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Abstract: In feature selection, redundancy is one of the major concerns since the removal of redun-
dancy in data is connected with dimensionality reduction. Despite the evidence of such a connection,
few works present theoretical studies regarding redundancy. In this work, we analyze the effect of
redundant features on the performance of classification models. We can summarize the contribution
of this work as follows: (i) develop a theoretical framework to analyze feature construction and
selection, (ii) show that certain properly defined features are redundant but make the data linearly
separable, and (iii) propose a formal criterion to validate feature construction methods. The results of
experiments suggest that a large number of redundant features can reduce the classification error.
The results imply that it is not enough to analyze features solely using criteria that measure the
amount of information provided by such features.

Keywords: feature selection; feature construction; classification

1. Introduction

In the classification, the quality of information in the features is essential to building a
high-quality predictive model. Furthermore, the rapid advances in data acquisition and
storage technologies have created high-dimensional data. However, noise, non-informative
features, and redundancy, among other issues, make the classification task challenging [1].
Therefore, selecting suitable features is an important task, as a preliminary step, for building
highly predictive classifiers [2].

To reduce dimensionality, there are two main approaches—feature selection and
feature construction. Feature selection selects a subset of features from the input to reduce
the effects of noise or irrelevant features, while still providing good prediction results [2].
In contrast, feature construction refers to the task of transforming a given set of input
features to generate a new set of more predictive features [3].

According to [2], feature selection can be divided into three major categories depend-
ing on the evaluation criteria—filter, wrapper, and embedded. Filter methods use intrinsic
properties of the data to select a subset of features and are applied as a preprocessing
task [4]. Wrappers, in contrast, use learning to guide the search. The learning bias is
included in the search and, therefore, they achieve better results. However, they are com-
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putationally expensive [5,6] and cause overfitting [7]. Finally, embedded methods perform
the search at the same time the model is learned.

However, we can also classify the feature selection methods according to the strategy
to search for subsets of features, which are divided into exponential search, sequential
search, and random search [8]. The exponential search consists of the exhaustive evaluation
of all possible subsets, which makes it impractical most of the time. The sequential search
consists of the application of a local search method with a hill descent strategy [9,10]. The
use of such strategies means that the search is stuck in a local optima. Finally, we have
random search strategies that consist of the application of metaheuristic optimization
algorithms [11–18].

Despite the success of feature selection techniques, a good feature space is a prerequi-
site for achieving high performance in the classification. In this sense, feature construction
aims to engineer new features to detect the hidden relations of the original features [19,20].
New features are constructed based on the relations of the original ones pursuing a more
meaningful feature space capable of achieving a more accurate classifier [3]. As in the case
of feature selection, in feature construction, we can find three approaches: filter, wrapper,
and embedded methods [21]. Among the main approaches for constructing features, we
have (i) methods based on decision trees [22,23], (ii) evolutionary meta-heuristics [24,25],
(iii) the application of inductive logic programming [26,27], (iv) methods that use anno-
tations with the training set [28], and (v) unsupervised methods such as clustering [29],
PCA [30], or SVD [31].

In this work, we study the relationship of feature construction and assumptions
applied in selecting those features. Denote—as redundant—a subset of features that do
not provide more information than what exists in the other features. We are particularly
interested in analyzing the assumption that minimizing the number of redundant features
is best for classification problems. Especially how the defined features can affect the
capacity of a model required to perform the classification. We first present a mathematical
framework for modeling feature construction and selection for classification problems with
discrete features. Second, we show that there are datasets where small feature subsets
can be much more complex than large feature subsets. We denote complexity concerning
the capacity that the model requires to classify the problem and highlight the linearly
separable problems as the least complex. This construction violates the assumption that
fewer features with equal or more information are better than many features. Third, we
extend the analysis of feature construction using monomials of degree k [32] and conclude
that this method tends to produce linearly separable binary classification problems as k
grows. Therefore, we propose that one way to validate feature construction methods is
by analyzing whether the classification problems tend to become linearly separable with
the iterative application of the method. Finally, we apply the construction of features
with monomials of degree k in real and artificial datasets, where we apply the following
classification algorithms, naive Bayes [33], logistic regression [34], KNN [35], PART [36],
JRIP [37], J48 [38] and random forest [39]. Experiments show that even though redundant
features grow extensively, the score increases or does not decrease too much. Therefore,
both theoretical and experimental evidence agree that the criterion of choosing minimum
feature subsets is not always correct. This is because the assumption considers only the
information about the features but not the complexity of the classification problem.

The contributions of this work can be synthesized in the following items: (a) showing
that the redundancy of features can reduce data complexity, (b) developing a theoretical
framework to model construction and selection of features and, (c) proposing a mathemati-
cal criterion to validate feature construction methods. The experiments performed suggest
that the presence of redundant features does not necessarily prejudice classification tasks.

This work is organized into the following sections. Section 2 presents the mathematical
formulation used to describe the theoretical results. Section 3 introduces basic ideas with
simple examples, while Section 4 formalizes those ideas to more general results. Section 5
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shows the experimental results, and finally, Section 6 presents a discussion of all results
obtained.

2. A Mathematical Model for Feature Selection and Construction

In this section, we present a formal framework for the mathematical analysis of feature
selection and construction. Let {Ai} be a finite sequence of finite sets in R and another
finite set C, where each Ai is denoted as feature i and C is the set of possible classes. Taking
A = A1 × A2 × ...× An, we consider a probability distribution P over A× C, we denote
P[.] and P[.|.] as the probability and conditional probability determined by P , respectively.
Notice that we may generate a dataset using distribution P , where each record is an
element from A× C and we denote P as a dataset distribution. Denote the sequence

{
Âi
}

,
such that Âi = Ai for i ≤ n and Ân+1 = C. Let {Si} be a subsequence of

{
Âi
}

, we denote
(i) S = S1 × S2 × ...× Sm, (ii) if s ∈ S then s is denoted as a pattern of S and (iii) EPS (x)
is denoted as the event where we sample an instance such that s = x for a pattern s of S
according to distribution P . We say that s is a not-null pattern of S if P

[
EPS (s)

]
> 0.

