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Denisse Champin1, Maria G. Mártinez-Fernández3, Christian E. Schaerer2

1 Facultad de Ciencias de la Salud, Universidad Tecnologica del Peru, Lima, Peru, 2 Polytechnic School,

National University of Asuncion, San Lorenzo, Paraguay, 3 Faculty of Engineering, National University of

Asuncion, San Lorenzo, Paraguay

☯ These authors contributed equally to this work.

* maxcrs22@gmail.com, c20330@utp.edu.pe

Abstract

Introduction

Dengue is transmitted by the Aedes aegypti mosquito as a vector, and a recent outbreak

was reported in several districts of Lima, Peru. We conducted a modeling study to explain

the transmission dynamics of dengue in three of these districts according to the demograph-

ics and climatology.

Methodology

We used the weekly distribution of dengue cases in the Comas, Lurigancho, and Puente

Piedra districts, as well as the temperature data to investigate the transmission dynamics.

We used maximum likelihood minimization and the human susceptible-infected-recovered

and vector susceptible-infected (SIR-SI) model with a Gaussian function for the infectious

rate to consider external non-modeled variables.

Results/principal findings

We found that the adjusted SIR-SI model with the Gaussian transmission rate (for modelling

the exogenous variables) captured the behavior of the dengue outbreak in the selected dis-

tricts. The model explained that the transmission behavior had a strong dependence on the

weather, cultural, and demographic variables while other variables determined the start of

the outbreak.

Conclusion/significance

The experimental results showed good agreement with the data and model results when a

Bayesian-Gaussian transmission rate was employed. The effect of weather was also

observed, and a strong qualitative relationship was obtained between the transmission rate

and computed effective reproduction number Rt.
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1 Introduction

Dengue is a viral disease that can result in hospitalization and even death, and its main trans-

mission vector is the Aedes aegypti mosquito [1]. Its endemic characteristics make it a public

health problem. Dengue is now endemic in Africa, America, Asia, and the Western Pacific [2,

3], and South America has seen a dramatic increase in cases in countries such as Colombia,

Ecuador, Paraguay, Peru, Venezuela, and Brazil [4]. In Peru, dengue cases are widely distrib-

uted in different geographical regions such as the coast, mountains, and jungle.

Between 2004 and 2017, there was an increase in dengue cases in Lima. The districts with

the highest incidence rates were Comas (+30 cases/100,000 inhabitants), Lurigancho-Chosica,

and Puente Piedra (10–29 cases/100,000 inhabitants) [2, 5]. Despite the high incidence of den-

gue and the spread of Ae. aegypti in more than 10 districts of Lima [6–9], dengue surveillance

and prevention strategies have been limited to searching for febrile patients, environmental

and hygiene education, and surveillance of entomological indicators (e.g., larva, pupa, con-

tainer, and aedic indices) [10]. Recent studies in Peru have shown that the entomological indi-

cators of Ae. aegypti calculated from epidemiological surveillance have limited utility in

detecting high-risk areas or populations for dengue infection [5, 8, 10]. The presence of dengue

in Lima is related to the growth of the city, the inadequate provision of drinking water services,

intra-domicile and community water storage, inadequate waste disposal, the presence of the

transmission vector, and import of cases from other regions. Thus, the entomological surveil-

lance of Ae. aegypti is being strengthened to control the transmission of dengue in Lima. Other

studies have suggested that the persistence of dengue in Lima can be attributed to insufficient

access to essential sanitation services, discontinuous preventive activities, scarce health person-

nel, and poor community participation in dengue prevention [6, 9, 11, 12].

Several compartmental models have been developed to explain the spread of dengue, from

simple models such as susceptible-infected-recovered (SIR) to more complex models such as

susceptible-exposed-infected-recovered (SEIR) and human susceptible-infected-recovered

and vector susceptible-infected (SIR-SI) [11, 13–15]. These epidemiological models are impor-

tant for explaining the transmission dynamics of dengue and for developing control measures

[16, 17]. However, few studies have modeled dengue transmission dynamics in the context of

Peru. Chowell et al. [6] estimated the transmissibility of dengue outbreaks by using the local

reproduction numbers and assessed the outbreak dependence on community size as a function

of the geographic region. Their findings suggested a hierarchy of transmission events during

the significant 2000–2001 epidemic from large to small population areas when the serotypes

DEN-3 and DEN-4 were first identified (Spearman ρ = 0.43, P = 0.03). In another study, Cho-

well et al. [7] investigated the association between dengue incidence in 1994–2008 and the

demographic and climatic factors across geographic regions in Peru. They found that dengue

is persistent in jungle areas, where epidemics peak most frequently around March when rain-

fall is abundant. Differences in the timing of dengue epidemics in the jungle and coastal

regions showed significant correlations with the seasonal temperature cycle. Despite these

findings, more studies are needed to explain the dengue transmission dynamics in low-trans-

mission areas such as Lima, Peru.

