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ABSTRACT An important aspect of the design of effective machine learning algorithms is the complexity
analysis of classification problems. In this paper, we propose a study aimed at determining the relation
between the number of adjacent inputs with different labels and the required number of examples for the
task of inducing a classification model. To this aim, we first quantified the adjacent inputs with different
labels as a property, using a measure denoted as Neighbour Input Variation (NIV). We analyzed the relation
that NIV has to random data and overfitting. We then demonstrated that a threshold of NIV may determine
if a classification model can generalize to unseen data. We also presented a case study aimed at analyzing
threshold neural networks and the required first hidden layer size in function of NIV. Finally, we performed
experiments with five popular algorithms analyzing the relation between NIV and the classification error on
problems with few dimensions. We conclude that functions whose similar inputs have different outputs with
high probability, considerably reduce the generalization capacity of classification algorithms.

INDEX TERMS Classification, data complexity, machine learning, overfitting, supervised learning.

I. INTRODUCTION
Supervised learning is the task of mapping inputs to the corre-
sponding output, where there is a previous set of input-output
pairs given as examples. Supervised learning is highly suc-
cessful in automating classification problems in the most
diverse areas, from subatomic particle detection to melanoma
diagnosis [1]–[6]. However, supervised learning is not a fully
understood process, since its development requires a lot of
empirical work [7].

On the other hand, Computational Learning Theory (CLT)
is the field that studies the success of machine learning (ML)
algorithms, and in particular of classification algorithms [8].
CLT offers several mathematical approaches to formalize
classification problems [9]–[14] and represents an important
advance, although with some limitations. For instance, there
is a limited understanding of overfitting and generalization,
for supervised classification models with a large number of
parameters [15], [16]. A second problem is that supervised
classification algorithms must deal with real problems, with
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little or no prior knowledge. Thus, the convergence between
theory and practice is limited by the uncertainty from data [7].

An alternative strategy for analyzing classification algo-
rithms is to perform experiments aimed at measuring the
computational costs for learning data with some specific
properties. There are several measures for experimental anal-
ysis of data complexity for classification algorithms [17].
Some data measures evaluate the influence of single variables
in class separability, for example, Fisher’s discrimination
ratio, volume overlap region and attribute efficiency [18].
Other data measures consider the separability of classes, for
instance, theminimal error by a hyperplane classification [19]
or the distance between classes [20].

Other measures consider the geometry of manifolds
spanned by classes, like the amount of space covering adher-
ence subsets [17], non-linearity [21] or density [18], [20].
Finally, Kolmogorov Complexity is based on the minimum
computer program that can replicate a given pattern. Kol-
mogorov Complexity has high theoretical importance, how-
ever it is difficult to calculate for real world problems [22],
[23]. By using data complexity measures, we can define the
capacity of models based on the complexity of the data that
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they can learn. In this sense, analyzing data complexity can
give alternatives to capacity measures for models, e.g. the
Vapnik–Chervonenkis (VC) dimension [24], for assessing the
effectiveness of classification algorithms.

In this paper, we study the particular problem of how
different labels between neighboring inputs influence error
in supervised classification problems. Considering that data
is usually represented by bits, we model classification prob-
lems as finite discrete functions that are learned from a
sample. From this formulation, the hypothesis is the fol-
lowing. For difficult classification problems, random inputs
have neighboring inputs whose values vary with high prob-
ability. In other words, complex data is characterized by
the fact that input value does not provide much informa-
tion of the neighboring inputs. In this sense, we propose a
data complexity measure called Neighbour Input Variation
(NIV), for classification problems using categorical labels.
NIV counts the times that neighboring inputs have a different
value according to the function and divides such sum by the
number of all possible inputs. From the study presented in this
paper, we can highlight the following results. First, we show a
strong relationship between high NIV values and a randomly
generated function. However, we show that functions with
regular patterns and high NIV can be found as well. That
implies that high values of NIV in a learned function may be
a signal of overfitting. Second, we show that classification
error has a lower bound that has linear dependency on a
given value V , under the condition that we only know that
our classification problem has a NIV value less or equal to
V . The interpretation is that low classification error occurs
for high NIV, only if the problem has good prior knowledge.
Third, we formulate an algorithm whose error has an upper
bound, under the hypothesis that our classification problem
has a NIV value less or equal to V . For these results, the error
depends on the maximum number of inputs with different
labels that we can find between two functions, where such
functions have NIV values bound by V and their labels match
with the classification on the sample.

