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1. Introduction

Numerical integration of differential equations is a very active research area, both from a theoretical
perspective as well as a more practical or computational standpoint. This last perspective has had a
boost with the advent of digital computers, and we now have a plethora of methods, some of general
purposes and some of more ad-hoc nature.

In the last category, we find the structure-preserving integrators. These are integrators designed
to take into account specific properties of the dynamical systems they are meant to solve. Relevant
examples of structure-preserving integrators are the symplectic Euler and the symplectic Runge-Kutta,
both of which are compatible with the symplectic structure naturally associated with Hamiltonian
systems. When the relevant structure is geometric in nature, the structure-preserving integrators are
usually known as geometric integrators. For more details of these and other developments, see [1].

In the last two decades, the differential geometric description of dynamical systems, known as
geometric mechanics, and the variational formulation of mechanics, have provided a successful approach
for developing geometric integrators. Arguably, the seminal result in this context was the fact that, for
Hamiltonian systems, discretizing the Hamiltonian principle instead of the Euler-Lagrange equation of
motion automatically yields an integrator that preserves the symplectic structure naturally associated
with the system, i.e., it yields a symplectic integrator. This result can be traced back at least to [2],
and ever since, integrators coming from the discretization of some variational principle are known as
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variational integrators.
The results in [2] was expanded in [3] to consider nonconservative systems by discretizing the Lagrange-

d’Alembert principle. There, the authors also showed that any symplectic integrator is a variational integrator.
Since then, in the following two decades, there has been several generalizations in an attempt to incorporate
systems of more general nature, as for instance: coupled multi-body systems, field theories, electrical
systems [4–9]; systems with more specific features (as symmetries) [10–14]; interactions with control
theory [15–19]; higher-order and asynchronous techniques [20–22]. For more recent developments,
see [23–30]. For surveys and reviews, see [31–34] and the references therein.

In this work, we construct a numerical integrator for nonconservative and nonholonomically con-
strained systems. To this end, we combine a criterion for the discretization of nonholonomic constraints
(introduced in [35], in the context of Lagrange-d’Alembert principle) and a recently developed integrator
for dissipative systems (introduced in [36]) coming from a discrete version of the Herglotz’s variational
principle. Then we validate our integrator by running simulations of two archetypal mechanical systems
in order to contrast it with the outcome of more standard procedures available in the literature.

The organization of this work is as follows. In Section 2 we give a brief background on geometric
mechanics and variational integrators, mainly to fix notation and terminology. In Section 3 we provide the
technical details of our methodology to get our integrator. In Section 4 we show the outcome of several
numerical simulations, contrasted with a couple of more standard procedures. Finally, in Section 5 we offer
some concluding remarks. We add an appendix containing the explicit equations for the simulations.

2. Geometric mechanics and variational integrators

Geometric mechanics is, roughly speaking, the description of mechanics in the language of differen-
tial geometry [37–41]. In many interesting cases, the configuration space of a mechanical system with
n ∈ N degrees of freedom can be modeled as a n-dimensional smooth manifold Q, and its state space
can be modeled by the tangent bundle T Q, of the configuration space, or a subset of it. Kinetic energy
is given by a Riemannian metric on Q, potential energy is given by a function V : Q → R, forces are
given by 1-forms F : Q → T ∗Q, and the dynamic is encoded by a Lagrangian function L : T Q → R,
which typically involves the kinetic and potential energy [41, 42].

Constraints of motion are relations among the configuration variables and its derivatives. If those
relations involve only the configuration variables, the constraint is called holonomic, otherwise it is called
nonholonomic. From a geometric point of view, this dichotomy can be seen as follows: holonomically
constrained systems are those for which the configuration space is a smooth manifold Q, and the state
space is the entire tangent bundle T Q, which means that, at each configuration q ∈ Q, the entire tangent
space TqQ is allowed for the velocity of the system. On the other hand, nonholonomically constrained
systems are those whose configuration space is a smooth manifold Q, but the state space is a subsetD
of the tangent bundle T Q, which means that at each configuration q ∈ Q, only a subset Dq ⊂ TqQ is
allowed for the velocity of the system [42–44]. For many interesting cases of nonholonomic systems,
the constraint subset D is an affine, or even linear, subbundle of T Q (i.e.: if Q is the configuration
manifold, for each point q ∈ Q the velocity of the system is constrained to a subspace Dq (linear or
affine) of the tangent space TqQ) [45,46]. In this work we will focus on this kind of constraints. Readers
interested in more general cases, including nonlinearity and time dependency may consult the following
references [47–52].
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Figure 1. A solid sphere rolling without slipping on a horizontal surface.

Example 2.1 (Rolling without slipping). Figure 1 illustrates a solid sphere rolling without slipping on
a fixed horizontal surface. The configuration of this sphere is fully determined by the point (x, y) ∈ R2

of contact between the sphere and the plane, and an element of the special orthogonal group S O(3)
(rotations on R3). Hence, its configuration space is Q = R2 × S O(3), but the nonslipping condition in
the contact point imposes a restriction on the velocities; thus, the state space is not the entire tangent
bundle T Q. This is an archetypal example of a nonholonomically constrained mechanical system.

Variational formalism: Given a mechanical system with configuration space Q and constraint
subsetD ⊂ T Q, the dynamic (or equation of motion) of the system is modeled by a differential equation
on T Q subject to the restrictionD. In geometric mechanics, it is common to describe the equation of
motion as the extreme of a suitable variational principle. In what follows, we are going to use some
standard constructions from the calculus of variations, so for the reader’s convenience, let us introduce
them for future reference.

