ, p) = δ(q, σ, p, 1). To see the other side of the
implication it suffices to see that δ′ is time-independent and thus any time
schedule works. ut

This first näıve definition allowing any arbitrary time schedule, allows arbitrary
power to CTQA, as exemplified by the following theorem.

Theorem 2. If the time schedule is not restricted, there exists a bounded-error
CTQA deciding the Halting problem with ε = 0.

Proof. Let HALT be the language denoting the halting problem, that is, a string
x ∈ HALT if and only x is a reasonable encoding using an alphabet Σ of a Turing
machine N and a string w such that M halts on input w. We construct a CTQA
M = (Q,Σ, δ, τ, s, A,R) recognizing HALT.

Let τ be a time schedule such that if an input x of M is the encoding of
a Turing machine N and an input w for N , then τ(x) = (1, 0, 0, . . . , 0) if N



6 A. Dı́az-Caro and M. Villagra

does not halt on input w; otherwise, τ(x) = (4, 0, 0, . . . , 0) if M halts on input
w. Then, define Q = {q0, q1}, s = q0, A = {q0}, and R = {q1}. The transition
function δ is defined as

δ(0, σ, 0, t) = δ(1, σ, 1, t) = cos
(
t · π

2

)
,

δ(0, σ, 1, t) = δ(1, σ, 0, t) = −i sin
(
t · π

2

)
.

That is, the time-dependent unitary operator Uσ acts on span(Q) as given by

Uσ(t)|q〉 = δ(q, σ, 0, t)|q0〉+ δ(q, σ, 1, t)|q1〉,

and hence,

U(t) = Rtπ =

(
cos(tπ2 ) −i sin(tπ2 )
−i sin(tπ2 ) cos(tπ2 )

)
.

where Rtπ denotes a tπ degrees rotation about the x-axis of the Bloch sphere
(cf. Figure 1). Note that U(0) = I2, U(1) = iNot and U(4) = I2, where Not is
the quantum negation operator.

ϕ

π
3

x

y

z = |0〉

−z = |1〉

|ψ〉

ϕ

π
12

x

y

z = |0〉

−z = |1〉

|ψ〉Rπ
4

Fig. 1. U(0.25) = Rπ
4

rotation

Therefore, if the input represents a halting Turing machine, the computation
will be I2|q0〉 = |q0〉 and the accepting state |q0〉 is observed with probability 1. If
the input is a non-halting Turing machine, then a computation is iNot|q0〉 = i|q1〉
and the rejecting state |q1〉 is observed with probability 1. ut

The previous theorem shows that the expressive power of a time schedule can
be easily passed to a CTQA. Hence, in order uncover the capabilities of CTQAs
we will introduce a machine called scheduler that takes care of computing a time
schedule.
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Writer

Decider

Size

1/0

|x|

x
output

Scheduler

Fig. 2. Scheduler diagram

4 Language Recognition with Restricted Time Schedules

A scheduler S is defined as a pair (D,W ) where D is a multitape Turing machine
that halts on all inputs called a decider and W is a multi-valued function called
a writer. Besides the decider and writer, the scheduler S includes the capability
of counting the size on an input. On input x an scheduler S works as depicted
in Figure 2: First S runs D on input x and outputs a bit b where b = 1 if x is
accepted by D or b = 0 if x is rejected by D. Then S runs the writer W on input
b and n = |x|. For some constant positive integer k, the writer W is defined using
two sets of functions F = {f1, . . . , fk} and G1 = {g1, . . . , gk} where for each i,
fi : N→ R+

0 and gi : N→ R+
0 . The writer W on input b and n = |x| generates

as an output a time schedule (fi1(n), . . . , fin(n)) if b = 1 or (gi1(n), . . . , gin(n))
if b = 0, where each ij ∈ {1, 2, . . . , k}.

Let C be a complexity class. We denote by C-CTQλ the class of languages
recognized by CTQA with cutpoint λ where the computational power of the
decider in the scheduler is restricted to C. In particular, REG-CTQλ is the
class of languages recognized by CTQAs with cutpoint λ where the decider D is
a finite-state automaton. When a CTQA is bounded-error we write C-BCTQ.

It is clear that a CTQA has, at least, as much computational power as the
decider in its scheduler, as stated in Theorem 3 below. Later we will show that
even if a scheduler is computationally restricted, a CTQA can recognize more
languages than what is allowed by its scheduler.

Theorem 3. C ⊆ C-BCTQA.