We show that the expectation value of adjacent inputs
with different outputs by the algorithm, is an alternative for
measuring capacity in supervised learning models. As a case
study, we consider feed-forward neural networks with thresh-
old units. NIV shows to be a measure that allows straight-
forward results given its simplicity. We find a necessary and
sufficient condition depending on the first hidden layer size,
for computing any function with a fixed NIV value.

Finally, we present experiments showing that higher expec-
tation of neighboring inputs with different value, tends to
produce higher error in classification problems. For such
experiments, we selected 2,3 and 4-dimensional problems.
We apply K-Nearest Neighbours [25], K* [26], Random
Forests [27], RIPPER algorithm [28], bagging [29] with Rep-
Tree [30] and artificial neural networks [31]. The experiments
are compared by classification error.

Thus, this paper contributes towards a better understanding
of the consequences of neighboring inputs with different

values on classification problems. Such results are formulated
by the NIV measure. We summarize our contributions as
follows:

• A positive relation between noise and expectation of
neighboring inputs with different values, in classifica-
tion problems.

• A lower bound showing that a high expectation of neigh-
boring inputs with different values implies a high clas-
sification error.

• An upper bound showing that a low expectation of
neighboring inputs with different values implies a low
classification error, for an appropriate classification
algorithm.

• A tight bound of the number of first hidden layer units
for computing a function f by a feed-forward neural
network with threshold units, given the expectation of
neighboring inputs with different values in f .

• Experimental evidence that a high expectation of neigh-
boring inputs with different values implies high classifi-
cation error.

This paper is structured as follows. Section II defines
error on classification problems and the NIV measure. This
section also describes the properties of the proposed measure.
Section III analyzes feed-forward threshold neural networks
in relation to NIV of data. Section IV presents experiments
that relate NIV to classification error, while Section V dis-
cusses the relation of the studied property in relation to
existing complexity measures. Finally, in Section VI we draw
the main conclusions and identify possible future works.

II. MEASURING COMPLEXITY IN LABELED DATA
In this section, we start by introducing the notation needed in
the following of the paper. Let E = {ei} be a finite sequence
of real numbers, such that ei+1 − ei = 1 > 0 for all i,
some constant 1 and |E| = n. We denote as A = Ek a
set of k−dimensional inputs, where each term from input
belongs to E . For example, each term xi can model a pixel
from x ∈ A, which can be an image or intensity in a discrete-
time signal. In classification problems, each input is assigned
a label. We denote Y as the set of possible labels. Thereby,
we model a classification problem as a function f :A → Y ,
whose value is known in some set S ⊂ A denoted as the
sample. The results are restricted to classification problems
satisfying the following hypothesis:

• The set Y has no order defined. Thus we only consider
categorical classification problems.

• The classification problem f is defined for all input
x ∈ S. We consider problems where we may find inputs
with nonsense, which have a special label ∅ ∈ Y .

A classification algorithm must infer the values of f for
inputs outside S. However, the classification problem f must
have some regularity or restriction, on its instances. If each
instance is completely independent from the other, then the
only way to know f (x) is by querying x itself. In this
sense, we define a hypothesis, which is a set of functions
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TABLE 1. Example for definition 1.