Given two points q0 and q f in a smooth manifold Q, and t0 < t f ∈ R, let C(t0, t f ) := {q : [t0, t f ]→ Q}
be the space of smooth paths satisfying q(t0) = q0 and q(t f ) = q f . A smooth variation with fixed
endpoints of an element q ∈ C(t0, t f ) is a smooth map q : (−ε, ε) × [t0, t f ] → Q such that, for each
s ∈ (−ε, ε) ⊂ R, qs(t) := q(s, t) for all t ∈ [t0, t f ] is an element of C(t0, t f ), and q0 = q. The variational
vector field associated to q is the vector field along q given by

δq(q(t)) :=
∂

∂s

∣∣∣∣
s=0

q(s, t),∀t ∈ [t0, t f ].

The simplest scenario for a variational formulation of mechanics is that of a conservative system
with holonomic constraints. For this kind of system, the equation of motion is given by Hamilton’s
Variational Principle, which can be stated as follows.

Definition 2.1 (Hamilton’s Principle). Let L : T Q→ R be a conservative Lagrangian system. Given
two points q0 and q f in the configuration space Q, and t0 < t f ∈ R, the path q(t) ∈ C(t0, t f ) followed by
the system to go from q0 to q f is the one that extremizes the action∫ t f

t0
L(q, q̇)dt.

The optimization mentioned in the Hamilton’s Principle is in the sense that, for all smooth variation
q(s, t) of q in C(t0, t f ), with s in a sufficiently small interval (−ε, ε) ⊂ R, the functional variation of the
action vanishes, i.e.:

δ

∫ t f

t0
L(q, q̇)dt :=

∂

∂s

∣∣∣∣∣
s=0

(∫ t f

t0
L(q(s, t), q̇(s, t))

)
dt = 0.
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It is well known that Hamilton’s principle is not appropriate for systems that are either nonconserva-
tive or with nonholonomic constraints [42,43]. The most widely used variational-like principle to obtain
the equation of motion for nonconservative and nonholonomic systems is the Lagrange-d’Alembert
principle, together with the so-called nonholonomic principle. This situation can be stated as follows.

Definition 2.2 (L-A Principle). Let L : T Q → R be the Lagrangian of a system, subject to external
forces Fe : Q → T ∗Q, and nonholonomic constraintsD ⊂ T Q. Given two points q0 and q f in Q, and
t0 < t f ∈ R, the path q(t) followed by the system to go from q0 to q f is the one that solves

δ

∫ t f

t0
L(q, q̇)dt +

∫ t f

t0
Feδq = 0, (2.1)

subject to

δq(q(t)) ∈ Dq(t),∀t ∈ [t0, t f ],

q̇(t) ∈ Dq(t),∀t ∈ [t0, t f ].
(2.2)

Remark 2.3. Equation (2.2) is known as the nonholonomic principle. It basically says that both the
solution as well as the variational vector field must satisfy the restriction. However, notice that the
curves qs(t), given by the variation q(s, t), are not asked to satisfy the restrictions. Imposing restrictions
on those curves poses a different problem, namely, one of optimal control, and in general, it does
not provide the equation of motion we are interested in. Readers interested in this dichotomy may
consult [42] and the references therein.

There is an alternative way to handle an interesting spectrum of nonconservative systems by using
the Herglotz variational principle [53, 54]. As it turns out, Herglotz principle has a close relationship
with contact geometry, which in turn has been found to be a natural arena for several kinds of dissipative
systems [53, 55–59]. In the context of Herglotz principle, the nonconservative nature of mechanical
systems with configuration space Q are usually incorporated via a function L : T Q × R→ R. Due to
the aforementioned relationship with contact geometry, we will refer to this function as a contact-type
Lagrangian, to distinguish it from the usual Lagrangian.

Remark 2.4. The term action-dependent Lagrangian is also used in the literature for Lagrangians in
the context of Herglotz principle (see [60–62] and the references therein).

Definition 2.5 (Herglotz Principle). Let Q be the configuration manifold of a mechanical system
whose dynamic is encoded by a contact-type Lagrangian L : T Q × R→ R as follows: given q0, q f ∈ Q
and t0 < t f ∈ R, let Z be the map that assigns to each ξ ∈ C(t0, t f ), the solution of the initial value
problem

ż = L(ξ, ξ̇, z(t)); z(t0) = z0. (2.3)

Then, the Herglotz principle establishes that the path q followed by the system to go from q0 to q f is the
one that extremizes the functionalZ(ξ)(t f ).

The variable z in the contact-type Lagrangian for the Herglotz principle allows to incorporate dissipation
directly. This makes the Herglotz principle very attractive to obtain integrators that are well suited for
dissipative systems, as argued in [36]. Next we review the main ideas behind variational integrators.
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Holonomic Nonholonomic

C
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e
•Hamilton’s principle
δ
∫ b

a
L(q, q̇) dt = 0.

•Lagrange-d’Alembert principle
δ
∫ b

a
L(q, q̇) dt = 0,∑n

k=1 a j
kδq

k = 0.

N
on

co
ns

er
va

tiv
e

•Lagrange-d’Alembert principle
δ
∫ b

a
L(q, q̇) dt +

∫ b

a
Fδq dt = 0.

•Herglotz principle
δz(b) = 0.

•Lagrange-d’Alembert principle
δ
∫ b

a
L(q, q̇) dt +

∫ b

a
Feδq dt = 0,∑n

k=1 a j
kδq

k = 0.

•Herglotz principle with constraints
δz(b) = 0,∑n

k=1 a j
kδq

k = 0.

Table 1. Types of mechanical systems and the corresponding variational principles from
which to obtain their equations of motion.

Table 1 summarizes some kinds of mechanical systems and the variational principles to obtain their
corresponding equations of motion.