Notice that our definition of the dataset distribution is general enough for a dataset or
its real distribution. For example, given the dataset distribution P in Table 1, we can take
A1 = {1, 2, 3}, A2 = {1, 2}, A3 = {0, 1, 2, 3}, and C = {0, 1}. As S = S1 × S3 represents
all possible values taken by the first and third feature, if s = (1, 1) is a pattern of S , then
EPS (x) = {(1, 1, 1, 0), (1, 2, 1, 0), (1, 1, 1, 1), (1, 2, 1, 1)} is the event where the first and third
features have value one. Notice that s is a not-null pattern because P

[
EPS (s)

]
= 2/5.

Table 1. Simple example of dataset distribution.

Att. 1 Att. 2 Att. 3 Class

1 1 0 0

1 2 1 0

1 2 1 1

2 1 2 1

3 1 3 0

The following definition formalizes the notion of patterns that do not contradict
each other.

Definition 1. Let B = {Bi} and D = {Di} be sub-sequences of {Ai}, we denote B = B1× B2×
...× Bp and D = D1 ×D2 × ...×Dq. Taking b =

(
b1,b2, .., bp

)
∈ B and d =

(
d1,d2, .., dq

)
∈ D,

we say that b and d are congruent patterns, if b and d are not distinct in the features of {Ai}
preserved by both B = {Bi} and D = {Di}.

For example, take the dataset distribution P of Table 1, B = {A1, A2} and D = {A2, A3}.
We have that b = (1, 2) ∈ B and d = (2, 1) ∈ D are congruent patterns, because they have
the same value in their single shared feature. However, if d̂ = (1, 2) ∈ D, then b and d̂
are not congruent patterns, because both have different values given the second feature of
the dataset.

As a dataset distribution P may not be consistent (inconsistent), we define a function
fP : A → C, where P

[
EPC (c) | EPA(a)

]
= maxi

{
P
[
EPC (i) | EPA(a)

]}
for all not-null patterns

a ∈ A. Notice that an inconsistent dataset distribution always has classification error
because a classifier does not have enough features, then fP gives the category that minimize
error for any configuration of features. If we consider the dataset distribution of Table 1,
we must define a fP , such that fP (1, 1, 0) = 0, fP (2, 1, 2) = 1 and fP (3, 1, 3) = 0; however
for any other pattern a ∈ A we can take 0 or 1 for fP .
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Definition 2. Let P be a dataset distribution, B = {Bi} a sub-sequence of sequence A = {Ai}
and B = B1 × B2 × ...× Bp. The subsequence B of features is complete for P if satisfies that for all
class c and all congruent not-null patterns a, b of A,B, respectively, we have:

P
[

EPC (c) | EPA(a)
]
= P

[
EPC (c) | EPB (b)

]
.

Definition 2 formalizes the notion of a subset of features with the same amount of
information as all features as a whole. This notion of information considers that the subset
of features is sufficient to estimate the class with the same probability as the original set of
features.

Definition 3. Maintaining the same terms of Definition 2. Let B̂k =
{

B̂i
}

be a sub-sequence of
sequence B without the term Ak and B̂k = B̂1 × B̂2 × ...× B̂q. The subsequence B of features is
non-redundant for P , if it satisfies that for all k there is some class c, and some not-null congruent
patterns b, b̂ of B, B̂k, respectively, such that:

P
[

EPC (c) | EPB (b)
]
6= P

[
EPC (c) | EP

B̂k

(
b̂
)]

.

Definition 3 formalizes the notion of a subset of features where each feature provides
information that does not exist in other features of the subset. This notion of information
considers that if we eliminate a feature from the subset, we will not obtain the same proba-
bility of obtaining a class. Under this definition of a non-redundant subset of features, we
can say that the other features of the dataset are redundant because they can be eliminated
without losing information in the dataset. We formulate Definition 4 for redundant features.

Definition 4. Maintaining the same terms of Definition 2. Let Â =
{

Âi
}

be a subsequence of
A, obtained by eliminating the features of a subsequence B from A. The subsequence B of features
is redundant for P if it satisfies that for all class c and not-null congruent patterns a, â of A, Â
respectively, we have:

P
[

EPC (c) | EPA(a)
]
= P

[
EPC (c) | EPÂ(â)

]
.

Taking the dataset distribution P of Table 1 again, we can see that {A1, A2} and
{A3} are complete and non-redundant for P . Sub-sequences composed by individual
non-constant features like {A1} and {A2} are non-redundant, but not complete for P .
Finally, sub-sequences like {A1, A2, A3}, {A2, A3} and {A1, A3} are complete, but not
non-redundant for P .

Definition 5. Let P be a dataset distribution over A × C. Let Bi be a sequence of finite sets,
B = B1 × B2 × ...× Bp and Â=A× B. We say that a dataset distribution Q over Â × C is an

extension of P , if (i) P
[

EQS (s)
]
= P

[
EPS (s)

]
for all S = S1 × S2 × ...× Sm and s ∈ S , where

S ⊂ {Ai} ∪ C and (ii) for all not null pattern a ∈ A there is some pattern b ∈ B such that
P
[

EQB (b) | EQA(a)
]
= 1.

Definition 5 formalizes the notion of feature construction. It consists of a new dataset
distribution whose set of features contains the set of features of the original dataset with the
same distribution according to the first property. However, according to the second prop-
erty, the new distribution also contains new features whose values are entirely determined
by the shared features.