The objective of this study was to describe the transmission dynamics of dengue in three

districts of Lima where Ae. aegypti is circulating by using the SIR-SI model for the period of

2016–2020. We performed a correlation analysis between dengue cases and climatological var-

iables. In this paper, we present the SIR-SI model used to determine the transmission rate

depending on temperature and a Gaussian function for non-modeled variables. We also dis-

cuss the parameter estimation method and the model selection criteria.
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2 Materials and methods

In this study, we used the SIR-SI model incorporating climatic variables as proposed by Lee

et al. [18] to fit the epidemiological curve to data on recurrent outbreaks of dengue in Lima.

Then, we used the differential evolution algorithm [19] to fit temperature-based variables

inside the SIR-SI model as a Gaussian function. We then selected the most appropriate model

based on several metrics. Experiments were performed to evaluate different methods and

criteria.

2.1 Study-area dataset

Weekly cases of dengue, which were organized for 43 districts of Lima Province, were obtained

from the National Center for Epidemiology, Disease Prevention and Control (CDC Peru) [20].

We added all weekly cases from all districts to obtain the number of outbreaks in Lima for

2017, 2019, and 2020. We focused on the period between January 1, 2017, and December 31,

2020. This study received approval from the Ethics Committee at Universidad Tecnológica del

Peru. Because the number of cases is low and the population size of the district is limited, mak-

ing a daily distribution of the time series would be very noisy, because is possible to have unre-

ported cases. In addition, the time period between the occurrence of cases and registration in

the notification system may have delays. So, we restrict our study to a weekly scale.

As shown in Fig 1, the study considered three districts of Lima: Comas, Puente Piedra, and

Lurigancho. Comas is situated in the north of Lima and is bound by San Juan de Lurigancho

to the east and Puente Piedra to the west. The altitude varies between 150 and 811 m. Comas

has an area of 48.75 km2 and a population density of 10,813.6 inhabitants/km2. The population

Fig 1. Geographic location of the selected districts in Lima, Peru.

https://doi.org/10.1371/journal.pone.0284263.g001
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was 524,894 inhabitants in 2017 according to the National Census of the National Institute of

Statistics and Informatics (INEI). Comas has an arid subtropical climate, and it is hot in sum-

mer and mild in winter. The minimum average temperature is 14.2˚C, and the average maxi-

mum temperature is 24.5˚C (average 22.1˚C). Lurigancho has an area of 236.47 km2 and an

altitude of 850 m. The estimated population is 358,754 inhabitants. The weather is sunny

almost all year round, but sporadic rainfall occurs between December and March because of

its proximity to the mountains [21].

2.2 Climatic data

Temperature data for the three districts were obtained from the Global Data Assimilation Sys-

tem (GDAS). This system integrates observations from weather stations to make forecasts

from the global models of the National Oceanic and Atmospheric Administration (NOAA,

https://www.noaa.gov/climate). GDAS combines the observations into a three-dimensional

model space that includes surface observations, balloon data, wind profile data, aircraft

reports, buoy observations, radar observations, and satellite observations. Weekly data were

obtained for each year. For each week, the maximum, minimum, and average temperatures

were obtained.

Fig 2(A) shows the minimum, maximum, and average weekly temperature distributions at

the geographic center of Lima between 2015 and 2020. The average temperature oscillates

between 16˚C and 27˚C. The maximum temperature of 31.30˚C occurs in February.

Fig 2(B) superposes the temperature distribution of each epidemiological week for all con-

sidered years and districts. The temperature in Lima is slightly higher (by 2˚C) than that of the

analyzed districts. The maximum temperature was observed between epidemiological weeks 7

and 11. The minimum temperature was observed between epidemiological weeks 29 and 35.

There is significant literature about the influence of climatic factors such as temperature

and precipitation on the life cycle of mosquitoes. Several studies in different countries have

stated that a lagged temperature effect may explain dengue variability [22].

We performed a cross-correlation analysis on the temperature and dengue to obtain the lag

lead between the two time series and determine the overall correlation between the dengue

incidence rate and mean temperature during the study period. We used the Pearson cross-cor-

relation method [23]:

rxyðtÞ ¼
CxyðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cxxð0ÞCyyð0Þ

q ; ð1Þ

where Cxy(τ) = E[x(t) − ux][y(t + τ) − uy] and x(t) and y(t + τ) are time series of dengue cases

and the mean temperature (lagged by τ time steps), respectively. ux and uy are the mean values

of x(t) and y(t), respectively.