Proof. We can consider the same CTQA from the proof of Theorem 2. Take
a decider D recognizing a language L ∈ C. Then, we consider the scheduler
S = (D,W ) where W (0, n) = (1, 0, . . . , 0) and W (1, n) = (4, 0, . . . , 0). ut

Let Lλab = {anbm | cos2(π(n−m)
2(n+m) ) ≥ λ}. Using a pumping argument, it is easy

to prove that Lλab is not a regular language. The following theorem shows that
even in the presence of a finite-state scheduler, that is the decider of the scheduler
is a finite-state automaton, there exists a CTQA recognizing Lλab with cutpoint λ.

Theorem 4. Lλab ∈ REG-CTQAλ.
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Proof. Let M = (Q,Σ, δ, τ, s, A,R) where Q = {q0, q1}, Σ = {a, b}, s = q0,
A = {q0}, and R = {q1}. The transition function δ is defined as

δ(q0, a, q0, t) = δ(q1, a, q1, t) = cos
(
t
π

2

)
,

δ(q0, a, q1, t) = δ(q1, a, q0, t) = −i sin
(
t
π

2

)
,

δ(q0, b, q0, t) = δ(q1, b, q1, t) = cos
(
−tπ

2

)
,

δ(q0, b, q1, t) = δ(q1, b, q0, t) = −i sin
(
−tπ

2

)
.

The transition function δ thus defines unitary operators Ua and Ub acting on
span(Q) as

Ua(t)|q〉 = δ(q, a, q0, t)|q0〉+ δ(q, a, q1, t)|q1〉,
Ub(t)|q〉 = δ(q, b, q0, t)|q0〉+ δ(q, b, q1, t)|q1〉.

where Ua(t) = U(t) and Ub(t) = U−1(t) = U(−t) with

U(t) = Rtπ =

(
cos(tπ2 ) −i sin(tπ2 )
−i sin(tπ2 ) cos(tπ2 )

)
.

The intuition is that Ua(0) is the identity, Ua(1) is a Not operator whereas Ua(t)
is a unitary operation between the identity and the Not operator for t ∈ (0, 1).
On the other hand, Ub(t) is a rotation in the opposite direction.

We define the scheduler S computing τ as S = (D,W ) where

– D is a finite state decider recognizing the regular language Lab = {a}∗ · {b}∗
such that D outputs b = 1 for all strings in Lab and b = 0 otherwise, and

– W is a writer given by

W (n+m, b) =


( 1
n+m ,

1
n+m , . . . ,

1
n+m ) if b = 1

(1, 0, . . . , 0) if b = 0.

Suppose x /∈ Lab. The scheduler runs D on x which rejects and the writer
outputs (1, 0, . . . , 0) as a time schedule for M . The first unitary operator that is
applied is either Ua(1) or Ub(1) which is a Not operator, and for each remaining
0 in the time schedule all unitary operators behave as the identity. The machine
M will apply Not on |0〉, obtaining |1〉 and then it stays in |1〉. After scanning the
entire input, M measures its quantum state and observes |1〉, thus, rejecting x.

Now suppose x ∈ Lab and let x = anbm. The scheduler runs D on x which
this time accepts, and the writer outputs ( 1

n+m ,
1

n+m , . . . ,
1

n+m ). The unitary

operators that M uses are Una ( 1
n+m ) = U( n

n+m ) and Umb ( 1
n+m ) = U(− m

n+m ).
After scanning the entire input, the quantum state of M is

U

(
− m

n+m

)
U

(
n

n+m

)
|q0〉 = cos

(
π(n−m)

2(n+m)

)
|q0〉+ i sin

(
π(n−m)

2(n+m)

)
|q1〉.
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Hence, the probability of accepting anbm is cos2(π(n−m)
2(n+m) ), which is greater or

equal than λ. Notice that the accepting probability is 1 if n = m and 0 if n = 0
or m = 0. ut

Corollary 5. REG-CTQAλ * REG. ut

Let L1 = {w · 1 | w ∈ {0, 1}∗}. The language L1 is a regular language that is
not recognized by any 1QFA [1]. This language can be recognized by a CTQλ

with a decider restricted to a constant function. Let Σ∗-CTQλ be the class
of languages recognized by CTQAs with cutpoint λ where the decider accepts
any string over the alphabet Σ. Note that when a decider computes a constant
function, the output of the scheduler only depends of the length of the input
string. This situation is similar to quantum automata assisted by advice as
studied in [15,16].

Theorem 6. L1 ∈ Σ∗-CTQ1.

Proof. Let M = (Q,Σ, δ, τ, s, A,R), where Q = {q0, q1}, Σ = {0, 1}, s = q0,
A = {q0}, and R = {q1}. The transition function δ is defined such that U0(t) =
R(1−t)π and U1(t) = Rtπ, so U0(1) = I2 and U1(1) = Not.