Following the dataset distribution P of Table 1, we denote a dataset distribution P̂
from Table 1 where we eliminate the feature A3. Notice that P is an extension of P̂ , because
(i) as P̂ is P without a feature, then they have the same probabilities for the common
features and (ii) if we know the values of features 1 and 2, then we know the value of
feature 3 with probability 1 for any not-null pattern.
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3. Features: Selection vs. Construction

In this section, we use the mathematical notions defined above to compare selection
with feature construction. In this sense, feature selection is denoted as an elimination of
features, while feature construction is denoted as incorporating new features.

Feature selection methods that do not involve the classifier in the selection are called
filter methods. These methods are based on applying some measure that seeks to obtain a
subset of features, which contains the same amount of information as the original set but
without any redundancy. The literature reports several of these methods; however, they
believe that a non-redundant set of features should be as small as possible. This condition
can be mathematically described as obtaining a complete and non-redundant sub-sequence
of features B for P , where we minimize |B|.

Mathematically we can define the construction of features from a dataset distribution
P as any extension of P . Feature construction consists of computing new features from
the original features. If the result ends up with more features than the original, we come
across a method contrary to the minimization criterion of the feature selection by filtering
methods.

One of the principles of feature selection by the filtering methods is that redundancy in
features is detrimental. We refer to a redundant feature in the sense that all the information
existing in the feature can be obtained from a subset of features that does not contain the
feature itself. In that sense, the construction of features without a subsequent selection
of features only produces redundant features. Formally, we are saying that if Q is an
extension of P as constructed in Definition 5, then P

[
EPC (c) | EPA(a)

]
= P

[
EQC (c) | EQÂ(â)

]
for all c ∈ C and all not-null congruent patterns a, â of A, Â, respectively. In other words,
although pattern a has extra features to â, that does not modify the probabilities of obtaining
any class c; therefore, the extra features do not provide information.

The notion of feature construction introduced by Definition 5 does not add more
information because the original features define the new features entirely. Therefore, we
are interested in knowing what else can be provided by new features in case these features
do not have more information than what already exists.

We analyze a simple example of a classification algorithm interacting with a con-
structed feature before presenting theorems with more general results. First, we consider
the distribution of Table 2, where we assume that the original features are 1 and 2. For each
pattern a ∈ A, feature 3 is defined as a3 = (a1)

2. Second, we consider a classifier based
on the logistic model. If we denote L(x) = 1

1+e−x and the internal parameters or weights
v0, v1, v2 ∈ R, the logistic model applied to the original features of pattern a ∈ A outputs 1 if
L(v0 + a1v1 + a2v2) >

1
2 and 0 otherwise. Denoting another parameter v3 ∈ R, the logistic

model applied to all features of pattern a ∈ A outputs 1 if L(v0 + a1v1 + a2v2 + a3v3) >
1
2

and 0 otherwise. Notice that in Figure 1, if we apply the logistic model in the original fea-
tures, we obtain a linear classifier on the plane for features 1–2 that cannot give the correct
class to all instances. Therefore this first model has under-fitting problems. However, if we
take the second logistic model with the parameters v0 = 17/4, v1 = −4, v2 = 0, and v3 = 1,
we obtain a non-linear model over the plane for features 1–2 with the region between Att.
1 = 1.5 and Att. 2 = 2.5 for class 0 and the rest of the plane for class 1. This second logistic
model is equivalent to a third logistic model applied to the original features of pattern
a ∈ A that outputs 1 if L

(
v0 + a1v1 + a2v2 + (a1)

2v3

)
> 1

2 and 0 otherwise. We say that
both logistic models are equivalent because they partition the plane of features 1–2 exactly
as Figure 1 shows. In both the second and third models there is an extra parameter v3
that modulates the non-linearity in the plane of features 1–2. The second model is a linear
model over the space produced by the features 1–3 and behaves non-linearly in the plane
of features 1–2 due to feature 3. Instead, the third model is an inherently nonlinear model
for features 1–2 for v3 distinct to 0. Therefore, the construction of features can increase
the representation capacity of the model and solve under-fitting problems like the one we
observed with the first model.
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Table 2. Example of linear separability thanks to a new redundant feature.

Att. 1 Att. 2 Att. 3 Class

1 0 1 1

2 0 4 0

2 1 4 0

3 0 9 1

Figure 1. Graph corresponding to Table 2 without feature 3.

4. A Theoretical Analysis of Feature Construction

In this section, we present results that generalize what was stated in Section 3. The fol-
lowing theorem refutes the idea that the fewer features we use without losing information,
the better for the classification problem.

Theorem 1. Let P be a non-constant dataset distribution over A× {0, 1}, whose set of features
{Ai} is non-redundant in P . Take p as the total number of non-null patterns in P whose value
by fP is the minority class between zero and one. For all integer m in [p, n + 1] there is a set of
m features {Bi} and an extension Q of P , such that (i) Q is a distribution over Â × {0, 1} where
Â=A× B, (ii) {Bi} is a non-redundant set of features in Q, (iii) there is a linear classifier that
computes fP (a) from b, if b̂ = (a, b) is a not-null pattern of Â.

Proof. Let N be the set of not-null patterns of A according to P . We denote a partition
{Ni} of N of size m, where each Ni contains a pattern with value one and a pattern with
value zero according fP . We also take Bi = {0, 1} for all i. Then we construct Q : for
each a ∈ N we have (a, b) ∈ Â, such that: if a ∈ Nk then bk = fP (a) and bi = 0 for all
i 6= k. As fP (a) is fully determined by a and b is fully determined by fP (a), then b is fully
determined by a and Q is an extension of P .