Variational integrators: The main paradigm to get integrators from a variational formulation was
introduced in [2, 3]. There, the authors essentially propose the following procedure: Given a holonomic
system L : Q→ R, subject to external, nonconservative forces Fe : T Q→ T ∗Q, discretize the force as
F+

d , F
−
d : Q × Q→ T ∗Q, as well as the action functional

∫ t f

t0
L(q, q̇)dt, namely, let {ti}

N
i=0 be a partition of

the interval [t0, t f ], and consider

Ld(q j, q j+1) ≈
∫ t j+1

t j

L(q, q̇)dt,

where Ld(q j, q j+1) is the approximation given by some quadrature of the integral, and {q j}
N
j=0 is a sequence

of configuration points which approximate the true trajectory q(t) at the times t j, for j = 0, 1, 2, . . . ,N.
The sequence {q j}

N
j=0 is chosen as the one that satisfies the expression

δ

N−1∑
j=0

Ld(q j, q j+1)

 +

N−1∑
j=0

[F−d (q j, q j+1) · δq j + F+
d (q j, q j+1) · δq j+1] = 0

for all variations {δq j}
N
j=0 vanishing at the endpoints.

For holonomic systems, the variations can be taken in arbitrary directions in each tangent space Tq j Q,
and thus we get the so-called forced discrete Euler-Lagrange equations:

D1Ld(q j, q j+1) + D2Ld(q j−1, q j) + F+
d (q j−1, q j) + F−d (q j, q j+1) = 0,

where Di, for i = 1, 2 denotes the derivative with respect to the i-th argument. Under some mild
regularity conditions, these equations yield an integrator

(q j−1, q j) 7→ (q j, q j+1).
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One of the main results in [3] is that, for conservative, holonomic systems, this integrator preserves
the symplectic structure naturally associated with the given Lagrangian system, i.e., it yields a symplectic
integrator. The symplecticity of the integrator results in very good energy conservation behavior for
long-time simulations.

In this article, we are interested in the approach given in [35] to handle nonholonomic systems.
There, the authors construct an integrator for nonholonomic systems from the Lagrange-d’Alembert
principle, where a main result is a criterion for discretizing the nonholonomic constraint in a compatible
way with the discretization of the Lagrangian. To follow up, let us observe that the discrete Lagrangian
Ld can be interpreted as a map Ld : Q × Q → R, which is obtained by means of a discretization map
Ψ : Q × Q→ T Q as Ld = L ◦Ψ. Then, ifD ⊂ T Q is the restriction distribution, they propose to take
D := Ψ(D) ⊂ Q × Q as the discretized restriction. Thus, they get the following integrator:

D1Ld(q j, q j+1) + D2Ld(q j−1, q j) + F+
d (q j−1, q j) + F−d (q j, q j+1) = λaΦ

a,

Φa
d(q j, q j+1) = 0,

(2.4)

where λa, a ∈ {1, 2, ...,m} are Lagrange multipliers and Φa are linearly independent 1-forms defining the
annihilatorD0 ⊂ T ∗Q ofD.

In [36], the authors derive an integrator for dissipative systems with holonomic constraints by
discretizing the Herglotz principle and show that it is compatible with the contact structure naturally
associated to dissipative systems. This compatibility is completely parallel to the one found between
symplectic integrators and the symplectic structure of Hamiltonian systems, and thus they named it a
contact integrator.

3. Construction of the integrator

In this section, we construct an integrator for nonholonomically constrained dissipative system
following ideas from [55], [36], and [35].

3.1. Herglotz principle with nonholonomic constraints

Consider a dissipative mechanical system of contact-type given by L : T Q × R→ R (in the setting
of Herglotz principle as in Definition 2.5), subject to a nonholonomic constraintD ⊂ T Q. Hence, the
Herglotz principle is stated as follows: the path q ∈ C(t0, t f ) followed by the system is the one that
extremizes the functionalZ(ξ)(t f ), among variations tangent toD, and satisfies itself the constraints.
This means that, at each time t ∈ [t0, t f ], the velocity q̇(t) of the path q as well as the value δq(t) of the
variational vector field δq must belong toDq(t).

To express this in a more concrete way, let us consider that the restrictionD is (locally) defined by
the vanishing of m functions Φ j : T Q → R, linear in the velocities. This means that on a local chart
(q, q̇) the restrictions are given as the kernel of a matrix A(q); namely, locally we have

D = {(q, q̇); A(q)q̇ = 0}.

Then, it can be shown that q solves the nonholonomic Herglotz principle if, and only if, it satisfies the
following equations (see [55] for details):
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d
dt
∂L
∂q̇i
−
∂L
∂qi
−
∂L
∂q̇i

∂L
∂z

=

m∑
j=1

λ jA
j
i (q),

A(q)q̇ = 0,

(3.1)

for some Lagrange multipliers λ j.

3.2. Discrete herglotz variational principle

Consider the discretized contact-type Lagrangian Ld : Q2 × R2 → R, and the discrete Herglotz
principle, stated as follows: given a discrete curve q = (q0, q1, . . . , qN) ∈ QN+1, define z = (z0, . . . , zN) ∈
Rn by z0 = 0 and

z j+1 − z j = hLd(q j, q j+1, z j, z j+1). (3.2)

Then, a discrete curve q = (q0, . . . , qN) is called a solution of the discrete Herglotz principle if

∂z j+1

∂q j
= 0,

for all j ∈ {1, 2, . . . ,N}.
It can be shown (see Theorem 1 in [36]), that a discrete curve q = (q0, . . . , qN) solves the discrete

Herglotz principle if, and only if, it satisfies the discrete generalized Euler-Lagrange equations

0 = D2Ld(q j−1, q j, z j−1, z j)
1 + hD3Ld(q j, q j+1, z j, z j+1)

1 − hD4Ld(q j−1, q j, z j−1, z j)

+ D1Ld(q j, q j+1, z j, z j+1).
(3.3)

Assuming the nondegeneracy condition D1D2Ld(q j, q j+1, z j, z j+1) , 0, equation (3.3) yields an integrator
(q j−1, q j) 7→ (q j, q j+1), for the unconstrained system L : T Q × R → R. In [36], it is proved that this
integrator preserves the natural contact structure associated to the discrete contact-type Lagrangian Ld,
hence the authors called it a contact integrator.