H containing f . Such hypothesis H represents a previous
knowledge about f analogous to the Probably Approximately
Correct learning theory [32]. The following definition for-
malizes the notion of classification error, that we consider in
this paper.
Definition 1: Let C be a classification algorithm which is

trained on some sample S from A. Let H be a set of functions
of the form f : A→ Y . We say that C has an error ε for H and
S, if C outputs some function g with non-zero probability and
there is some f ∈ H , such that all the following properties
are satisfied:

1) The function g is equal in S to f .
2) The function g differs in ε (|A| − |S|) inputs from A− S

in relation to f .
3) There is no function in H satisfying item 1) that differs

in more inputs in relation to g than f .
For example, take A = {0, 1, 2, 3} , g:A → {1,−1} ,

f :A → {1,−1} , f̂ :A → {1,−1} and f̃ :A → {1,−1}; such
that Table 1 summarizes the values of f , g, f̂ and f̃ on A.
Suppose that H =

{
f , f̂ , f̃

}
and S = {0} ⊂ A. Let C be a

classifier trained on a sample S on f that infers that the correct
function must be g. Then C has an error 2

3 over H , because g
differs in two values from A− S = {1, 2, 3} in relation to f̂ .

Notice that Definition 1 considers randomized algorithms,
but C becomes a deterministic algorithm by taking a single
function g with probability 1 from H . All information about
f is given to C from S and H , which are restrictions to the
candidate functions.

The following definition introduces the proposed measure
for different labels between adjacent inputs, where function f
models the classification problem. The measure depends on
the values of f over pairs of adjacent inputs. We say that x
and y are adjacent if xi = yi for all i, except a unique k such
that, if xk = ej and yk = eh then |j− h| = 1.
Definition 2: Let f : A → Y be a function. Consider the

function δ: A× A→ {0, 1}, where δ (x, y) = 1 if and only if,
(i) x and y are adjacent and (ii) f (x) 6= f (y). The Neighbour
Input Variation (NIV) of f is defined as

ν (f ) =
1

2 |A|

∑
x

∑
y

δ (x, y) . (1)

We present a very simple example, with

A = {0, 1, 2, 3}

and

f :A2→ {1,−1} ;

FIGURE 1. The blue line with red and black dots represents a
unidimensional domain with some labeled data, where each dot is red or
black. The first bar represents a simple prediction that generalizes the
labeled data. However, the second bar represents an over-fitting behavior.

where we take

f (i, j) = −1(bi/2c+bj/2c).

Notice that there are eight pairs of adjacent inputs with dif-
ferent value in f , then δ ([0, 1] , [0, 2]) = δ ([1, 0] , [2, 0]) =
δ ([1, 1] , [2, 1]) = δ ([1, 1] , [1, 2]) = δ ([2, 1] , [2, 2]) =
δ ([1, 2] , [2, 2]) = δ ([3, 1] , [3, 2]) = δ ([1, 3] , [2, 3]) =
1. As δ (x, y) = δ (y, x), then

∑
x

∑
y
δ (x, y) = 16

and ν (f ) = 1/2.
It is important to mention that both Definitions 1 and 2

represent quantities not intended to be estimated experimen-
tally. As we will see later, these definitions are used to specify
hypotheses in the analysis of algorithms or classification
problems.

We can see that the NIV measure is the number of times
that two adjacent points have different categories on f ,
divided by the size of the domain of f . The idea behind NIV is
that a high number of adjacent inputs with different outputs
is a signal of randomness and noise in data. In real classi-
fication problems, two adjacent inputs have similar values
with high probability. Thus, methods preventing over-fitting
tend to limit the difference between outputs in neighboring
inputs [33], [34]. For example, Fig. 1 shows a classification
problem over a line. The classificationwith over-fitting shows
higher NIV than a classification generalizing on density.
The following theorem shows that if we generate a random
function we may expect a high NIV. This theorem implies
that high NIV tends to occur when there is no restriction in
the hypothesis.
Theorem 1: Suppose that we generate a random function

f : A → Y , by selecting a label from Y following a uniform
distribution, for each input in A. Then