For the second property, we denote B̂i = B1 × ...× Bi−1 × Bi+1 × ...× Bm and three
patterns b, b̃ ∈ B, b̂ ∈ B̂i. We take b, b̂ with all terms zero and b̃ with all terms zero except
b̃i = 1. Notice that b̂ is congruent to the other patterns and all are non-null patterns, this
implies that EQB (b), EQB

(
b̃
)
, and EQB

(
b̂
)

are events with non-zero probability. Then we
have:

P
[

EQC (1) | EQB (b)
]
=

P
[

EQC (1) ∩ EQB (b)
]

P
[

EQB (b)
] (1)

and:

P
[

EQC (1) | EQB̂i

(
b̂
)]

=
P
[

EQC (1) ∩ EQB̂i

(
b̂
)]

P
[

EQB̂i

(
b̂
)] =

P
[

EQC (1) ∩ EQB (b)
]
+ P

[
EQC (1) ∩ EQB

(
b̃
)]

P
[

EQB (b)
]
+ P

[
EQB
(
b̃
)] . (2)
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As x
y < z

w implies that x
y < x+z

y+w for real positive numbers x, y, z, w and:

P
[

EQC (1) ∩ EQB (b)
]

P
[

EQB (b)
] <

P
[

EQC (1) ∩ EQB
(
b̃
)]

P
[

EQB
(
b̃
)] . (3)

Thus, we have:

P
[

EQC (1) | EQB (b)
]
< P

[
EQC (1) | EQB̂i

(
b̂
)]

. (4)

For the last property, we need to construct a logistic model that outputs one if
L(∑i bi) > 1

2 and zero otherwise. Notice that this linear classifier computes fP (a) for
all not-null pattern b̂ = (a, b) from Q.

Notice that {Bi} can be much bigger than {Ai}. However, inferring the category
labels from {Ai} can be as complex as we want, at the same time that selecting the bigger
set {Bi} instead we will have a problem that is solved by a linear classifier. Therefore, a
feature selection method would choose {Ai} over {Bi} under the criterion of minimizing
the number of features.

Although we refer to complexity, there is no single measure of complexity for classifi-
cation problems [40]. However, it is observed that classifiers that use a single variable, arti-
ficial neural networks of a single neuron, and the simplest SVM models are linear classifiers.
Additionally, linear classifiers have a VC dimension of the value of only two [41]. Therefore,
for our purpose, we consider linearly separable sets as those with less complexity.

Theorem 1 shows an extreme case where feature construction breaks a standard
criterion for feature selection methods. However, theorem-proof does not present a practical
method for feature construction because we can only build the features in the training set.
We note that to construct features {Bi}, we must know in advance the most probable class
for each pattern in A. That is to say, first solve the classification problem only with the
features of {Ai}, which does not make sense. Therefore, we will now study a standard
method for constructing features.

The following definition generalizes the construction of features using monomials,
which was used as an example in Section 3. The idea is that there is a feature equivalent to
each monomial of degree less than or equal to k from the original features.

Definition 6. Taking same terms from Definition. We denote P k as a k-monomial extension
of P and A(k) as the product of features of P k, if (i) for each i, there is a monomial function
f : A(k) → R of grade equal or less than k, such that âi = f (â1, â2, ..., ân) for each not-null
pattern â ∈ A(k) and (ii) for each monomial function f : A → R of grade equal or less than k
there is some i, such that âi = f (â1, â2, ..., ân) for each not-null pattern â ∈ A(k).

For example, suppose that the dataset distribution P has three features and de-
note (a1, a2, a3) as a pattern for those features. Then, a pattern from P2 could of be
the form

(
a1, a2, a3, a2

1, a2
2, a2

3, a1a2, a1a3, a2a3
)

and a pattern from P3 could be of the form(
a1, a2, a3, a2

1, a2
2, a2

3, a1a2, a1a3, a2a3, a3
1, a3

2, a3
3, a2

1a2, a2
1a3, a2

2a3, a1a2
2, a1a2

3, a2a2
3
)
.

Notice that Definition 6 does not give an explicit order for the new features, however
Definition 5 just guarantees that the first n features of P k are the original features of P .
Then the features i in P k for i > n are in function of the first n features in P k (that also are
the features of P).

The following theorem describes how the feature construction method described in
Definition 6 can reduce the complexity of the classification problem.

Theorem 2. For all dataset distribution P over A× {0, 1}, there is some k such that some linear
classifier computes fP k from the not-null patterns of P k.
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Proof. Let P be a dataset distribution over A × C whose features Ai have more than
one possible value, without loss of generalization. We denote (i) the minimum absolute
difference between values in the feature Ai as βi, (ii) the difference between the maximum
and minimum values in the feature Ai as δi and (iii) the maximum δi/βi as D. Then, from
a ∈ A we define the function g(a) = ∑i ai(3D)i−1, which is a polynomial of grade 1 on the
terms of a. Notice that g is an injective function if we take A as the domain. We denote P
as the Lagrange polynomial, such that P(g(a)) = fP (a). Let k be the maximum grade in a
monomial from P(g(a)) where we take the variables {ai}. Then P(g(a)) = P̂(â) for some
polynomial P̂ of grade 1 and â ∈ A(k). Although P̂ is a regression model, it takes only zero
or one values in the patterns â ∈ A(k) and therefore can be taken as a linear classification
model.

We present an example with Table 3, the first two columns with the class corresponding
to a dataset distribution P for an XOR function, which is not linearly separable. However,
the 2−monomial expansion P2 is a linearly separable dataset distribution.

Table 3. XOR function under 2-monomial expansion.

a1 a2 a2
1 a1a2 a2

2 Class

1 1 1 1 1 0

1 0 1 0 0 1

0 1 0 0 1 1

0 0 0 0 0 0

Definition 7. Let {Pi} be a sequence of dataset distributions, if Pi+1 is an extension of Pi for all
i, then {Pi} is a progressive sequence of dataset distributions.