The decider of the scheduler is defined by D(x) = 1 for any x ∈ {0, 1}∗, and
the writer is defined by

W (n, b) =

 (0, 0, . . . , 0, 1) if b = 1

(0, 0, . . . , 0, 0) if b = 0

Notice that since the decider is the constant function 1, the scheduler will
always output a time schedule with n − 1 zeroes and a single one in the last
position. Therefore, the automaton M will do nothing with the n−1 first symbols,
and it will apply U0(1)|0〉 = |0〉 if the last symbol is 0 rejecting the input, or
U1(1)|0〉 = |1〉 if the last symbol is 1 accepting the input. ut

Corollary 7. Σ∗-CTQ1 * 1QFA. ut

Restricting the decider to a constant function accepting any input, we can
still recognize a non-regular language, as stated by the following theorem. Let

Lλa∼b = {x | |x|a = n, |x|b = m, cos2(π(n−m)
2(n+m) ) ≥ λ}. Using a pumping argument

it can be proved that Lλa∼b is not regular.

Theorem 8. Lλa∼b ∈ Σ∗-CTQλ.

Proof. It suffices to construct an automaton M ′ similar to the automaton M
from the proof of Theorem 4 with a decider D′ defined by D′(x) = 1, for any
x ∈ {a, b}∗. Indeed, on input x ∈ Lλa∼b the machine M ′ will execute n times
U( 1

n+m ) and m times U(− 1
n+m ), in any order, producing the quantum sate

cos

(
π(n−m)

2(n+m)

)
|0〉+ i sin

(
π(n−m)

2(n+m)

)
|1〉.
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The probability of accepting a string in Lλa∼b is cos2(π(n−m)
2(n+m) ) which is at least λ.

If x /∈ Lλa∼b, then the probability of accepting x is less than λ. Notice that such
probability is 1 if n = m and 0 if n = 0 or m = 0. ut

Corollary 9. Σ∗-CTQ1 * REG. ut

If two automata recognizing languages on different alphabets have the same
writer, then we can easily construct a new automaton recognizing the concate-
nation of both languages. As an example, consider the following language. Let
L
λ1,λ2

ab·c∼d = Lλ1

ab ·L
λ2

c∼d where Lλ1

ab and Lλ2

c∼d are defined as before but over alphabets
{a, b} and {c, d}, respectively.

Theorem 10. L
λ1,λ2

ab·c∼d ∈ REG-CTQAλ1·λ2
.

Proof. Let M = (Q,Σ, δ, τ, s, A,R) where Q = {00, 01, 10, 11}, Σ = {a, b, c, d},
s = 00, A = {00}, and R = {01, 10, 11}. The transition function δ is defined by

Ua(t) = Ub(−t) = I2 ⊗Rtπ =


cos(tπ2 ) −i sin(tπ2 ) 0 0
−i sin(tπ2 ) cos(tπ2 ) 0 0

0 0 cos(tπ2 ) −i sin(tπ2 )
0 0 −i sin(tπ2 ) cos(tπ2 )

 ,

Uc(t) = Ud(−t) = Rtπ ⊗ I2 =


cos(tπ2 ) 0 −i sin(tπ2 ) 0

0 cos(tπ2 ) 0 −i sin(tπ2 )
−i sin(tπ2 ) 0 cos(tπ2 ) 0

0 −i sin(tπ2 ) 0 cos(tπ2 ))

 .

The intuition is that Ua(0) is the identity, Ua(1) is I2⊗Not whereas Ua(t), with
t ∈ (0, 1) is a unitary operator between the identity and I2 ⊗ Not. Furthermore,
Ub(t) is a rotation in the opposite direction of Ua. Similarly, Uc(0) is the identity,
Uc(1) is Not⊗ I2 and Ud(t) is a rotation in the opposite direction of Uc.

A scheduler S for τ is given by (D,W ) where

– D is a finite state decider recognizing Labcd = {a}∗{b}∗{c, d}∗ such that
D(x) = 1 if x ∈ Labcd and D(x) = 0 for x /∈ Labcd, and

– W is a writer defined by

W (n, b) =


( 1
n+m+k+h ,

1
n+m+k+h , . . . ,

1
n+m+k+h ) if b = 1

(1, 0, . . . , 0) if b = 0

Therefore, the decider is a concatenation of the decider of the automaton defined
in Theorems 4 and 6.

