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SUMMARY 

 

In liberalized electricity markets, the investment postponement option is deemed to be 
decisive for understanding the addition of new generating capacity. Basically, it refers 
to the investors’ chance to postpone projects for a period while waiting for the arrival 
of new and better information about the market evolution. When such development 
involves major uncertainties, the generation business becomes riskier, and the 
investors’ “wait-and-see” behavior might limit the timely addition of new generation 
capacity. The literature provides solid empirical evidence about the occurrence of 
construction cycles in the deregulated electricity industry. However, the strategic 
flexibility inherent to defer investments in power plants has not been yet rigorously 
incorporated as an explicit input for investment signals in the revised long-term market 
models. Therefore, this paper proposes a new methodology to assess the long-term 
development of liberalized power markets based on a more realistic approach for 
valuing generation investments. The proposal is based on a stochastic dynamic market 
model, built upon a System Dynamics simulation approach. The model considers that 
the addition of new generation capacity is driven by the economic value of the strategic 
flexibility associated to defer investments under uncertainties. The value of the 
postponement option is quantified in monetary terms by means of Real Options 
analysis. Simulations explicitly confirm the cyclical behavior of the energy-only 
market in the long-run, as suggested by the empirical evidence found in the literature. 
Furthermore, the proposed method is used to test three regulatory schemes, 
implemented in order to dampen the arising construction cycles. Results show that, for 
ensuring the supply security in markets under huge uncertainties, investors would need 
complementary capacity incentives in order to deploy power generation investments 
in timely manner. 
 

Key words: Generation, Real Options, Stochastic Simulation, Strategic Flexibility, 
System Dynamics. 
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RESUMEN 

 

En mercados de electricidad liberalizados, la opción de posponer inversiones se 
considera decisiva para entender la incorporación de nueva capacidad de generación. 
Básicamente, dicha opción se refiere a la posibilidad de que los inversores aplacen 
proyectos durante cierto tiempo mientras esperan la llegada de nueva y mejor 
información acerca de la evolución del mercado. Cuando tal desarrollo involucra 
grandes incertidumbres, el negocio de generación se vuelve más riesgoso, y el 
comporamiento de “esperar y ver” de los inversores puede limitar la adición oportuna 
de nueva capacidad de generación. La literatura proporciona evidencia empírica sólida 
sobre la ocurrencia de ciclos de construcción en la industria desregulada de 
electricidad. No obstante, la flexibilidad estratégica inherente a posponer inversiones 
en centrales eléctricas aún no ha sido rigurosamente incorporada como una entrada 
explícita de las señales de inversión en los modelos de mercado de largo plazo 
revisados. Por lo tanto, este trabajo propone una nueva metodología con el objetivo de 
evaluar el desarrollo a largo plazo de los mercados eléctricos liberalizados en base a 
un enfoque más realista para valorar inversiones en generación. La propuesta se basa 
en un modelo de mercado dinámico y estocástico, elaborado mediante el enfoque de 
simulación Dinámica de Sistemas. El modelo considera que la adición de nueva 
capacidad de generación está impulsada por el valor económico de la flexibilidad 
estratégica asociada a diferir inversiones bajo incertidumbre. El valor de la opción de 
posponer se cuantifica en términos monetarios mediante el análisis de las Opciones 
Reales. Las simulaciones confirman de forma explícita el comportamiento cíclico del 
mercado de energía a largo plazo, como lo sugiere la evidencia empírica encontrada 
en la literatura. Además, el método propuesto se utiliza para estudiar tres medidas 
regulatorias, aplicadas con el objetivo de amortiguar los ciclos resultantes. Los 
resultados muestran que, para asegurar la seguridad del suministro en mercados bajo 
grandes incertidumbres, los inversionistas necesitarían incentivos de capacidad 
complementarios para desplegar inversiones en centrales de generación de manera 
oportuna. 
 

Palabras claves: Dinámica de Sistemas, Flexibilidad Estratégica, Generación, 
Opciones Reales, Simulación Estocástica. 
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I INTRODUCTION 

 

 

In the last three decades, the evolution towards liberalization of electricity markets has 

pursued the main objective of improving the economic efficiency of the supply side 

(IEA, 2003). The deregulation has been founded on strictly market mechanisms, which 

has led to the unbundling of the industry and the introduction of competition, mainly, 

in the generation segment. Despite many positive outcomes, the cumulated experience 

after the first stage of reforms has also raised concerns regarding the market attributes 

that needed to ensure the capacity adequacy (e.g. Rudnick et al., 2005; Arango et al., 

2006; Joskow, 2006). At first, this seems counterintuitive, since the theory of spot 

pricing, upon which the deregulation is based, ideally provides sufficient investment 

incentives in the long run (Caramanis, 1982). However, it has been reported repeatedly 

since the beginning of the 1990s (e.g. Bunn and Larsen, 1992; Bunn and Larsen, 1994) 

that the liberalized power industry is instead prone to suffer construction cycles1. 