This definition seeks to formalize the notion of a feature construction method that is
applied iteratively, producing an unbounded quantity of new features. For example, if
we construct each k-monomial extension of P , such that the features of P k have the same
indices in P k+1, then

{
P i} is a progressive sequence of dataset distributions.

Definition 8. We say that a feature construction method is linearly asymptotic if from all dataset
distribution P over A× {0, 1}, feature construction methods produce a progressive sequence of
dataset distributions {Pi}, such that there is some k and a linear classifier that can compute fP k

from P k.

Finally, we present a desirable property for any feature construction method. This
property is equivalent to a feature construction method never getting stuck in patterns that
are not linearly separable. Proving that a feature construction method is linearly asymptotic
represents a formal validation of the method. For example, by Theorem 2, we conclude
that the k−monomial construction method is linearly asymptotic.

Note that this desired property is similar to the kernel trick exploited by SVM models,
where the data are mapped to a larger-dimensional space, such that a low-capacity classifier
can separate the classes [42].

5. Experimental Results

In this section, we present the experimental results. We analyze the accuracy under
the application of classification algorithms on pre-processed real and artificial datasets with
their k-monomial extensions. The classification algorithms used are Naive Bayes, logistic
regression, KNN, PART, JRIP, J48, and random forest. The classifiers mentioned were
executed using the Waikato Environment for Knowledge Analysis (Weka) software [43].
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5.1. Datasets from Real Classification Problems

The real data correspond to the Speaker Accent Recognition dataset [44], Algerian
Forest Fires dataset [45], Banknote Authentication dataset [46], User Knowledge Modeling
dataset [47], Glass Identification dataset [48], Wine Quality dataset [49], Somerville Happi-
ness Survey dataset [50], Melanoma dataset, and Pima Indians Diabetes dataset [51]. As
the experimental analysis is limited to binary classification problems, we took only the
instances that belong to one of the two majority classes in the case of the Speaker Accent
Recognition dataset, User Knowledge Modeling dataset, Glass Identification dataset, and
Wine Quality dataset.

Before the analysis, we applied the k-monomial extension for k = 2 and 3 in the datasets
obtaining two new datasets per original dataset. Finally, we applied a normalization

f (ai) =
(ai − inf Ai)

(sup Ai − inf Ai)
(5)

on all datasets and features Ai, where ai ∈ Ai. Table A1 shows more details about the
datasets and their k-monomial extensions.

5.2. Datasets from Artificial Classification Problems

The synthetic datasets are generated according to five rules that organize the datasets
into five corresponding families. We first generate n features with r possible values for
each dataset. The value of each feature given in an instance is generated from the ceiling
function applied on a value x with uniform distribution in the interval [0, r]. For each rule,
four datasets are generated with the following characteristics: (1) 2 features and 50 possible
values; (2) 3 features and 30 possible values; (3) 4 features and 10 possible values; (4) 4
features and 5 possible values. The five binary rules for assigning classes to each instance
are described below:

• The first rule assigns the category TRUE if the function,

Υr
n : {1, 2, ..., r}n → {TRUE, FALSE},

is greater than zero and otherwise assigns the category FALSE. The function Υr
n is

defined as:

Υr
n(a) = cos

(
(∑n

i=1 ai)π

(r− 1)n

)
. (6)

• The second rule assigns the category TRUE if the function,

Φr
n : {1, 2, ..., r}n → {TRUE, FALSE},

is greater than zero, and otherwise assigns the category FALSE. The function Φr
n is

defined as:

Φr
n(a) =

n

∏
i=1

cos
(

aiπ

r− 1

)
. (7)

• The third rule assigns the category TRUE if the function,

Ψr
n : {1, 2, ..., r}n → {TRUE, FALSE},

is greater than zero, and otherwise it assigns the category FALSE. The function Ψr
n is

defined as:

Ψr
n(a) =

(
n

∏
i=1

(ai + 1)

)
−
( r

2

)n
. (8)

• The fourth rule assigns the category TRUE if the function,

Ωr
n : {1, 2, ..., r}n → {TRUE, FALSE},
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is greater than zero, and otherwise assigns the category FALSE. The function Ωr
n is

defined as:

Ωr
n(a) =

(
n

∑
i=1

(
ai −

r− 1
2

)2
)
−
(√

n(r− 1)
3

)2

. (9)

• The fifth rule assigns the category TRUE if the function,

Γr
n : {1, 2, ..., r}n → {TRUE, FALSE},

is greater than zero, and otherwise assigns the category FALSE. The function Γr
n is

defined as:

Γr
n(a) =

(
n

∑
i=1

ai

)
− nr

2
. (10)

Before the analysis, we applied the k-monomial extension for k = 2, 3, 4, and 5 in
the datasets obtaining four new datasets per original dataset. Finally, we applied the
normalization

f (ai) =
(ai − inf Ai)

(sup Ai − inf Ai)
(11)

on all datasets and features Ai, where ai ∈ Ai. Table A6 shows more details about the
datasets and their k-monomial extensions.