2.3 Temperature-dependent SIR-SI model with exogenous variables

The model was built under the following assumptions.

Assumption 1. The human and mosquito populations are mixed homogeneously. Each mos-
quito has an equal probability of biting a given human.

Assumption 2. In an outbreak, cases are a small fraction of the total population. Hence, only
one strain serotype was considered for all outbreaks.

Assumption 3. The period of an outbreak is relatively short. Hence, we did not consider the
birth and death of humans due to natural causes and other diseases.
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Assumption 4. There are no infections of travelers. We considered the mortality of susceptible
and infected mosquitoes in both the susceptible and infected compartments, and dependent on
the temperature.

Assumption 5. The population of susceptible humans is limited by the radius of action of the
mosquito, so we leave it as a parameter to be estimated.

Assumption 6. Since we don’t have records of the entomological surveillance data, we assume
that the mosquito initial population is always double the initial susceptible population of
humans, as our baseline work [18]

Fig 2. Temperature distribution between 2015 and 2020 in Lima, Peru: (A) Weekly minimum (green), maximum (orange), and average (blue)

temperatures between 2015 and 2020. (B) Box plots showing the temperature distribution for each epidemiological week and for each district.

https://doi.org/10.1371/journal.pone.0284263.g002
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Assumption 2 is realistic because relatively few people were infected compared to the entire

population of the districts considered in this study. In addition, because only the number of

cases was counted, they were considered to be from a single circulating serotype. Assumption

3 establishes that the dynamics of dengue transmission is faster than the dynamics of the births

and deaths of the population. The deaths suffered by the mosquito population during an out-

break were attributed to the temperature variations (Assumption 4)

We applied a compartmental model where the host and vector populations are divided into

classes. One individual of each population passes from one class to another at a suitable rate

set by the model. The SIR-SI model is given by the following equations [24–26]:

dSh

dt
¼ � bvh

Sh

Nh
Iv ð2Þ

dIh
dt

¼ bvh
Sh

Nh
Iv � gIh ð3Þ

dRh

dt
¼ gIh ð4Þ

dSv

dt
¼ � bhvSv

Ih
Nh
� mSv ð5Þ

dIv
dt

¼ bhvSv
Ih
Nh
� mIv; ð6Þ

where the sub-indices h and v denote the host and vector, respectively. The parameter b 2 Rþ
is the transmission rate (host-to-vector: bhv 2 Rþ, vector-to-host: bvh 2 Rþ). g 2 Rþ is the

recovery rate for hosts, m 2 Rþ is the mortality rate of adults in the vector population, and

S 2 N, I 2 N, and R 2 N represent the susceptible, infected, and recovered fractions, respec-

tively, of a population.

The initial values for the host population are

Sh0
¼ 1 � Ih0

; Ih0
¼ 1=Nh; and Rh0

¼ 0 ð7Þ

The initial values for the vector population are

Sv0
¼ 1 � Iv0

and Iv0
¼ 1=Nv; ð8Þ

where Nh and Nv are the host and vector populations, respectively. According to the reference

model, Nv = 2Nh, and Nh is an estimated parameter. Fig 3 shows a conceptual diagram of the

SIR-SI model.

According to Lee et al. [18], the temperature can be incorporated into calculating the trans-

mission rates bvh; bhv 2 R as follows:

bvh ¼ x1 b bh; ð9Þ

bhv ¼ x2 b bv; ð10Þ

where b; bh; bv 2 Rþ are the daily biting rate of a mosquito, the probability of infection

(human to mosquito) per bite, and the probability of infection (mosquito to human) per bite,
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respectively.The transmission probabilities 0� x1� 1 and 0� x2� 1 are constants that can be

obtained by data fitting.

The functions b, bh, and bv are temperature-dependent variables whose functions are given

in Fig 4. They are defined as follows [27–29] (S1 File).

A lagged cross-correlation can be found between dengue cases and the season. To capture

this phenomenon, we considered the effects of weather on the transmission rate by replacing

the constants x1 and x2 with a time-dependent variable bex 2 R resulting from a Gaussian

function. The Gaussian function is defined as [14]

bex≔k e
�

ðx � uÞ2

2s2
; ð11Þ

where k 2 R is a constant, u 2 R is the mean, and s2 2 R the variance.

Then, βhv and βvh can be computed as

bvh ¼ bex b bh; ð12Þ

bhv ¼ bex b bv; ð13Þ

where βex is the value corresponding to the fitted Gaussian function defined in (11). The

parameter βex allows us to consider a possible dispersion of cases due to several exogenous fac-

tors, including mosquito diapause.