Remark 3.1. A simpler (and perhaps more natural) discretization of T Q × R would be Q2 × R, as was
used in [63]. This would lead to a discretized contact-type Lagrangian Ld without the z j+1 argument
and without the D4Ld term in (3.3). As pointed out in [36], for the theoretical development of contact
integrators, there is no need for this extra argument in Ld. However, the discretization without the z j+1

argument is of first order, whereas the one with z j+1 is of second order, and this is relevant for numerical
behavior. In our work, for the numerical experiments, we will use both alternatives.

3.3. Discretization of the constraint

Now, let us bring into play the constraintD ⊂ T Q. Let us first recall the method introduced in [35]
to incorporate a nonholonomic constraint into the integrator derived from the Lagrange-d’Alembert
principle, given a mechanical system L : T Q → R. Since the discretization of the Lagrangian yields
a map Ld : Q × Q → R, the discrete constraint must be a submanifold ∆d ⊂ Q × Q, which satisfies
(q, q) ∈ ∆d for all q ∈ Q, (i.e., ∆d has to contain the diagonal of Q × Q). This submanifold imposes
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a restriction to the motion in the sense that the discrete curve q = (q0, q1, . . . , qN) must satisfy that
(q j, q j+1) ∈ ∆d, and the variation δq must satisfy the condition δq(q j) ∈ Dq j , i.e., the allowed variations
are those who respect the continuous constraintD ⊂ T Q. In order to construct ∆d in a compatible way
with the discrete Lagrangian, it is assumed that there is a discretizing map Ψ : Q × Q→ T Q such that
Ld = L ◦Ψ, and then, ∆d := {(q, q′) ∈ Q × Q; Ψ(q, q′) ∈ D}. This means that, ifD is (locally) defined
by the vanishing of the functions Φc : T Q → R, then ∆d is (locally) defined by the vanishing of the
functions Φc

d := Φc ◦ Ψ.
In our situation, as we have a contact-type Lagrangian L : T Q×R→ R, we might consider a discretiz-

ing map of the form Ψ = Ψ1 ⊗Ψ2 : Q2 × R2 → T Q × R, such that Ψ(q, q′, z, z′) = (Ψ1(q, q′),Ψ2(z, z′)).
Thus, we want our discrete restriction to be compatible with the discretizing map Ψ1 : Q2 → T Q, in the
same way as discussed in the previous paragraph.

More concretely, suppose as before that on a chart (q, q̇) of T Q our restrictionD is given in the form

D = {(q, q̇) ∈ T Q; A(q)q̇ = 0},

for some matrix A(q). Let (qd, q̇d) ∈ T Q be the image of a point (q, q′) ∈ Q2 under the map Ψ1. Then
we define the discrete restriction map as Ad(q, q′) = A(qd)q̇d, and the discrete restriction as

∆d := {(q, q′) ∈ Q2; Ad(q, q′) = 0}.

Therefore, the discrete generalized Euler-Lagrange equations with nonholonomic constraints linear
in the velocities are

D1Ld(q j, q j+1, z j, z j+1) + D2Ld(q j−1, q j, z j−1, z j)
1 + hD3Ld(q j, q j+1, z j, z j+1)
1 − hD4Ld(q j−1, q j, z j−1, z j)

= λA(q j),

Ad(q j, q j+1) = 0,
(3.4)

which correspond to the equations of a contact integrator with nonholonomic constraints linear in the
velocities.

4. Numerical simulations and comparison

In this section, we will apply our integrator to two nonholonomic mechanical systems, namely the
Foucault pendulum and the falling rolling disk.

4.1. Foucault pendulum

We analyze the Foucault pendulum with Rayleigh dissipation. We derive its Lagrangian, both for the
Lagrange-d’Alembert as well as for the Herglotz formulation, in order to compare our integrator with
the one coming from the Lagrange-d’Alembert principle.
General setting and simplifications: The Foucault pendulum consists of a pendulum of length l and
mass m located at latitude β on Earth’s surface. We may consider here a Rayleigh dissipation with
parameter α. The plane of oscillation does not rotate in a reference (X,Y,Z) fixed in space, hence as
Earth rotates, this plane rotates with respect to a reference (x, y, z) attached to Earth (see Figure 2).

To model this problem, we consider the inertial frame (X,Y,Z) with its origin at the center of the
Earth and Z passing through the north pole. Hence, the angular velocity of Earth, Ω, points along Z. On
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the other hand, the noninertial frame (x, y, z) is such that x points along a meridian in the south direction,
y points to the east along the parallel β and z coincides with the vertical at the pendulum location. Hence,
the vector position r = (x, y, z) of a particle in the noninertial frame satisfies the relation ω = r×ṙ

‖r‖2 , where
ω = (Ω cos β, 0,−Ω sin β) is the angular velocity of the particle in the noninertial frame.

O

X

Y

Z

Ω

β
x

y

z

x

y

z

l

x

y

z

g

Figure 2. Foucault pendulum and its inertial and noninertial frames.