5.3. Analysis from the Real Datasets

In this subsection, we present the results corresponding to the real datasets. For the
real datasets we have graphics like Figure 2 for the Speaker Accent Recognition dataset, that
show the true positive, true negative, false positive, and false negative of the classification
algorithms on each dataset, and their k-monomial extensions (Figures A1–A8, corresponding
to the rest of the datasets are in the appendix). The values are calculated using 10-fold cross
validation. For each algorithm, three joined bars are presented, showing the configuration
of the confusion matrix. From left to right, the first bar corresponds to the original dataset,
the second corresponds to the 2-monomial extension, and the last one corresponds to the
3-monomial extension. We represent the confusion matrix to show that the criteria for
evaluating improvements in classification are adequate for these examples. We can see
that there is little difference between the values of the original dataset and the k-monomial
extensions most of the time. However, there are a few cases where the original dataset
presents a significantly better accuracy, such as the naive Bayes classifier in Figure A1 and
the J48 classifier in Figure A2. However, there are some cases where some k-monomial
extension presents some accuracy slightly higher than the original dataset.

NB LG KNN Part JRIP J48 RF SVM ANN
0

25

50

75

100

125

150

175

200

Speaker Accent Recognition Classification Results

TP
TN
FP
FN
no_class

TP
TN
FP
FN
no_class

Figure 2. Graph corresponding to the Speaker Accent Recognition dataset. In blue are true positives,
in orange are true negatives, in green are false positives, in red are false negatives and in purple are
unclassified instances.



Mathematics 2021, 9, 2899 11 of 22

5.4. Analysis from the Artificial Datasets

In this subsection, we present the results corresponding to the artificial datasets. For
the synthetic datasets we present results like Table 4 (for the first family of datasets) that
shows the accuracy of the classification algorithms on each dataset and their k-monomial
extensions (Tables A2–A5, corresponding to the rest of the families of datasets are in the
Appendix A). The values are calculated using 10-fold cross-validation. Each dataset has
a column indexed by “n-r”, where n is the number of features, and r is the cardinality
of the features. For each dataset and algorithm, the original accuracy corresponds to the
original dataset accuracy. Best accuracy corresponds to the highest precision between the k-
monomial extensions, and grade corresponds to the k for which the k-monomial extensions
reach the highest precision. In all families of datasets, we can see that the k-monomial
extensions tend to have better accuracy than the original datasets. However, there are
cases where the original dataset has more accuracy, but without exceeding 5%. We can
also observe that the 5-monomial extension is common, as the case with greater accuracy.
Notice that the 5-monomial extension is the dataset with a larger subset of redundant
features.

Table 4. Results of artificial data from Family 1, where we only show the accuracy for the best values of k.

Family 1

2-50 3-30 4-10 5-5

Naive Bayes

Original Accuracy 46.80 50.00 54.33 62.50

Best Accuracy 56.00 51.60 53.67 65.00

Grade 3 2 2 2

Logistic Regression

Original Accuracy 47.80 52.00 53.33 64.00

Best Accuracy 99.20 56.20 54.67 65.00

Grade 5 5 3 2

KNN

Original Accuracy 94.80 82.20 53.00 61.50

Best Accuracy 94.80 84.40 53.67 64.5

Grade 3 3-4-5 3 3-4

Rules PART

Original Accuracy 54.60 52.40 52.00 64.50

Best Accuracy 96.20 63.20 52.67 64.50

Grade 5 5 4-5 3-4

Rules JRip

Original Accuracy 86.20 53.00 54.33 59.50

Best Accuracy 95.20 63.6 56.33 62.50

Grade 3 5 4 3

Trees J48

Original Accuracy 54.60 52.00 51.33 68.00

Best Accuracy 97.20 66.8 54.00 65.50

Grade 3-4 5 5 4

Trees RF

Original Accuracy 93.40 68.60 51.67 65.50

Best Accuracy 97.40 81.0 55.67 63.00

Grade 4 3 2 5

SVM

Original Accuracy 50.80 49.60 55.67 64.00

Best Accuracy 70.40 53.80 58.67 65.50

Grade 4 2 3 3

ANN

Original Accuracy 90.00 51.20 50.67 59.50

Best Accuracy 98.20 87.00 53.67 65.00

Grade 4 3 4 2
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6. Discussion

This is not the first work that relates features to data-complexity. The quotient between
the number of instances and the number of features (known as the T2 measure) has been
studied as a measure of data complexity [40]. However, T2 is independent of the notion of
complexity in this work, since we can define linearly separable datasets in all ranges of T2.
There are also applications of complexity measures for the feature selection problem, but
applying a mainly experimental analysis [52–55].

The concept of a redundant set of features is based on the relevant feature definition
of John et al. [56]. There are several other definitions for redundancy or redundant features.
However, these definitions are more oriented to applications than a theoretical analysis of
redundancy and its effects [57–64].

Our theoretical results show that many redundant features can reduce the complexity
of the data. This result is interpreted in that a feature can provide representativeness
without providing extra information, as seen in the example in Section 3. It can also be
interpreted that redundant features are capable of increasing the capacity of the model.

Our experimental results reinforce the evidence that redundancy itself is not necessar-
ily detrimental. The real and synthetic datasets showed that extended datasets with many
redundant features constructed as monomials could achieve higher accuracy. However,
higher accuracy was more pronounced in synthetic datasets. The synthetic datasets applied
did not have noise and had few dimensions, which are the main differences to the real
datasets studied.

Usually, redundant features before preprocessing entail a greater complexity of the
algorithm than the classifier induces. The reason is that the classifier cannot find the optimal
(global) rule, because the search space increases exponentially. Therefore, it returns a local
optimum. Due to this increased search space, as we increase the features, the problem
increases the difficulty and, tends to be classifiers with poorer performance. However, this
fact occurs because those initial features do not add enough expressiveness. Therefore,
features obtained from suitable construction methods cannot be equally treated in the same
way as an initial feature.

Finally, the increase or decrease of features implies an increase or decrease of parame-
ters in the model, respectively. Therefore, the choice of features can induce overfitting or
underfitting. However, these learning problems are not commonly studied in the devel-
opment of feature selection methods. Therefore, the criteria for selecting features should
consider the information provided by each feature and the representativeness provided
by the features. Furthermore, in the same way that there are regularization methods to
avoid overfitting by the internal parameters of the model, regularization methods could be
developed against the excess of features.