E [ν (f )] =
k (n− 1) (|Y | − 1)

n |Y |
. (2)

Proof: By Definition 1 we have

E [ν (f )] =
1

2 |A|

∑
x

∑
y

E [δ (x, y)] . (3)

If x and y are adjacent then E [δ (x, y)] = (|Y |−1)
|Y | , otherwise

E [δ (x, y)] = 0. Notice that each input has 2k potential
neighbours and there are nk inputs in total, however there are
2knk−1 missing neighbours for inputs with extreme coordi-
nates. Then, we have 2knk−1 (n− 1) permutations of adjacent
pairs (x, y) , and Equation (3) implies Equation (2). �
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It is worth noticing that a high NIV does not imply noisy
functions without regular predictable patterns, for example
we have a function that generalizes the chessboard pattern.
Let p:E → {1,−1} be a function such that p (ei) = (−1)i.
We denote a function 8:A→ {0, 1} , defined as

8(x) =
1+

∏
i p (xi)
2

. (4)

Notice that 8 reaches the maximum NIV value for func-
tions of domain A and range {0, 1}. The reason is that
δ (x, y) = 1 for all pair x, y of adjacent inputs, thus

ν (8) =
k (n− 1)

n
.

The following theorem relates classification error with
NIV. The theorem supposes that the only thing that we know
about f is that its NIV cannot surpass a fixed value. That
hypothesis H can be seen as a regularization where we limit
the number of inputs that can have different outputs from
their neighborhood. As we see in Fig. 1, overfitting can be
associated with models of high NIV. That is because noisy
data is ’memorized’ by a classifier regardless of the values of
the neighbors.
Theorem 2: Let m,V > 0. Let C be a classification algo-

rithm trained on a sample S of size m from A. Denote the
hypothesis H as the set of functions of the form f : A → Y
with NIV equal or less than V . If V ≥ 2km

nk then all C has an
error ε for f and S that satisfies

ε ≥
1
2
. (5)

Proof: Let g be the function that C outputs given the
sample S. The function f has the same values given by S as
g, by definition. Notice that there are at most 2km elements
from A that are adjacent to elements from S, but disjoint to S.
Then the NIV value allows the construction of the following
function g. We choose a unique value y ∈ Y for all x ∈ A− S
in f , such that this class y has the lower cardinality over the
set A − S in g. This implies that at least n

k

2 inputs in A − S
have a different value for f and g. �
Consider the example for Definition 2. As ν (f ) = 1

2 , if we
have a dataset that can be represented by any function with
NIV equal or less than 1

2 then we need a sample with more
than 4 elements. Otherwise, the classification algorithm can
be wrong at least half the time.

Theorem 2 presents V ≥ 2km
nk as a critical condition.

We can see that if the condition is satisfied then V assigns
enough freedom to g for ignoring the information from the
sample. We say that g ignores S because the best algorithm
just guarantees the values that we already know from S.
Notice that equation (5) implies a high error because S is
much smaller than A in practical situations. This theorem
comes from that excessive randomness in datasets disables
the prediction capacity of the sample. That is because ran-
domness produces adjacent inputs with different labels with
high probability, as Theorem 1 showed. The following theo-
rem analyzes error in a distinct case when the sample is large
enough in relation to the NIV value.

Theorem 3: Consider the same variables from Theorem 2.
If 2km

nk > V and n is multiple of k
√
m, there is a classification

algorithm C that has an error ε for H and S, such that

ε ≤
Vnk

km
. (6)

Proof: We consider an algorithm that can choose its
sample S. This algorithm considers a partition of A in m sets
of the form 1i1 ×1i2 × . . .×1ik , where

1i =

{
e(i k
√
m+j): 0 ≤ j <

k
√
m
}
.