As the pendulum forms a small angle φ in its oscillatory motion, the coordinates x, y are of order
lφ, whereas z is of order lφ2 and so it is negligible. Thus, we may consider the movement of the mass
pendulum in the plane z = 0 and take q = (x, y) as generalized coordinates. With these considerations, the
kinetic energy K(q̇) and potential energy V(q), in terms of the mass m, the length l and the gravitational
acceleration g, are given by:

K(q̇) =
1
2

m(ẋ2 + ẏ2) and V(q) =
1
2

m
g
l
(x2 + y2), (4.1)

while the relation ω = r×ṙ
‖r‖2 reads

− yẋ + xẏ + Ω sin β(x2 + y2) = 0, (4.2)

which is a nonholonomic constraint for the system.

Lagrange-d’Alembert description: In this context, the Lagrangian is L(q, q̇) = K(q̇) − V(q), which
according to our previous computations reads

L(q, q̇) =
1
2

m(ẋ2 + ẏ2) −
1
2

m
g
l
(x2 + y2), (4.3)

subject to the constraint (4.2). The damping is modeled as an external force F(q, q̇) = −αmq̇.
To derive the integrator for this case, we use equation (2.4) with a linear-order quadrature for both

the Lagrangian and the external force, while the discrete constraint is obtained using the discretizing
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map Ψ on equation (4.2) (see [35]). The resulting equations are

−x j+1 + 2x j − x j−1

h
− h

g
l

x j − α(x j+1 − x j) + λ1
y j

m
= 0

−y j+1 + 2y j − y j−1

h
− h

g
l
y j − α(y j+1 − y j) − λ1

x j

m
= 0

−y j
x j+1 − x j

h
+ x j

y j+1 − y j

h
+ Ω sin β(x2

j + y2
j) = 0,

(4.4)

where λ1 is a Lagrange multiplier.

Herglotz description: Here, the contact-type Lagrangian is taken as L(q, q̇, z) = K(q̇) − V(q) − αz,
which, according to our previous analysis becomes

L(q, q̇, z) =
m
2

(ẋ2 + ẏ2) −
mg
2l

(
x2 + y2

)
− αz, (4.5)

also subject to the nonholonomic constraint (4.2).
To derive the Contact integrator for this system, we use a linear-order approximation in equations

(3.4), i.e.
z j+1 − z j = hL(x j, x j+1, z j, z j+1), (4.6)

and the constraints are discretized in the same way as in [35]. The resulting equations are

−x j+1 + 2x j − x j−1

h2 −
g
l

x j − α

(
x j − x j−1

h
−

h
2

g
l

x j

)
+ λ1

y j

m
= 0

−y j+1 + 2y j − y j−1

h2 −
g
l
y j − α

(
y j − y j−1

h
−

h
2

g
l
y j

)
− λ1

x j

m
= 0

−y j
x j+1 − x j

h
+ x j

y j+1 − y j

h
+ Ω sin β(x2

j + y2
j) = 0,

(4.7)

where λ1 is a Lagrange multiplier.

As can be noted, the discretization of the constraints in both integrators LA and Contact are the same.

4.2. Falling disk

The rolling falling disk is one of the archetypal examples of nonholonomically constrained mechani-
cal systems, frequently used as a benchmark for numerical methods [42, 64]. It consists of an idealized
(without thickness) homogeneous disk rolling without slipping over a fixed horizontal plane, subject to
gravity (see Figure 3). Depending on the research interest, we may also consider external forces acting
upon the disk, either dissipative forces or control forces. To derive its Lagrangian, we will follow the
formulation given in [65].

The configuration space of this system can be identified as Q = R2 × S O(3). As generalized
coordinates, we can take a point (X,Y) ∈ R2 describing the orthogonal projection of the center of the
disk over the plane {Z = 0} (see Figure 3), and an element of S O(3) in terms of Eulerian angles (θ, φ, ψ),
defined as follows: we consider a right-handed noninertial orthogonal reference frame (x, y, z) whose
origin is attached to the center of the disk, the x axis being orthogonal to the plane of the disk and the y
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axis remaining in the plane of the disk and parallel to the plane {Z = 0}. Then, θ is the angle between
the axes z and Z, while φ is the angle between the axes y and X, and ψ is the angle of rotation of the disk
with respect to the x axis.

X

Y

Z

(X,Y )

x
y

z
θ

φ

ψ

θ̇

φ̇

ψ̇
g

Figure 3. Falling disk and its state variables.

In the Lagrange-d’Alembert formulation, the Lagrangian for this system is L = T − V , where T is
the kinetic energy and V is the potential energy. For the kinetic energy, we have the expression

T =
1
2

mv̂2 +
1
2

[IAω
2
x + IT (ω2

y + ω2
z )], (4.8)

where v̂ is the linear velocity of the center of the disk, IA and IT are the moment of inertia with respect to
x axis, and the y and z axes, respectively, while ωi, for i ∈ {x, y, z} are the angular velocity with respect to
the i-th axis. In terms of the generalized velocities associated to the Euler angles, the angular velocities
are given by

ωx = −ψ̇ + φ̇ sin θ,
ωy = −θ̇,

ωz = φ̇ cos θ.
(4.9)

On the other hand, the potential energy is given by

V = mgR cos θ,

where m is the mass of the disk, g is the gravitational acceleration, and R is the radius of the disk. Hence,
the complete Lagrangian is

L = T (q̇) − V(q) =
1
2

m[Ẋ2 + Ẏ2 + R2 sin2 θθ̇2]

+
1
2

[
IA

(
ψ̇ − φ̇ sin θ

)2
+ IT

(
θ̇2 + φ̇2 cos2 θ

)]
− mgR cos θ.