Fig 3. Conceptual diagram of the SIR-SI model. S: susceptible; I: infected/infectious; R: recovered; v: vector; βvh: vector-to-host transmission rate; βhv:

host-to-vector transmission rate; γ: recovery rate; μv: vector mortality rate.

https://doi.org/10.1371/journal.pone.0284263.g003
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2.4 Parameter estimation

Parameter estimation can be formulated as an optimization problem, where the best model

parameters within the permissible range are found by maximizing a likelihood function [27].

Let Y be a set of weekly reported cases Y = [y1, y2, � � �, yn]T during an outbreak containing n
consecutive observations. One common assumption to fit the model to given data is that the

observational errors follow a normal distribution or likelihood function, such as the least-

squares error. If the distribution of each model parameter can be organized in a vector θ = [Nh,

k, u, σ]T so that θ 2 Θ, where Θ is the parameter space, then let mi be the prediction of the

model for each observation (i.e., a function of θ). Then the likelihood function takes the follow-

ing form:

Liðyi; yÞ≔N ðyi � miðyÞ; s
2
i Þ; ð14Þ

where σi(t)2 is the assumed variance of the model error (i.e., 1=
ffiffiffiyp

k
) and yk is the mean number

of cases reported that month. Another assumption is that each observation is statistically inde-

pendent, so

LðY; yÞ≔
Yn

i¼1

N ðyi � miðyÞ; s
2

i Þ: ð15Þ

Fig 4. Temperature-based functions for (a) μ, (b) b, (c) bh, and (d) bm.

https://doi.org/10.1371/journal.pone.0284263.g004
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Thus, the maximum likelihood estimation (MLE) takes the following form:

MLE≔arg max
y

LðY; yÞ ¼ arg max
y

Yn

i¼1

N ðyi � miðyÞ; s
2

i ÞÞ: ð16Þ

It is often convenient to work with the natural logarithm of the likelihood so that we can

use minimization algorithms. Thus, the problem is equivalent to minimizing the sum of the

negative log-likelihood (SNLL):

MLE ¼ arg min
y

SNLL≔ arg min
y

�
Xn

i¼1

log
1
ffiffiffiffiffiffi
2p
p e

�

ðyi � miðyÞÞ
2

2s2
i

0

B
B
@

1

C
C
A: ð17Þ

Note that, to obtain the model predictions mi(θ), the ordinary differential equation should

be approximated numerically for each step of the optimization algorithm. Is also important to

remark that we fit the data only when the mean reported cases of the month is larger than two,

this is to avoid the weeks the reported cases are too low. In addition, note that the free parame-

ters inside θ define the population size Nh and the Gaussian parameters of the exogenous

parameter βex (i.e. u, σ, and k).

To solve the optimization problem, we have to use the differential evolution algorithm [30],

which can search large areas of parameter space but often requires more function evaluations

than conventional gradient-based techniques.

We performed experiments to select the best model and to determine which parameters

can be left free to be estimated. Four experiments were set up:

1. Model 1: u estimated, σ = 1, k = 1;

2. Model 2: u estimated, σ estimated, k = 1;

3. Model 3: u estimated, σ = 1, k estimated;

4. Model 4: u estimated, σ estimated, and k estimated;

The model performances were evaluated for fit to the observed data according to the follow-

ing criteria.

1. Maximum Likelihood Estimation (MLE): The observations were assumed to have a normal

error, as described in (16).

2. Akaike Information Criteria (AIC) [31, 32]: This measures the relative quality of a statistical

model for a given dataset. AIC is defined as

AIC≔2q � 2 ln ðMLEÞ ð18Þ

where q is the number of model parameters and MLE is the previously defined MLE.

3. Bayesian Information Criteria (BIC) [23]: This is based on the probability function and is

closely related to AIC. It is defined as

BIC≔q ln ðnÞ � 2lnðMLEÞ ð19Þ

where q is the number of model parameters, n is the number of points evaluated and MLE
is the previously defined MLE.

Each model was evaluated according to AIC, BIC, and MLE. These metrics were used to

assess the quality of the fit [33]. Lower values indicated a better fit.
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The model parameters used in the experiments are listed in Table 1.

During the analyzed period (2016–2020), 650 dengue cases were reported in the three dis-

tricts. Most of the cases were reported in Comas (76.5%), followed by Lurigancho (13.4%) and

Puente Piedra (10.2%). The distributions of cases by week and year are presented in Table 2.