Thus C chooses a sample S such that there is an element
s ∈ S on each set of the partition and s is not adjacent to
any element from other sets of the partition. Finally, suppose
that x /∈ S and s, x ∈ p for some set p of the partition, then
C just assumes that g (x) = g (s). Notice that (i) we cannot
have more than Vnk adjacent pairs of inputs with a different
value in f and (ii) if C gives a wrong answer in some set of
the partition, there are at least k adjacent pairs of inputs with a
different value in such set. Then C can give a wrong answer in
no more than Vnk/k sets from the partition. We also have that
each partition has

(
nk
m − 1

)
inputs whose class is unknown.

Then
(
nk
m − 1

)
Vnk/k is an upper bound for the inputs with

wrong value by C and dividing by
(
nk − m

)
which is the total

number of inputs outside the sample, we have equation (6).
�

As example, take a generic function f whose inputs have a
same value, excepting p inputs that are not adjacent between
each other and whose coordinates do not take extreme values
of A. Notice that ν (f ) = 2pk

nk and choosing an appropriate
k
√
m that divides n, we needm satisfying 2km

nk >
2pk
nk orm > p.

Thus we upper bound error by ε ≤ p
m , or in other words, if the

dataset can be any function with NIV equal or less than 2pk
nk

then there is an algorithm that fails with probability no more
than 2p

m on inputs outside S.
Choosing the sample is unusual in realistic situations.

However, Theorem 3 can be interpreted as an error from a
very well distributed sampling.

III. NIV AND THRESHOLD NEURAL NETWORKS
In this section, we propose an analysis of feed-forward neural
networks using the NIV measure. Let us first introduce the
following definitions. The Heaviside step function th(x) is
defined by th(x) = 1 for x > 0 and th(x) = 0 otherwise.
If some unit applies the activation function th(x), then such
unit is a threshold unit. If a neural network only has threshold
units, then it is a threshold neural network. The number of
units in the first hidden layer of a feed-forward neural network
is denoted as the base. The following theorem relates the base
and NIV.
Theorem 4: Let f : A→ Y be a function. Then a threshold

neural network N with feed-forward architecture that com-
putes f , has a base

b ≥ ν (f ) n/k. (7)
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Proof: Let x, y be two adjacent inputs from A, such that
f (x) 6= f (y). The segment line xy is cut by a hyper-plane
from a neural unit of the first hidden layer and such segment
line is denoted as critic. Otherwise, x and y would have the
same output in the first hidden layer, and they would be
indistinguishable forN . Therefore, for computing f byN , all
critic line segments are cut. The cardinality of the set of critic
line segments is ν (f ) nk . The hyper-plane defined by a first
hidden layer unit can cut no more than knk−1 line segments,
therefore we have (7). �
Theorem 4 implies that limiting the base can be a regular-

ization method for threshold neural networks. That is because
a regularization method must limit NIV on the learned func-
tion for noisy data. The following theorem shows that there
are functions such that equation (7) is an asymptotically tight
bound.
Theorem 5: Let k be an even number. There is a threshold

neural networkN with base k (n− 1) that computes function
8 using two layers.

Proof: We denote (i) wijh as the weight for unit j on layer
i−1 to unit h on layer i and (ii) bih as the bias of unit h on layer
i, where input is considered layer 0. We divide the units of the
first hidden layer in two groups of identical size. If (i) 0 ≤
h < t = k(n−1)

2 then w1
jh = 1 and b1h = −1(2h+ 1) − e0k ,

for t ≤ h < 2t w1
jh = −1 and b1h = 12 (h− t) + 1 + e0k .

Layer two has just one unit, then w2
j1 = 1 and b21 =

1−k(n−1)
2 .