(4.10)

Finally, the non-slipping condition imposes restrictions on the velocities given by

Ẋ = −R cos θ sin φθ̇ − R sin θ cos φφ̇ + R cos φψ̇,
Ẏ = R cos θ cos φθ̇ − R sin θ sin φφ̇ + R sin φψ̇.

(4.11)
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Let us consider that the motion of the disk undergoes a Rayleigh dissipation and also that there is some
external nonconservative force applied upon the disk. The Herglotz description allows us to incorporate
these features into the contact-type Lagrangian of the system by modifying the expression given in
(4.10) in the following way

LH(t, q, q̇, z) = L − αz + F(t)q, (4.12)

where L is the Lagrangian given by (4.10), α is the dissipation parameter, and F(t) is the nonconservative
external force. The restriction of the system, given by (4.11) are unchanged in the Herglotz formulation.

4.3. Numerical experiments: foucault pendulum

For the Foucault pendulum, we perform two simulations, using as reference the 4th order Runge-
Kutta-Fehlberg method, to compare the behavior of both integrators. In both simulations, we use the
configuration of the original experiment held in the Observatory of Paris, in 1851, namely, we consider
a pendulum of mass m = 28 kg, length l = 67 m, and latitude β = 49◦. We consider two different values
of the dissipation parameter α.

Experiment 1: Here we consider α = 1 × 10−3 for both the Contact and the LA integrators. For this
setting, both integrators display indistinguishable behavior in terms of the trajectory (see Figure 4 and
Figure 5) as well as in energy dissipation, as can be seen in part b) of Figure 6. However, we observe
that the LA integrator do have a better outcome in terms of the error ‖qt j − qre f (t j)‖2, where qt j is the
approximation given by the integrator and qre f (t j) is the reference solution, both at time t = t j. This can
be seen in the part a) of Figure 6.

Experiment 2: In order to simulate a more realistic situation, where dissipation is due to friction with
the air, here we consider α = 1 × 10−4. In this setting, the contact integrator outcome is closer to the
reference, both in terms of the error ‖qt j − qre f (t j)‖ as well as in term of energy dissipation, as can be
seen in Figure 7. More interestingly, in this setting, the LA integrator displays anomalous behavior.
Concretely the plane of oscillation varies discontinuously at a given time (see part b) of Figure 8. On
the other hand, the contact integrator does not show this anomaly, as can be seen in part a) of Figure 8.

4.4. Numerical experiments: falling rolling disk

For the falling rolling disk, we perform 4 numerical experiments, in each case, using the MATLAB
solver ode15i as the reference, with a step-size 10 times smaller than the one used for the proposed
integrator. In all the four experiments, we use the following configuration for the system: m = 5 kg,
R = 0.5 m, IA = 1

2mR2 kgm2, IT = 1
4mR2 kgm2, g = 9.81 m/s2. The numerical parameters were set as:

step-size h = 0.1, and tolerance ε = 1 × 10−6, both for the ode15i and for the modified multivariate
Newton-Raphson method. The four sets of numerical experiments thus were used to explore different
initial conditions and different values of the dissipation parameter α. In each case, we use the MATLAB
function “decic” to set consistent initial conditions for the solver ode15i. For the explicit equations of
the proposed integrator, see Appendix ??, and for details see [66].

Experiment 1: Here we consider a disk starting in a vertical position and an external force Fψ = 1
2 N

which forces it to roll. Under these conditions, we perform two simulations, with dissipation parameter
α = 0.005 and α = 0.1. The outcome of the proposed integrator and the reference are indistinguishable
in these settings.
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Figure 4. Simulation 1 for the Foucault Pendulum with initial conditions q(0) = (0, l/100),
q̇(0) = (0, 0). Dissipation parameter α = 1 × 10−3. The graphics show the values of the x and
y coordinates as functions of time for the last 100 seconds of simulation.
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Figure 5. Simulation 1 for the Foucault Pendulum with initial conditions q(0) = (0, l/100),
q̇(0) = (0, 0). Dissipation parameter α = 1 × 10−3. The graphics show the projection over the
horizontal plane of the oscillation plane in the interval 0 ≤ t ≤ 3600 seconds.
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Figure 6. Simulation 1 for the Foucault Pendulum with initial conditions q(0) = (0, l/100),
q̇(0) = (0, 0). Dissipation parameter α = 1 × 10−3. The graphics show the errors of the
trajectory and the energy for the last 100 seconds of simulation.
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Figure 7. Simulation 2 for the Foucault Pendulum with initial conditions q(0) = (0, l/100),
q̇(0) = (0, 0). Dissipation parameter α = 1 × 10−4. The graphics show the errors of the
trajectory and the energy for the last 100 seconds of simulation.
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Figure 8. Foucault pendulum with initial conditions q(0) = (0, l/100), q̇(0) = (0, 0). Dissipa-
tion parameter α = 1 × 10−4. The graphics show the trajectories followed by the pendulum on
the horizontal plane, for an oscillation time of 3600 s.
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Experiment 2: For the second set of simulations we consider a disk starting in an inclined position,
precisely, with θ0 = π

36 rad, and initial rolling velocity ψ̇0 = 2π. Under these conditions, we perform
three simulations corresponding to α = 0, α = 0.005 and α = 0.1. For the first two cases, the reference
and the proposed integrator have indistinguishable behaviors. For the third case, we observe something
interesting. In this case, the solver ode15i was not able to continue the simulation after t ≈ 11.1 s,
concretely displaying the following message.
Warning: Failure at t=1.112335e+01. Unable to meet integration tolerances

without reducing the step size below the smallest value allowed (3.951806e-14)

at time t.
On the other hand, the proposed integrator was able to continue the simulation during the entire preset

time interval. This phenomena can be observed in Figure 9, Figure 10, and Figure 11, displaying the
evolution of the five generalized coordinates and the total energy of the system. It is worth noticing that
the warning message displayed by the solver ode15i is not because the disk has reached a configuration
corresponding to a completely fallen disk since, as can be seen in Figure 12, for the value of t ≈ 11.1 s,
the value of θre f is far from π/2, which is the value corresponding to a completely fallen disk.