3 Results

3.1 Cross-correlation analysis

As shown in Fig 5, we found a lagged cross-correlation for the reported dengue cases in each

district and each year under study. The maximum values in Fig 5A, 5C and 5E correspond to a

15-week delay between the peaks of the dengue cases and summer temperature while Fig 5B

and 5F indicate a slightly shorter delay. Puente de Piedra in 2020 showed a much larger lag of

24 weeks, as shown in Fig 5D. The different lag values indicate that other exogenous factors

related to the human population or environment may have had an effect. This was why we

needed to include a new parameter to quantify this delay in the model.

3.2 Model selection

Table 3 presents the experimental results for the model selection. Model 4 performed better

than models 1–4 according to all of the evaluation criteria: AIC, BIC, and MLE. In some cases,

it performed up to twice as well as the other models despite being more complex in terms of

the number of parameters.

Models 2 and 3 each used k = 1 and σ = 1 while Model 1 only adjusted u. These three mod-

els performed similarly, which tells us that using fixed parameters degraded the model fit.

Table 4 presents the values of the adjusted parameters k, u, and σ for each model. We can

interpret these values in the context of an epidemiological outbreak because βvh,hv represents

the transmission rate and the parameters u, σ, and k of βex affect it directly.

Table 1. Model parameters.

Parameter Symbol Value Range Source

Infectious period for humans γ 1 Fixed [34]

Initial number of humans Nh0 Variable according to each district Estimated

Initial number of mosquitoes Nv0 2Nh0 [34]

Biting rate b Temperature-dependent See Fig 4 [18]

Transmission probability per bite (vector-to-host) bh Temperature-dependent See Fig 4 [18]

Transmission probability per bite (host-to-vector) bv Temperature-dependent See Fig 4 [18]

Mortality rate of mosquitoes μ Temperature-dependent See Fig 4 [18]

Exogenous factors for outbreak βex Estimated See Fig 7 Defined in (11)

Transmissible rate (vector-to-host) βvh βexbbh See Fig 7 Defined in (12)

Transmissible rate (host-to-vector) βhv βexbbv See Fig 7 Defined in (13)

https://doi.org/10.1371/journal.pone.0284263.t001

Table 2. Reported cases of dengue from 2016 to 2021 (unit: Cases per year).

District 2015 2016 2017 2018 2019 2020

Comas 0 48 220 7 2 220

Puente Piedra 8 0 48 1 0 9

Lurigancho 0 0 43 0 44 0

Total 8 48 311 8 46 229

https://doi.org/10.1371/journal.pone.0284263.t002
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The parameters u, σ, and k can be used to characterize outbreaks in addition to the informa-

tion already obtained with the SIR-SI model and the information from climate-dependent

variables.

Fig 6 shows the infectious curves of the model where x1 and x2 are adjusted according to (9)

and (9) and the curve obtained by using βex and fitting according to model 4. βex helped model

the infectious curve to fit the data more effectively. In contrast, modeling x1 and x2 as constants

prevented the effects of non-modeled dynamics such as the weather and diapause to be

considered.

Fig 7 shows the values of βhv of the benchmark model, βhv with βex (proposed in this study),

and bbv (for reference). Observe the action of the βex consists in scaling and introduce a lag in

the values of bbv. In essence, model 4 adjusts the three parameters of the Gaussian function

Fig 5. Cross-correlation between temperature and cases: Comas in (A) 2017 and (B) 2020, Lurigancho in (C) 2017 and (D) 2019, Puente de Piedra in

(E) 2020, and (F) the total. The vertical red line indicates the point of maximum correlation.

https://doi.org/10.1371/journal.pone.0284263.g005

Table 3. Evaluation of the model fits using AIC, BIC, and MLE.

Model Metric 2017 2019 2020

Model 1 AIC 1463.0973 2690.7484 1438.6672

BIC 1463.3999 2691.0511 1438.9698

MLE 730.5486 1344.3742 718.3336

Model 2 AIC 1438.3085 2248.1844 1439.1038

BIC 1438.9136 2248.7896 1439.7089

MLE 717.1542 1122.0922 717.5519

Model 3 AIC 1466.7228 1952.3625 1424.4774

BIC 1467.3279 1952.9676 1425.0826

MLE 731.3614 974.1812 710.2387

Model 4 AIC 286.9677* 1201.5911* 263.0954*
BIC 287.8754* 1202.4988* 264.0032*
MLE 140.4838* 597.7955* 128.5477*

Abbreviations: AIC, Akaike Information Criterion; BIC, Bayes Information Criterion; MLE, Maximum Likelihood Estimation.

Superscript “*” denotes the best model.

https://doi.org/10.1371/journal.pone.0284263.t003
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that determines the parameter βex. These parameters (i.e., u, σ, and k) define the shape of βex,

which is then multiplied by b and bhv to correctly model an outbreak.

