RT Journal Article T1 A Fast Multivariate Symmetrical Uncertainty Based Heuristic for High Dimensional Feature Selection. A1 García Torres, Miguel A1 Divina, Federico A1 Gómez, Francisco A1 Vázquez Noguera, José Luis A2 Universidad Americana (PY) A2 Universidad Pablo de Olavide (ES) AB In classification tasks the increase in the number of dimensions of a data makes the learning process harder. In this context feature selection usually allows to induce simpler classifier models while keeping the accuracy. However, some factors, such as the presence of irrelevant and redundant features, make the feature selection process challenging. YR 2021 FD 2021 LK http://hdl.handle.net/20.500.14066/3778 UL http://hdl.handle.net/20.500.14066/3778 LA eng NO CONACYT - Consejo Nacional de Ciencia y Tecnología DS MINDS@UW RD 21-nov-2024