Experiment 3: For this set of simulations, we consider again a disk starting in a vertical position, with
initial rolling velocity ψ̇0 = π. Additionally, here we consider two applied forces Fψ; t

16 N and Fφ = t
16

N, changing the rolling speed and the direction, respectively. We perform simulations for three values of
the dissipation parameter, namely: α = 0, α = 0.005 and α = 0.1. The interesting case now corresponds
to α = 0, where once again, the reference solver ode15i fails to complete the simulation, displaying
the same warning message as before for t ≈ 7.7 s. As before, this failure is not due to a configuration
corresponding to a completely fallen disk, as can be seen in Figure 16. On the other hand, the proposed
integrator does not suffer from this issue, as can be observed in Figure 13, Figure 14, and Figure 15. For
the other values of α, the outcomes of both integrators are qualitatively well-behaved.

Experiment 4: This set of simulations considers a condition under which the disk follows a stable
circular path. This evolution is possible if the inclination angle θ = θ0, the precession φ̇ = φ̇0, and the
rolling velocity ψ̇ = ψ̇0 satisfy the following restriction

(IT − IA − mR2)2 sin(θ0)θ̇2
0 − (IA + mR2) tan(θ0)θ̇0ψ̇0 − mgR = 0.

We perform again three simulations, corresponding to α = 0, α = 0.005 and α = 0.1. In these
simulations, both integrators display, qualitatively, the same outcome, but once again, for α = 0.1,
the solver ode15i was unable to complete the simulation, displaying the same warning message as
in the previous situations, while the proposed integrator completed the simulation satisfactorily. We
summarize this observations with Figures 17 to 20.

5. Concluding remarks

In this work, we propose an integrator for nonholonomic, nonconservative mechanical systems.
To do so, we combine previous works dealing with a derivation of a geometric integrator based on
Herglotz variational principle, as well as one incorporating nonholonomic constraints for integrators
derived from the Lagrange-d’Alembert principle. For many interesting mechanical systems, the use of
Herglotz principle allows to incorporate dissipation phenomena directly into the contact-type Lagrangian,
providing a more intrinsic treatment of these kinds of mechanical systems.
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Figure 9. Experiment 2.3 of the falling disk with initial conditions q(0) = (0, 0, π/36, 0, 0),
q̇(0) = (π, 0, 0, 0, 2π). Dissipation α = 0.1 and F(t) = (0, 0, 0, 0, 0). The graphics display the
coordinate functions (X,Y, θ, φ, ψ) of the system, obtained by the contact integrator and by
ode15i, which is the reference method. For each coordinate, the re f subindex indicates the
solution given by the reference method.
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Figure 10. Experiment 2.3 of the falling disk with initial conditions q(0) = (0, 0, π/36, 0, 0),
q̇(0) = (π, 0, 0, 0, 2π). Dissipation α = 0.1 and F(t) = (0, 0, 0, 0, 0). The graphics display the
velocity functions (Ẋ, Ẏ , θ̇, φ̇, ψ̇) of the system, obtained by the contact integrator and by
ode15i which is the reference method. For each velocity, the re f subindex indicates the
solution given by the reference method.
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Figure 11. Experiment 2.3 of the falling disk with initial conditions q(0) = (0, 0, π/36, 0, 0),
q̇(0) = (π, 0, 0, 0, 2π). Dissipation α = 0.1 and F(t) = (0, 0, 0, 0, 0). The graphic displays the
energy functions obtained by the contact integrator and by ode15i which is the reference
method.
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Figure 12. Experiment 2.3 of the falling disk with initial conditions q(0) = (0, 0, π/36, 0, 0),
q̇(0) = (π, 0, 0, 0, 2π). Dissipation α = 0.1 and F(t) = (0, 0, 0, 0, 0). The graphic displays the
function of the configuration variable θ obtained by the contact integrator and ode15i, which
is the reference method. It can be observed that the disk does not fall completely for either of
the two integrators in t = 11.1 s, as the disk falls completely when θ = π/2.
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Figure 13. Experiment 3.1 of the falling rolling disk with initial condition q(0) = (0, 0, 0, 0, 0),
q̇(0) = (π/2, 0, 0, 0, π). Dissipation α = 0 and F(t) = (0, 0, 0, t/16, t/16). The graphics show
the time evolution of the generalized coordinates of the system for both integrators.
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Figure 14. Experiment 3.1 of the falling rolling disk with initial condition q(0) = (0, 0, 0, 0, 0),
q̇(0) = (π/2, 0, 0, 0, π). Dissipation α = 0 and F(t) = (0, 0, 0, t/16, t/16). The graphics show
the time evolution of the generalized velocities of the system for both integrators.
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Figure 15. Experiment 3.1 of the falling rolling disk with initial condition q(0) = (0, 0, 0, 0, 0),
q̇(0) = (π/2, 0, 0, 0, π). Dissipation α = 0 and F(t) = (0, 0, 0, t/16, t/16). The graphic shows
the energy function for both integrators.
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Figure 16. Experiment 3.1 of the falling rolling disk with initial condition q(0) = (0, 0, 0, 0, 0),
q̇(0) = (π/2, 0, 0, 0, π). Dissipation α = 0 and F(t) = (0, 0, 0, t/16, t/16). The graphic displays
the function of the configuration variable θ obtained by the contact integrator and ode15i,
which is the reference method. It can be observed that the disk does not fall completely for
either of the two integrators in t ≈ 7.7 s, as the disk falls completely when θ = π/2.
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Figure 17. Experiment 4.3 of the falling rolling disk with initial conditions
q(0) = (0, 0, 20π/180, 0, 0), q̇(0) = (π/2, 0, 0,−3π/10, ψ̇0), with ψ̇0 = ((IT − IA −

mR2) sin(θ0)φ̇2
0 − mgR)/((IA + mR2) tan(θ0)φ̇0). Dissipation α = 0.1 and F(t) = (0, 0, 0, 0, 0).