3.3 Outbreak model analysis

Next, an exhaustive analysis was performed for all years with outbreaks. In Comas, dengue

cases were observed in 2017 and 2020. In Lurigancho, cases were observed in 2017 and 2019.

In Puente de Piedra, cases were observed in 2017. Lima had no dengue cases during the study

period with the exception of these three districts. Because not many dengue cases were

reported, it was difficult to capture the infectious curve with traditional models, as shown in

Fig 6.

Table 4. Values of the adjusted parameters for each model in the experiments.

Model Parameter 2017 2019 2020

Model 1 u 5.4881 6.9874 5.2181

Model 2 u 6.1528 7.3931 5.1911

σ 1.0719 0.7461 0.9843

Model 3 u 5.4863 6.8787 5.1141

k 1.0033 0.7371 0.9744

Model 4 u 2.3703 7.9240 0.0507

σ 7.8431 4.7796 5.7511

k 0.3833 0.2249 0.4785

The parameter u represents the mean and helps indicate the position of the maximum number of cases. The

parameter σ determines the variance in terms of the Gaussian function and represents the duration of the outbreak.

The constant k is multiplied by the function and gives the size of the outbreak. It indicates the importance of

temperature-dependent parameters.

https://doi.org/10.1371/journal.pone.0284263.t004

Fig 6. SIR-SI model with the Gaussian exogenous variable and climatic conditions adjusted for 2017. The adjusted analysis without the exogenous

variable is in green, and the adjusted analysis with model 4 is in red.

https://doi.org/10.1371/journal.pone.0284263.g006
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3.3.1 Districts. Models 1–4 were applied to each district. Table 5 summarizes the model

parameters.

Table 6 presents the model performances according to the evaluation metrics. The models

were evaluated according to the AIC, BIC, and MLE. A better fit to the data was indicated by a

lower value for an evaluation metric. In almost all cases, model 4 performed the best, followed

by model 3. The difference between models 3 and 4 was not substantial. In the case of Puente

de Piedra, model 3 actually fit the data better. This is because Puente de Piedra had few cases

even at the peak of its outbreak.

3.3.2 Analysis of 2017. Fig 8 shows the dengue cases for 2017. The parameter k defines

the size of the curve and provides information about the importance of the weather to the out-

break. In Puente Piedra, the outbreak was mainly unrelated to the climate. In the other dis-

tricts, the climate defined the magnitude of the outbreak because k had values close to 1. The

parameter σ represents the duration of the outbreak and can be multiplied with climatic vari-

ables to obtain an outbreak correction factor, as shown in Fig 10. The model showed the best

adjustment to the duration of the outbreak in Lurigancho. The parameter u defines when the

Fig 7. Curves of βex, βhv based only on temperature, and βhv with βex for 2017.

https://doi.org/10.1371/journal.pone.0284263.g007

Table 5. Model parameters by district.

Comas Lurigancho Puente de Piedra

Models Parameters 2017 2020 2017 2019 2017

Model 1 u 5.6318 5.7444 7.9579 6.9908 8.1685

Model 2 u 5.263 5.3144 8.999 7.9664 6.6495

σ 0.8853 0.851 0.8328 6.8733 6.7153

Model 3 u 6.3313 5.1289 8.9719 6.8733 6.7153

k 5.9215 0.8744 5.1818 0.7334 3.4598

Model 4 u 2.9117 0.0252 8.9439 8.0206 5.6332

σ 7.2122 5.4298 2.6858 4.8441 0.4456

k 0.3298 0.4264 0.4205 0.2273 1.7437

https://doi.org/10.1371/journal.pone.0284263.t005
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peak of an outbreak occurs and its magnitude. In Comas and Lurigancho, the outbreaks

peaked in the first week of April. In Puente Piedra, it peaked in the first fortnight of April.

Observe that high values of u and k indicate how much the maximum value of the peak needs

to be adjusted. For instance, in the case of Puente de Piedra, β needed an adjustment of

approximately 12 to reach the maximum peak. Without the adjustment of β, there would be

no peak.

3.3.3 Analysis of 2019. Fig 9 shows (A) the incidence rate of dengue cases in Comas and

(B) a comparison between the observed data and adjusted curve. The adjusted curve was

obtained by using model 4 with βex for 2019. Fig 9(C) and 9(D) show the corresponding results

for Lurigancho in 2020. Fig 9(E) shows the values of k, σ, and u for Comas and Lurigancho.

The results in Figs 8 and 9 demonstrate that model 4 with βex underestimated the peak of

the outbreak but adequately captured the beginning and ending of the outbreak in all cases.