Notice that if ∑
i

xi = L1+ e0k

for some natural number L. Then there are
⌊L
2

⌋
first hidden

layer units with output 1, such that h < t and there are
k(n−1)

2 −
⌈L
2

⌉
− 1 first hidden layer units with output 1 such

that h ≥ t . Thus, there are
⌊L
2

⌋
+

k(n−1)
2 −

⌈L
2

⌉
−1 units with

value 1 in the layer one. This is equivalent to k(n−1)
2 − 1 units

with value 1 if L is even and k(n−1)
2 − 2 units with value 1 if

L is odd.
Takew2

i1 = 1 and b2i = −
k(n−1)

2 −3/2 for all i. Considering
that layer two is an output layer with a single neural unit, then
if L is even then N outputs 1, otherwise N outputs 0. �
Notice that replacing f = 8 in equation (7) we find that

Theorem 5 implies that b = ν (8) n = n − 1. This is
asymptotically tight to Theorem 5 as n tends to infinity.

IV. EXPERIMENTAL EVALUATION OF CLASSIFICATION
PROBLEMS DEPENDING ON NIV
This section presents experimental evidence that in clas-
sification problems, a higher NIV is related to a higher
error. We analyzed the behavior of the error of five algo-
rithms on classification problems, with different NIV values,
but the same dimension. The problems have just 2, 3 and
4 attributes. However, the proposed analysis can be extended
to any number of features. We chose a generalization of func-
tion 8 as rule for the classification problems. The function

8k
n,h:E

k
→ {0, 1} is defined as

8k
n,h (x) =

1+
∏

i ph (xi)
2

, (8)

where ph (ei) = (−1)

⌊
i
h

⌋
and |E| = n. We chose this family

of functions because their NIV is easily calculated. It is not
difficult to prove that ν

(
8k
n,h

)
= k (n−h)hn .

We separated the classification problems into 3 groups
depending on dimension k:
(i) Problems of two dimensions 82

60,20, 8
2
100,20, 8

2
40,10,

82
100,10, and 8

2
80,4;

(ii) Three dimensions 83
20,10, 8

3
21,7, 8

3
20,5, 8

3
16,4, and

83
18,3;

(iii) Four dimensions 84
10,5, 8

4
9,3, 8

4
8,2, 8

4
10,2, and 8

4
14,2.

For each function, we generated datasets that represent 3%,
6%, 9%, 12% and 15% of the domain for each function.
The records in each dataset are unique and were selected
uniformly from the function domain. The functions have
different size domains depending on their parameters, thus
the generated datasets have different sizes. For 8i

j,k we have
a size domain of ji. The selected functions are difficult to
learn due to patterns that are not linearly separable. Thus,
we selected supervised classification algorithms with good
performance on complex patterns, but different classification
approaches. In particular, we have selected K-Nearest Neigh-
bours, K*, Random Forest, Repeated Incremental Pruning
to Produce Error Reduction (RIPPER), Bagging applied on
RepTree and Artificial Neural Networks. K-Nearest Neigh-
bours is a classifier that assigns labels, depending on the dis-
tance of some instance to previously classified examples. K*
is an instance-based classifier as KNN, however differs from
other instance-based classifiers in the use of an entropy-based
distance function. Random Forest is an ensemble approach
based on decision trees. RIPPER is a rule learner that applies
a divide-and-conquer strategy. RepTree is an algorithm from
the family of decision trees. Finally, the artificial neural net-
work applied consists of a single hidden layer of 10 ReLu
units [35].
In order to facilitate the interpretation, results are visu-

alized using 2-dimensional plots. In the graphs, each curve
corresponds to the results obtained by an algorithm on a
dataset of a given size. The points represent the results of
an algorithm on a specific classification problem 8k

n,h, using
the percentage sample size defined by its curve. Thus, for
each point, the y-axis represents the correct classification
percentage and the x-axis represents the NIV value.
Figure 2 show the results for 2-dimensional classification

problems 82
60,20, 8

2
100,20, 8

2
40,10, 8

2
100,10, and 8

2
80,4.

Figure 3 show the results for 3-dimensional classification
problems 83

20,10, 8
3
21,7, 8

3
20,5, 8

3
16,4, and 8

3
18,3.

Figure 4 show the results for 4 dimensional classification
problems 84

10,5, 8
4
9,3, 8

4
8,2, 8

4
10,2, and 8

4
14,2.