 

Many efforts have been put in order to understand the origins of this situation. One of 

the most accepted explanations poses that the theoretical models that have supported 

the deregulation rely on assumptions absent in real power markets, such as perfect 

competition, risk neutrality and full rational behavior of market participants. Indeed, 

actual markets are likely to deviate from ideal conditions, exhibiting imperfections 

such as information asymmetry, risk aversion, herding behavior and bounded rational 

expectations. Moreover, investors in power plants have the possibility of behaving 

strategically in order to collect extraordinary profits, being prone to exercise market 

 

                                                           
1 This term refers to the fluctuating development that the capacity is perceived to have 
exhibited after being deregulated, due to the sequential episodes of over and under-investment. 
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power or to be unresponsive to straight market signals. In that sense, integrating the 

logic behind the strategic decision-making of new generating capacity has become 

vital when assessing the long-term market development. 

 

A comprehensive literature compilation that suggests the appearance of cycles in the 

construction of investor-owned power plants has been proposed by Arango and Larsen 

(2011). Such work presents empirical evidence gathered from over 20 years of reforms 

in electriciy markets, with England and Wales, and Chile giving the most exemplary 

cases. The article explains that the unstable market behavior leads to periods with low 

reserve margins, mainly affecting the demand side in terms of high prices and recurrent 

shortages. However, in times of excess of capacity, generation companies are likely to 

endure substantial economic losses, and potential bankruptcy. Therefore, the cyclical 

investment pattern is deemed to pose major concerns for policymakers when assessing 

the long-run development of the market, since it ultimately affects the security of 

supply (Roques, 2008). 

 

Despite the abundance of empirical evidence, the literature still lacks a rigorous 

mathematical framework for describing, in theoretical terms, the cyclical behavior of 

liberalized power markets. Nevertheless, it is worth to acknowledge that significant 

modeling efforts have been done for assessing the long-run behavior of the industry 

(Ventosa et al., 2005). Several works have focused on including some behavioral 

aspects of investors in long-term power market models. Notwithstanding, the methods 

proposed up to this day are based on simplifying the risk-averse profile that defines 

the investors’ response, by adjusting their expectations upon profitability according to 

predefined patterns. Thus, it is deemed that the literature can be enhanced by including 

the behavioral nature driving the adequacy of capacity in current power markets. 

 

In that context, this research work pursues the following general objective: 

 

Formulate mathematically the investment decision-making process within liberalized 

electricity markets with the consideration of the flexibility of postponing new power 

plants under uncertainty. 
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Likewise, the following specific objectives are aimed to be accomplish: 

 

 Integrate a valuation framework of flexible investments with a long-term dynamic 

model of a liberalized electricity market. 

 Provide a rigorous mathematical formulation for explaining the occurrence of 

construction cycles in liberalized electricity markets. 

 Analyze aditional capacity remuneration mechanisms for dampening the arising 

business cycles in order to improve the long-term market stability. 

 

As mentioned previously, the liberalization of electricity markets has changed the 

scope of decision-making in new generating capacity. Under this paradigm, multiple 

self-oriented companies aim at maximizing their own profits, defining a market 

behavior that is dynamic in nature. Therefore, investors need to develop sufficient 

certainty about the recovery of vast capital costs before undertaking new power plants. 

In fact, it has been perceived that investors are prone to postpone investments while 

waiting for the arrival of new and better information about the uncertain market 

evolution. In that context, firms might constrain the entrance of new generating 

capacity even during upward movements of the market, because they expect more 

profitable conditions in the future. The investment execution will become attractive 

eventually but then, an excess of optimism might lead to a situation of over-capacity, 

where more power plants than needed are undertaken. 

 

By following this reasoning, this research work hypothesizes that the cyclical behavior 

of the deregulated electricity industry originate because of the inclination of companies 

for postponing new power plants under uncertainties, jointly with the delay due to the 

construction time. In order to prove this hypothesis, a novel framework for describing 

the decision-making of generation investments is integrated with a power industry 

model, aiming to assess its long-term development. The proposed approach is suitable 

for capturing the strategic behavior of investors when making investment decisions, 

mainly because it includes the possibility of postponing new power plants in the 

definition of an optimal investment policy. 
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Taking into consideration the unpredictable effects of construction cycles, the long-

term development of liberalized electricity markets involves a key topic of study. Thus, 

it is supposed that the lack of a mathematical explanation for the origins of such 

fluctuating behavior prevents market stakeholders of conducting more refined 

assessments of their activities. 

 

More specifically, this situation concerns power firms considering investments in 

generating capacity. According to the rules of the deregulated industry, these firms are 

set to take advantage of any market context in order to maximize their own profits. In 

that sense, opportunities for seizing market upward movements, or to cut losses during 

unfavorable situations, are of a great value. Hence, the formal description of factors 

driving the long-term market behavior implies the potential of significant benefits for 

generating firms. 

