RT Generic T1 Integrador de Contacto para el Disco Controlado que rueda sin deslizamiento. A1 Maciel Recalde, Elías Fabián AB Los integradores geométricos son una clase de métodos numéricos cuyo enfoque principal consiste en considerar la geometría continua subyacente en sistemas de ecuaciones diferenciales en la configuración discreta para obtener los correspondientes integradores. En este trabajo centramos el estudio de dichos integradores aplicados al contexto de sistemas mecánicos, es decir, los sistemas dinámicos que se buscan resolver numéricamente corresponden a las ecuaciones de movimiento de sistemas mecánicos. Para la resolución numérica de ecuaciones diferenciales generales se cuenta con un gran conjunto de métodos de propósito general, en donde el enfoque principal para su formulación consiste en discretizar las ecuaciones diferenciales y garantizar su convergencia a la solución con herramientas de análisis numérico, sin tener en cuenta el origen o las características de dichas ecuaciones. Este enfoque corresponde a integradores, tanto de obtención sencilla como los de Euler (explicito e implícito), o integradores más sofisticados y maduros como los basados en Runge-Kutta de alto orden. Sin embargo, estos integradores de propósito general, como no necesariamente son compatibles con la geometría continua de las ecuaciones diferenciales, pueden no resultar ser apropiados para simular sistemas mecánicos, ya que típicamente introducen artefactos numéricos espurios en la integración, como por ejemplo, amortiguamiento numérico o la introducción de fuerzas que incrementan la energía del sistema de manera espuria. En contrapartida, los integradores geométricos son métodos competentes para la simulación de sistemas mecánicos. Precisamente, la compatibilidad de estos integradores con la geometría continua subyacente de las ecuaciones diferenciales se traduce en la preservación de ciertas simetrías e invariantes que caracterizan al sistema mecánico, produciendo integraciones de excelente comportamiento cualitativo. PB FP-UNA YR 2021 FD 2021 LK http://hdl.handle.net/20.500.14066/3529 UL http://hdl.handle.net/20.500.14066/3529 LA spa NO CONACYT - Consejo Nacional de Ciencia y Tecnología DS MINDS@UW RD 11-dic-2024