7. Conclusions

The main finding of this work is that attributes that are redundant from an information
viewpoint indeed reduce under-fitting. Theoretical and experimental evidence is provided
for this finding. However, these results are limited to binary classification problems
with numerical attributes. Therefore, continuations of this work can be extended on the
following points:

• Extension of the analysis on multi-class classification problems and with a significant
proportion of categorical attributes.

• Extension of the analysis on regression problems.
• Extension of the analysis on models with a large number of parameters, where the

phenomenon of under-fitting is unlikely, such as deep learning models.
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Appendix A
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Figure A1. Graph corresponding to the Algerian Forest Fires dataset. In blue are true positives, in
orange are true negatives, in green are false positives, in red are false negatives, and in purple are
unclassified instances.
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Figure A2. Graph corresponding to the Banknote Authentication dataset. In blue are true positives,
in orange are true negatives, in green are false positives, in red are false negatives, and in purple are
unclassified instances.
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Figure A3. Graph corresponding to the User Knowledge Modeling dataset. In blue are true positives,
in orange are true negatives, in green are false positives, in red are false negatives, and in purple are
unclassified instances.
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Figure A4. Graph corresponding to the Glass Identification dataset. In blue are true positives, in
orange are true negatives, in green are false positives, in red are false negatives, and in purple are
unclassified instances.
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Figure A5. Graph corresponding to the Somerville Happiness Survey dataset. In blue are true
positives, in orange are true negatives, in green are false positives, in red are false negatives, and in
purple are unclassified instances.
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Figure A6. Graph corresponding to the Melanoma dataset. In blue are true positives, in orange are
true negatives, in green are false positives, in red are false negatives, and in purple are unclassified
instances.
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Figure A7. Graph corresponding to the Pima Indians Diabetes dataset. In blue are true positives, in
orange are true negatives, in green are false positives, in red are false negatives, and in purple are
unclassified instances.
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Figure A8. Graph corresponding to the Wine Quality dataset. In blue are true positives, in orange are
true negatives, in green are false positives, in red are false negatives, and in purple are unclassified
instances.
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Table A1. Basic information about the real datasets. The column “Instances” denotes the number of
entries in the dataset. The column “Original” denotes the number of features in the original dataset.
The columns “2-Mon. Ext.” and “3-Mon. Ext.” denote the number of features in the 2-monomial
extension and 3-monomial extension, respectively.

Data-Set Instances Original 2-Mon. Ext. 3-Mon. Ext.

Speaker Accent Recognition 210 12 90 454

Algerian Forest Fires 122 13 104 559

Banknote Authentication 1371 4 14 34

User Knowledge Modeling 251 5 20 55

Glass Identification 146 9 54 219

Melanoma 104 19 209 1539

Pima Indians Diabetes 767 8 44 164

Somerville Happiness Survey 143 6 27 83

Wine Quality 3655 11 77 363

Table A2. Table corresponding to results of artificial data from Family 2.

Family 2

2-50 3-30 4-10 5-5

Naive Bayes

Original Accuracy 49.67 52.30 48.00 56.00

Best Accuracy 71.33 57.10 49.00 53.33

Grade 5 5 4 3-4

Logistic Regression

Original Accuracy 45.33 51.50 48.80 51.33

Best Accuracy 99.00 99.20 91.80 56.0

Grade 3 3 4 5

KNN

Original Accuracy 98.00 91.60 85.40 59.33

Best Accuracy 97.33 91.10 80.20 62.67

Grade 2-3-4 2 2 4

Rules PART

Original Accuracy 53.67 51.70 49.20 52.67

Best Accuracy 98.33 95.60 69.40 53.33

Grade 5 3 4 2

Rules JRip

Original Accuracy 99.33 99.70 61.20 52.00

Best Accuracy 97.33 95.80 62.00 53.33

Grade 5 2 3 2-3-4

Trees J48

Original Accuracy 53.67 53.30 49.20 53.33

Best Accuracy 98.67 98.40 71.20 56.00

Grade 2-3-5 5 5 2

Trees RF

Original Accuracy 99.33 99.80 80.80 49.33

Best Accuracy 99.00 99.80 79.60 47.33

Grade 3 2 3 2

SVM

Original Accuracy 53.67 52.10 45.60 54.67

Best Accuracy 92.00 78.90 55.40 56.00

Grade 5 5 5 3

ANN

Original Accuracy 81.67 65.90 65.60 53.33

Best Accuracy 96.00 93.10 77.20 66.00

Grade 3-4-5 4 3 3
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Table A3. Table corresponding to results of artificial data from Family 3.

Family 3

2-50 3-30 4-10 5-5

Naive Bayes

Original Accuracy 93.00 91.33 90.17 89.33

Best Accuracy 98.00 91.67 88.33 89.00

Grade 2 5 5 4

Logistic Regression

Original Accuracy 93.00 91.67 88.67 94.67

Best Accuracy 97.00 98.83 96.50 96.33

Grade 2-5 3-4 3 2

KNN

Original Accuracy 95.00 96.00 91.17 89.67

Best Accuracy 97.00 96.33 89.83 87.33

Grade 2-3-4-5 2 2 3

Rules PART

Original Accuracy 91.00 95.00 90.17 85.67

Best Accuracy 99.00 99.50 97.67 92.00

Grade 2-3-4-5 3-4-5 4-5 5

Rules JRip

Original Accuracy 94.00 93.33 87.83 78.33

Best Accuracy 99.00 99.17 97.33 91.00

Grade 2-3-4-5 3-4-5 5 5

Trees J48

Original Accuracy 90.00 94.17 90.33 83.00

Best Accuracy 99.00 99.50 97.17 92.33

Grade 2-3-4-5 3-4-5 5 4

Trees RF

Original Accuracy 94.00 96.67 93.33 88.33

Best Accuracy 100.00 99.83 98.50 95.67

Grade 2-3-4-5 5 5 5

SVM

Original Accuracy 93.00 91.33 89.17 92.67

Best Accuracy 96.00 97.17 95.67 94.67

Grade 5 4-5 5 5

ANN

Original Accuracy 96.00 93.00 94.33 93.00

Best Accuracy 98.00 98.67 97.00 97.00

Grade 2 5 4 2

Table A4. Table corresponding to results of artificial data from Family 4.