We can notice that not all the curves present a steady
decreasing behavior, as far as NIV is concerned. However, the
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FIGURE 2. Results for 2-dimensional classification problems.
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FIGURE 3. Results for 3-dimensional classification problems.
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FIGURE 4. Results for 4-dimensional classification problems.
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TABLE 2. Pearson correlation between NIV and correct classification
percentage for the 2-dimensional classification problems.

TABLE 3. Pearson correlation between NIV and correct classification
percentage for the 3-dimensional classification problems.

TABLE 4. Pearson correlation between NIV and correct classification
percentage for the 4-dimensional classification problems.

curves have a general decreasing tendency. In most cases, the
lower the NIV values, the higher the number of correct clas-
sifications. Some figures do not present a clear descendant
tendency at high NIV values, as Figures 2c, 2e, 3c, 3e and 4a.
For those figures, the classification percentage collapses on
an interval around 50 and fluctuates on curves for higher
NIV values. This implies that the algorithm’s capacity is
surpassed in some threshold of the NIV. At this point, the
algorithm simply guesses the output, since it cannot extract
enough information from the sample. Such threshold of the
NIV varies depending on the algorithm.

We find a decreasing tendency in curves using Pearson cor-
relation, between NIV and correct classification percentage.
We measured the correlation for fixed sample percentage,
algorithm and problem dimension. Tables 2, 3 and 4 show
high negative correlation values for most curves obtained
from a fixed sample percentage. Notice that each curve on
each figure has a corresponding value on some tables.

We can conclude that fixing the number of dimensions and
increasing NIV tends to increase classification error. How-
ever, the sensitivity of classification error to NIV depends on
the algorithm and error itself, because such sensitivity seems
to be reduced as error reaches values near 50%. The error
also seems to be less affected by NIV values as dimension
increases.

V. DISCUSSION
In this section we discuss the difference between the prop-
erties measured by pre-existing complexity metrics and the
property studied in this work. For that we will consider a

dataset of k attributes represented by the function f , where
the value of the class only depends on an attribute such that
contiguous values (ei and ei+1) must have a different class.
Notice that this dataset is constant in the other attributes and
tends to take smaller NIV values in relation to the maximum
as k grows.

The property studied is related to measures of complexity
that measure the overlap of classes [36]. A dataset that max-
imizes the NIV value will also tend to maximize the Max-
imum Fisher’s discriminant ratio (MFDR), the Volume of
overlap region (VOR), and the Maximal (individual) feature
efficiency (MFE) [17]. However, it is not necessary to max-
imize the NIV value to obtain a maximum overlap between
classes, since we can get very similar means, maximums and
minimums between classes with the dataset defined by f ,
because the classes occupy almost the same space.

There are also the complexity metrics based on geometry
and density. The e-neighborhood (EN) metric measures the
number of balls of maximum size and centered in points
that are necessary to cover each class without covering other
classes, normalized by the number of points. Like other met-
rics, the dataset f maximizes the measure since all the points
are at a minimum distance from another point of different
class. The Local Set Average Cardinality (LSAC) [37] is
based on the average for each instance a ∈ A, of the number of
instances of the same class of a that are closer than any other
instance of another class. For the function f the LSAC takes
a value of maximum complexity because each instance is at
a minimum distance from another instance of the opposite
class. The Average number of points per dimension (ANPD)
is the quotient between the number of points and the num-
ber of attributes. This measure is completely independent
to the NIV value, since the measure is independent to
the classes.