The latter is an important property because this denotes that the model successfully captured

the complex phenomena of the outbreak despite the small amount of data.

3.4 Behavior of the infection rate β
Fig 10 shows the values of the temperature, bbv, βhv, βex, and βexbbv for all outbreaks and dis-

tricts. There was a strong correlation between the temperature and bbv, but βex was needed to

adjust βhv (similar results were obtained for βvh). The importance of considering the modula-

tion is relevant because several studies have reported that the climate-based variables deter-

mine the prediction and fitting of the SIR-SI model [14, 18, 24].

Fig 9 shows the importance of considering more components in the infection rate β. This is

included by using βex. Fig 10 shows that modulating bbv depending on the temperature

through the βex provides more precise values for βhv and βvh.

It is important to note that the climate of Lima is characterized by low levels of rainfall and

variable temperature according to region owing to the effects of the ocean and the Andes

Mountains.

Evolution of Rt. Fig 11 shows the value of the estimated real-time reproduction number Rt,

its corresponding 90% credible interval, and the transmissibility βvh of the model. Rt and βvh

Table 6. AIC, BIC, and MLE values for each model.

Comas Lurigancho Puente de Piedra

Model Metric 2017 2020 2017 2019 2017

Model 1 AIC 1821,7179 1935,5591 2636,6932 2793,8363 2684,7966

BIC 1822,0205 1935,8617 2636,9958 2794,1389 2685,0992

MLE 909,8589 966,7795 1317,3466 1395,9181 1341,3983

Model 2 AIC 1509,0782 1678,8058 3009,8984 2381,3267 1078,8821

BIC 1509,6833 1679,4109 3010,5036 2381,9319 1079,4872

MLE 752,5391 837,4029 1502,9492 1188,6633 537,4410

Model 3 AIC 945,2574 1583,6408 2213,2591 2022,8461 576,3646*
BIC 944,6522 1584,2460 2213,8643 2023,4512 576,9698*
MLE 470,3261 789,8204 1104,6295 1009,4230 286,1823*

Model 4 AIC 507,9966* 413,7189* 953,2745* 1232,9001* 722,7935

BIC 508,9043* 414,6266* 954,1822* 1233,8079* 723,7013

MLE 250,9983* 203,8594* 473,6372* 613,4501* 358,3967

Abbreviations: AIC, Akaike Information Criterion; BIC, Bayes Information Criterion; MLE, Maximum Likelihood Estimation. The superscript “*” denotes the best

model.

https://doi.org/10.1371/journal.pone.0284263.t006
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have a high correlation considering that the two estimated parameters were obtained by two

different approaches. This is evidence that the proposed model captures the dynamics of an

outbreak. A small and almost constant difference can be observed between the reproduction

number and transmissibility. The plots also indicate that the reproduction number was greater

than 1 a few weeks before the peak in reported cases.

Fig 8. Distribution of dengue cases in Lima in 2017: (A) Incidence rate (per 100,000 inhabitants). Dengue cases obtained with model 4 for (B) Comas,

(C) Lurigancho, and (D) Puente Piedra. The black dots and red line correspond to the reported dengue cases and adjusted curve using model 4,

respectively. (E) Comparison between districts of the parameters k, σ, and u.

https://doi.org/10.1371/journal.pone.0284263.g008
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Fig 9. Dengue cases in 2019 for Lurigancho and Puente de Piedra. The black dots and red line correspond to the reported dengue cases and

adjusted curve using model 4, respectively.

https://doi.org/10.1371/journal.pone.0284263.g009
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4 Discussion

Our results reveal the influence of weather on dengue transmission in Lima, Peru. The best-fit-

ting model replicated the inter-annual variability of dengue cases in selected districts for 2017–

2020. It is likely that the values of parameters change over time because the primary influenc-

ing factors that drive dengue transmission may change with the season or climatic conditions.

Therefore, the ability of the SIR-SI model to resolve the variability of the annual case load and

season length may be useful for various applications, such as studies focusing on the potential

Fig 10. Values of the temperature, bbv, βex, and βvh (green) for outbreaks in 2017–2020 for Comas, Lurigancho, and Puente de Piedra.

https://doi.org/10.1371/journal.pone.0284263.g010
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effects of climate change on dengue incidence and seasonality and other studies examining the

causality of seasonal trends in relation to case numbers. Such a model can also be used for

short-term predictions where parameter values are selected based on currently available case

data and then simulations are run for forthcoming weeks using weather forecast data. Alterna-

tively, the model can be used to build a dataset of epidemic profiles based on possible scenarios

that could occur given present conditions.