Family 4

2-50 3-30 4-10 5-5

Naive Bayes

Original Accuracy 82.00 77.60 82.00 77.33

Best Accuracy 76.00 80.10 75.00 77.67

Grade 2-3-4-5 2 2 2

Logistic Regression

Original Accuracy 68.00 69.80 55.00 62.67

Best Accuracy 98.00 99.40 95.00 96.67

Grade 2-3 2 2 2
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Table A4. Cont.

Family 4

2-50 3-30 4-10 5-5

KNN

Original Accuracy 82.00 91.00 70.00 79.33

Best Accuracy 82.00 91.40 71.00 75.67

Grade 2-3-4-5 2 2 3

Rules PART

Original Accuracy 80.00 89.30 75.00 88.33

Best Accuracy 82.00 91.50 77.00 90.00

Grade 4 3 2-4 2

Rules JRip

Original Accuracy 72.00 88.40 62.00 83.67

Best Accuracy 72.00 90.30 66.00 80.67

Grade 2-3-5 3 2-3 5

Trees J48

Original Accuracy 78.00 91.00 62.00 85.33

Best Accuracy 80.00 90.90 75.00 87.33

Grade 3-4 2-5 3 2

Trees RF

Original Accuracy 76.00 93.60 73.00 88.33

Best Accuracy 78.00 94.10 77.00 89.67

Grade 2 4 3-4 3

SVM

Original Accuracy 66.00 69.80 61.00 64.67

Best Accuracy 82.00 94.40 73.00 94.33

Grade 4 5 4-5 4

ANN

Original Accuracy 84.00 75.90 66.00 69.67

Best Accuracy 96.00 97.70 90.00 93.33

Grade 3 2 2 2

Table A5. Table corresponding to results of artificial data from Family 5.

Family 5

2-50 3-30 4-10 5-5

Naive Bayes

Original Accuracy 95.00 94.00 92.00 90.00

Best Accuracy 98.00 98.00 94.25 92.00

Grade 2-3-4 5 2 2

Logistic Regression

Original Accuracy 99.50 100.00 100.00 100.00

Best Accuracy 99.50 100.00 99.75 93.00

Grade 3 2 3 2

KNN

Original Accuracy 97.00 94.50 96.25 84.00

Best Accuracy 97.00 94.50 96.50 85.00

Grade 2-3-4-5 2 2 4-5

Rules PART

Original Accuracy 91.00 84.50 90.25 80.00

Best Accuracy 97.00 95.00 94.50 88.00

Grade 3 4 5 2
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Table A5. Cont.

Family 5

2-50 3-30 4-10 5-5

Rules JRip

Original Accuracy 92.50 82.50 90.25 78.00

Best Accuracy 96.50 93.50 93.50 90.00

Grade 2 3 4 4

Trees J48

Original Accuracy 90.50 87.00 89.25 79.00

Best Accuracy 95.50 94.00 93.50 88.00

Grade 3 2 4 3

Trees RF

Original Accuracy 94.50 90.00 93.75 85.00

Best Accuracy 98.00 95.50 96.25 93.00

Grade 3-4-5 4-5 3 5

SVM

Original Accuracy 96.00 96.50 96.50 92.00

Best Accuracy 98.00 96.50 99.25 100.00

Grade 2-5 2 2 4-5

ANN

Original Accuracy 100.00 100.00 100.00 100.00

Best Accuracy 100.00 98.00 100.00 100.00

Grade 3-4-5 2 2 2

Table A6. Basic information about the artificial datasets. The column “Family” denotes the corre-
sponding family function. The column “Indices” denotes the number of features and their cardinality.
The column “Instances” denotes the number of entries in the dataset. The column “Original” denotes
the number of features in the original dataset. The columns “2-Mon. Ext.”, “3-Mon. Ext.”, “4-Mon.
Ext.”, and “5-Mon. Ext.”, denote the number of features in the 2-monomial extension, 3-monomial
extension, 4-monomial extension, and 5-monomial extension, respectively.

Family Indices Instances Original 2-Mon.
Ext.

3-Mon.
Ext.

4-Mon.
Ext.

5-Mon.
Ext.

1 2-50 500 2 5 9 14 20

1 3-30 500 3 9 19 34 55

1 4-10 300 4 14 34 69 125

1 5-5 200 5 20 55 125 251

2 2-50 300 2 5 9 14 20

2 3-30 1000 3 9 19 34 55

2 4-10 500 4 14 34 69 125

2 5-5 150 5 20 55 125 251

3 2-50 100 2 5 9 14 20

3 3-30 600 3 9 19 34 55

3 4-10 600 4 14 34 69 125

3 5-5 300 5 20 55 125 251

4 2-50 50 2 5 9 14 20

4 3-30 1000 3 9 19 34 55

4 4-10 100 4 14 34 69 125

4 5-5 300 5 20 55 125 251

5 2-50 200 2 5 9 14 20

5 3-30 200 3 9 19 34 55

5 4-10 400 4 14 34 69 125

5 5-5 100 5 20 55 125 251
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