In the case of separability measures such as Error rate
of linear classifier by linear programming (ERLCLP) [38],
we can take datasets as defined by f , where a plane is
incapable of minimally separating the classes like, but with
limited values of NIV. Therefore linear separability is a much
less strict property. For the Ratio of average intra/inter class
nearest neighbor distance (RAICNND) [39] we see a rela-
tionship similar to measures of overlap, because in f taking
a single attribute that produces a lot of overlap of classes
equals the distance between instances of a same class and
different classes, but with a limited number of neighboring
instances of different classes. In the case of the Fraction of
points on class boundary (FPCB) [40], a minimum spanning
tree is constructed joining points by their distance, such that
the number of neighboring points of different class is counted
in a similar way to the property studied. The difference is
that the property is defined on a grid where you can define a
huge number of spanning trees that can give different values.
Therefore it can be seen as a randommeasure of the difference
between neighboring instances of distinct classes. This makes
it the measure of complexity most related to the property
studied in this work. Nevertheless, its ambiguity in grids
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TABLE 5. Comparison of the different complexity measures discussed for
the functions f and 8.

means that it cannot be used to adequately study the property
analyzed in this work.

Table 5 compares the behavior of the analyzed complexity
measures for the function f and the function8 from equation
(4), where we know that the latter is the binary function
that maximizes the value of NIV. We can notice that unlike
NIV, all metrics tend to the same value for both functions
if n tends to infinity. Unlike FPCB, where the value for f
is indeterminate because it depends on a tree that does not
have a specific shape for total functions. This shows that
the measures analyzed are only partially influenced by the
property studied in this work.

Notice that the revised complexity metrics are oriented to
generator functions whose domain is not fully defined. On the
other hand, the property studied in this work is defined in the
entire domain. This implies that to study this property in real
datasets, this generating rule must be known, which is not
possible without making assumptions.

VI. CONCLUSION
In this paper, we have shown a positive relation between
classification error and the probability of finding adjacent
inputs with different labels.

First, with Theorem 1, we proved that noisy data tends to
produce adjacent inputs with different labels. This implies
that bounding the number of adjacent inputs with different
outputs is important in order to prevent overfitting in clas-
sification algorithms. We can also conclude that the NIV
measure can provide valuable insights for the development
of regularization methods.

Theorem 2 shows that toomany adjacent inputs with differ-
ent labels, cause the algorithms not to be able to produce good
predictions on unseen data. Thus, high NIV values imply a
classification problem that can be considered unlearnable.
Theorem 3 shows that if we have freedom on sampling and an
appropriate algorithm, then few adjacent inputs with different
labels imply a low classification error.

We also show that NIV can be applied in the analysis of
specific models. Theorems 4 and 5 relate NIV to the number
of units in the first hidden layer of a threshold feed-forward
neural network.

The theoretical results are complemented with experi-
ments, and the results obtained show that the number of
adjacent inputs with a different label is a variable whose
increment causes the classification error to grow, when other
properties as dimension are constant. We would like to stress
out that even if the experiments are performed on problems
with few attributes, the theoretical results are valid for prob-
lems of any dimension.

It is important to note that this property can only be
properly measured in data sets where the rule that decides
the classes is known. Despite this drawback, it is a prop-
erty closely related to over-fitting and therefore helps us to
better understand how classification algorithms work. In this
sense, this type of analysis occupies an intermediate and com-
plementary place, between purely mathematical approaches
and purely experimental approaches where nothing is known
about the data set. Although, the property studied is difficult
to measure in real problems, this does not imply that it is not
an important property.

Finally, we identify some possible extensions of this paper:
• An error analysis considering a statistical or expectation
evaluation. Thus, a continuation of this work may be an
analysis using CLT frameworks that analyze the mean
error concerning NIV.

• We may avoid the hypothesis that the categories are
defined for any possible input. Then, future work may
generalize to partial classification problems.

• Existing data-complexity measures do not seem to relate
to the number of adjacent inputs with a different label.
However, a relationmay exist and such possibility can be
explored. We can say the same thing to VC-dimension.

• The basic ideas in this paper can motivate studies of
othermachine learning tasks. An open question is how to
generalize the property studied to regression problems,
since it is only defined in classification problems. In the
case of unsupervised learning, it is not trivial to identify
a similar property, since it is defined on labels.
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