The graphics show the time evolution of the generalized coordinates for both integrators.
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Figure 18. Experiment 4.3 of the falling rolling disk with initial conditions
q(0) = (0, 0, 20π/180, 0, 0), q̇(0) = (π/2, 0, 0,−3π/10, ψ̇0), with ψ̇0 = ((IT − IA −

mR2) sin(θ0)φ̇2
0 − mgR)/((IA + mR2) tan(θ0)φ̇0). Dissipation α = 0.1 and F(t) = (0, 0, 0, 0, 0).

The graphics show the time evolution of the generalized velocities for both integrators.

Journal of Geometric Mechanics Volume 15, Issue 1, 287–318



313

0 5 10 15 20 25

Time (s)

0

200

400

600

800

1000

1200

1400

1600
T

o
ta

l 
m

e
c
h

a
n

ic
a

l 
e

n
e
rg

y
 (

J
)

Contact (2nd order)

Reference

Figure 19. Experiment 4.3 of the falling rolling disk with initial conditions
q(0) = (0, 0, 20π/180, 0, 0), q̇(0) = (π/2, 0, 0,−3π/10, ψ̇0), with ψ̇0 = ((IT − IA −

mR2) sin(θ0)φ̇2
0 − mgR)/((IA + mR2) tan(θ0)φ̇0). Dissipation α = 0.1 and F(t) = (0, 0, 0, 0, 0).

The graphic shows the time evolution of the energy of the system for both integrators.

We validate our integrator by numerical experiments performed over two mechanical systems, namely
the Foucault pendulum with dissipation and the rolling falling disk with dissipation and a forcing term.
The validation was done by comparing the numerical outcome of our integrator with standard methods
such as the fourth-order Runge-Kutta-Fehlberg (for the Foucault pendulum) and the ode15i solver
available in Matlab (for the rolling falling disk). Also, for the Foucault pendulum, we contrast our
integrator against the one coming from the Lagrange-d’Alembert principle, which is somehow the
“standard” variational-like approach to nonholonomic systems.

The numerical experiments show that our integrator has good qualitative behavior, matching the
outcome of the references and, in some situations, outperforming them, at least in the qualitative
sense. This is worth mentioning since one of the main paradigms of geometric integration is to develop
numerical schemes with good qualitative behavior in long-time simulations. One potential drawback of
the proposed integrator is the execution time which is significantly larger than the ode15i. However, we
point out that this is mainly because the ode15i is an optimized package designed for Matlab, while
the implementation of the proposed integrator makes use of a particular subroutine implementing a
modified multivariate Newton-Raphson method, which has not been optimized for the Matlab platform.

It is also worth noticing that the anomaly displayed by the Lagrange-d’Alembert integrator (re-
garding Figure 8) disappears when we refine the time-step by a factor of 20, which certainly implies
a computational cost that might be undesirable. This raises the question of whether this anomaly is
geometric in nature or is it a purely numerical issue.
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Figure 20. Experiment 4.3 of the falling rolling disk with initial conditions
q(0) = (0, 0, 20π/180, 0, 0), q̇(0) = (π/2, 0, 0,−3π/10, ψ̇0), with ψ̇0 = ((IT − IA −

mR2) sin(θ0)φ̇2
0 − mgR)/((IA + mR2) tan(θ0)φ̇0). Dissipation α = 0.1 and F(t) = (0, 0, 0, 0, 0).

The graphic displays the function of the configuration variable θ obtained by the contact
integrator and ode15i, which is the reference method. It can be observed that the disk does
not fall completely for either of the two integrators in t ≈ 22.8 s, as the disk falls completely
when θ = π/2.
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holonómicos, Master’s thesis, Polytechnic School - National University of Asuncion, May 2021.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Journal of Geometric Mechanics Volume 15, Issue 1, 287–318

http://dx.doi.org/https://doi.org/10.3390/e19100535
http://dx.doi.org/https://doi.org/10.1142/S0219887819400036
http://dx.doi.org/https://doi.org/10.1016/j.aop.2015.07.010
http://dx.doi.org/https://doi.org/10.1016/j.aop.2016.11.003
http://dx.doi.org/https://doi.org/10.1063/1.50199364
http://dx.doi.org/https://doi.org/10.1007/s00332-021-09708-2
http://dx.doi.org/https://doi.org/10.1007/s00211-020-01126-y
http://dx.doi.org/https://doi.org/10.1016/S0895-7177(02)00232-7
http://creativecommons.org/licenses/by/4.0

	Introduction
	Geometric mechanics and variational integrators
	Construction of the integrator
	Herglotz principle with nonholonomic constraints
	Discrete herglotz variational principle
	Discretization of the constraint

	Numerical simulations and comparison
	Foucault pendulum
	Falling disk
	Numerical experiments: foucault pendulum
	Numerical experiments: falling rolling disk

	Concluding remarks