The onset of the dengue season and peak in 2017 were not simulated well even when

parameters were optimized specifically for the year, which illustrates the sensitivity and com-

plexity of the disease. Many or all components of the virus ecology are constantly changing,

and their responses to external factors such as weather depend on the situation. Meteorological

conditions may not have had a strong influence on intra-annual variability in 2017. Other fac-

tors that are not included in the model may have dominated transmission that year. These

include changing patterns in herd immunity to the specific circulating dengue serotype(s), the

introduction of a new variant of a serotype earlier in the season, the implementation of inter-

vention methods such as source reduction of habitats, or other human-related factors such as

extensive use or reduction of water storage. While it was beyond the scope of this study to

determine which of these factors may have influenced the transmission in 2017, a variant of

one of the four serotypes could have been introduced early in the season, but all four serotypes

had been circulating previously in Peru. Shifting herd immunity may play a role in reducing

the overall level of reported cases but should not greatly influence the intra-annual variability

of reported cases. Additionally, if higher levels of herd immunity played a role, a delay in the

onset of cases would be expected, but we observed that reported cases peaked much earlier

than the modeled cases. Given the high level of transmission in 2021, this early peak in 2017

may represent transmission propagated from the previous outbreak, where the initial trans-

mission into the general population spread to a smaller adjacent geographical region. The

Fig 11. (Top) Reported cases (blue dots) and model prediction (Red). (Below) Values of the transmissibility βvh for Lima (including all districts)

outbreaks in 2017 and 2020 (green lines) and the effective reproduction number Rt.

https://doi.org/10.1371/journal.pone.0284263.g011
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propagated transmission of dengue has been observed in other areas of the world. Changes in

intervention strategies or patterns of container habitats may change the transmission dynam-

ics by reducing or enabling transmission despite climatic conditions.

Although the temperature patterns are known to influence in dengue transmission in Peru,

there is no information on the dengue transmission dynamics in Lima, Peru. Therefore, our

findings have important implications for targeting mosquito control activities in poorly water

serviced urban areas as Comas, Lurigancho, and Puente Piedra during the warm season. Our

findings could also be useful for planning and targeting mosquito surveillance activities and

preparing to the health centers for an increase in dengue cases or outbreak in the 3 study areas

above all in poorly water serviced places. Our results also showed an analytical framework that

successfully measured the dengue transmission dynamic in three districts of Lima with a lim-

ited number of cases. Therefore, our findings could be reproduced on a large scale in other

areas spatially and temporally different from Lima with the necessary mathematical

adjustments.

5 Conclusion

In summary, we explained the dengue transmission dynamics in Lima, Peru by using a SIR-SI

model with climate-dependent parameters. Additional variables based on a Gaussian transmis-

sion rate were introduced to adequately capture the outbreak dynamics. These variables pro-

vide additional information about the duration of the epidemic (σ), the peak in the number of

cases (u), and the influence of exogenous variables in the model (k). We also assessed the

potential risk for dengue outbreaks via the vector capacity and intensity. We derived a formula

for the reproduction number that qualitatively agreed with the Gaussian transmission rate

introduced in the outbreak. The proposed model can be useful for analyzing the dengue trans-

mission dynamics when few cases relative to the total population are reported. We observed

good agreement between the collected data and model results when a Bayesian-Gaussian

transmission rate was employed. The effect of climate was also observed, and a strong qualita-

tive relationship was obtained between the transmission rate and the computed effective repro-

duction number Rt. This model incorporates an ad hoc mechanism to capture the processes

involved in an epidemic. However, a question that remains for future work is an explanation

for the internal outbreak process. Viable options include an entomological or transport-based

explanation. In future work, we intend to incorporate these variables and compare them with

the results of the present study.
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16. Pérez-Estigarribia PE, Bliman PA, Schaerer CE. A class of fast–slow models for adaptive resistance

evolution. Theoretical Population Biology. 2020; 135:32–48. https://doi.org/10.1016/j.tpb.2020.07.003

PMID: 32791081

17. Estigarribia PEP, Bliman PA, Schaerer CE. Modelling and control of Mendelian and maternal inheri-

tance for biological control of dengue vectors. In: 2021 European Control Conference (ECC). IEEE;

2021. p. 333–340.

18. Lee H, Kim JE, Lee S, Lee CH. Potential effects of climate change on dengue transmission dynamics in

Korea. PLoS One. 2018; 13(6):e0199205. https://doi.org/10.1371/journal.pone.0199205 PMID:

29953493

19. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: funda-

mental algorithms for scientific computing in Python. Nature methods. 2020; 17(3):261–272. https://doi.

org/10.1038/s41592-019-0686-2 PMID: 32015543
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