Suppose x /∈ Labcd. The scheduler outputs (1, 0, . . . , 0) as a time schedule and
M changes the state |00〉 to |01〉 using Ua(1) or Ub(1), or M changes the state
|00〉 to |10〉 using Uc(1) or Ud(−1). In either case, after M reads the first symbol,
it stays in the same quantum state, and after scanning the entire input a rejecting
state is observed with probability 1.



Classically Time-Controlled Quantum Automata 11

Now suppose x ∈ Labcd. The scheduler outputs ( 1
n+m+k+h , . . . ,

1
n+m+k+h )

as the time schedule and the unitary operators used by M are Ua(
n

n+m+k+h ),

Ub(
m

n+m+k+h ), Uc(
k

n+m+k+h ) and Ud(
h

n+m+k+h ). Note that Ub(
m

n+m+k+h ) =

Ua(− m
n+m+k+h ) and Ud(

h
n+m+k+h ) = Uc(− h

n+m+k+h ). The resulting quantum
state after M scans x starting a computation at |00〉 is then

cos

(
π(h− k)

2(n+m+ k + h)

)
cos

(
π(m− n)

2(n+m+ k + h)

)
|00〉

+i cos

(
π(h− k)

2(n+m+ k + h)

)
sin

(
π(m− n)

2(n+m+ k + h)

)
|01〉

+i sin

(
π(h− k)

2(n+m+ k + h)

)
cos

(
π(m− n)

2(n+m+ k + h)

)
|10〉

− sin

(
π(h− k)

2(n+m+ k + h)

)
sin

(
π(m− n)

2(n+m+ k + h)

)
|11〉.

The probability of accepting anbmx with |x|a,b = 0, |x|c = k and |x|d = h is

cos2( π(h−k)
2(n+m+k+h) ) cos2( π(m−n)

2(n+m+k+h) ) which is at least λ1 · λ2. Notice that such

probability is 1 if n = m and k = p and 0 if m = 0, p = 0, k = 0 or n = 0. ut

It can be argued that the time schedule demands too much precision to be
implemented. Indeed, running an unitary operator for time 1

n with large n may
be a challenge. Fortunately, the time can be rescaled as stated by the following
theorem.

For any input x, time schedule τ(x) = (τ1, . . . , τn) and a positive real number
k, we say that kτ(x) = (kτ1, . . . , kτn) is the time schedule τ scaled by k.

Theorem 11. Given any positive real constant k, for any CTQA M with time
schedule τ , there exists a CTQA M ′ with time schedule τ ′ where τ ′ is τ scaled
by k and M ′ recognizes the same language as M .

Proof. Let M = (Q,Σ, δ, τ, s, A,R) be a CTQA such that δ defines unitary
operations Uσ(t) for each σ ∈ Σ and a scheduler S computes a time schedule
τ(x) = (τ1, . . . , τ|x|). Then, we can define M ′ = (Q,Σ, δ′, τ ′, s, A,R) where for
each σ ∈ Σ, the transition function δ′ computes U ′σ(t) = Uσ( tk ) and τ ′(x) =
(kτ1, . . . , kτ|x|).

On input x = x1 . . . xn, the machine M computes

Ux1
(τ1) . . . Uxn(τn)|s〉 = U ′k1(kτ1) . . . Uxn(kτn)|s〉

which is also the computation done by M ′. ut

5 Concluding Remarks and Open Problems

In this work we introduce a new model of quantum computation with classical
control called CTQA (for classically time-controlled quantum automata) where
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all unitary operators are time-dependent and their time executions are externally
controlled by a scheduler. We show in Theorem 2 that if Moore-Crutchfield
quantum automata use time-dependent unitary operators with unrestricted time
schedules, then they can recognize non-recursive languages. If the scheduler is
defined via a finite-state automaton, however, a CTQA can recognize non-regular
languages as shown in theorems 4 and 8. The CTQA model is an interesting
model to study quantum computations assisted by a classical control that can
tune or adjust execution times. Below we present some interesting open problems
that remain from this work.

1. Upper bound for classes of languages recognized by CTQAs. To prove an upper
bound on the simulation of CTQAs we require a simulation of the behavior of
schedulers. Since a scheduler output real numbers, it is necessary to consider
computable real numbers and study how much error in the time-dependent
computation is introduced.

2. Closure of well-known operations. It is unknown under which operations the
classes of languages recognized by CTQAs are closed, like union, intersection,
homomorphism, inverse homomorphism, etc.

3. Impossibility results. We have not shown any impossibility result in this work.
It will be interesting to see a lower bound technique for CTQAs analogous
to a pumping lemma.
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