 

Appropriate models are equally crucial for regulatory authorities. The availability of a 

rigorous market modeling framework is essential to simulate the suitability of different 

designs and policies intended to ensure the market stability and the security of supply 

in the long term. During the last years, this issue has been at the center of interest, since 

many countries have started to implement alternative mechanisms for remunerating 

the capacity, besides the energy-only market. This has aimed to promote a stable pace 

for the capacity expansion by reducing risks associated to the investment cycles in 

power generation. 

 

The chapters at the thesis are organized as follows. Chapter 1 includes a state-of-the-

art review about the subject under study. In accordance with such review, the scope of 

the research work is delimited specifically in Chapter 2. Then, in Chapter 3, the Real 

Options (RO) method for valuing flexible investments in the liberalized electricity 

industry is presented. Chapter 4 contains the mathematical formulation of the long-

term dynamic market model adopted for this study; the description of uncertainties 

driving the market development; the investor’s formation of expectations upon 

profitability, and the proposed decision-making framework based on RO analysis. 

Finally, results and key findings are analyzed in Chapter 5, including the base case 
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simulations; sensitivity analyzes to test the robustness of the proposed framework; and 

the implementation of three regulatory schemes aiming to dampen the arising business 

cycles. 

 



 

 

II STATE-OF-THE-ART REVIEW 

 

 

Chapter 1  

Power investment decision-making under uncertainty 

 

 

1.1 Power investments in liberalized electricity markets 

 

Two factors can be isolated in order to gain insights about the occurrence of 

construction cycles in the deregulated electricity industry. First, the decision to expand 

the system has decentralized to depend on multiple self-oriented, autonomous firms, 

who attempt to maximize solely their financial profits while managing risks. This 

defines a market behavior that is dynamic in nature, since it is determined by the 

actions of individual participants (de Vries and Heijnen, 2008). The second and most 

important factor indicates that the generation activity has become exposed to several 

risks, unforeseen in the former regulated industry. Such risks result from the 

internalization of numerous uncertainties that drive the development of the actual 

industry in the long run (IEA, 2003; Arango and Larsen, 2011). 

 

The effects of these factors are multiplied by intrinsic features of generation 

investments. Some of these particularities are listed in the following (Olsina et al., 

2006): 

 

 Capital-intensive: Investments in generating capacity involve large financial costs. 

In fact, power plants normally account for most of the capital expenditures inherent 

to the electricity industry. 
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 One-step: A significant proportion of the total financial costs must be committed 

before the power plant becomes operative. 

 Long amortization periods: Several years are agreed so the incurred outlay can be 

paid off. 

 Irreversibility: Power plants are unlikely to serve for other purposes if market 

conditions turn the generation activity unprofitable. Therefore, investments in 

generating capacity are considered sunk costs. 

 

Given the characteristics of the competitive generation business, investors tend to be 

risk-averse when making investment decisions (Vázquez et al., 2002). Generally, this 

rationale suggests that new generating units would be ordered only when large 

revenues are expected, and conversely decisions would be delayed if the estimated 

rents are insufficient. Hence, opportunities for investing in the generation sector are 

no longer of the now-or-never type since there is the possibility of waiting for future 

market conditions to be, at least partially, clarified. This opportunity incorporates one 

major attribute to the deregulated generation investments, termed the postponement 

option (Olsina et al., 2006). It explains the investors’ willingness to consider the 

flexibility of deferring new generation investment projects when facing uncertainties 

driving the evolution of key market variables (Blanco and Olsina, 2011). 

 

 

1.2 Current development of long-term electricity market models 

 

In the context of the present study, the model of a liberalized electricity market is used 

for gaining insights about the long-term evolution of its structural parameters, namely 

the installed capacity. Since the addition of new power plants now involves multiple, 

self-oriented companies, it is essential that the model incorporates the logic behind 

their autonomous decision-making. 

 

Several modeling approaches are suitable for describing the long-run behavior of the 

deregulated industry, from a financial point of view (Sterman, 1991). In particular, it 

has been found that simulation models are appropriate for capturing actual behavioral 
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features of investors in liberalized markets, such as bounded rationality, learning 

abilities, imperfect foresight, etc. (Ventosa et al., 2005). In that context, System 

Dynamics (SD) is a modeling approach with a vast literature body regarding the 

development of simulation models of complex systems (Baum et al., 2015). The SD-

based approach focuses on identifying the feedback structure of a system, at a 

macroscopic level, and the logical interrelationships among its components. Then, it 

aims to deliver a dynamic response in the long term by solving the governing non-

linear differential equations. A well-founded background on this subject is the work 

by Sterman (2000). 

 

Generally, dynamic models are well-known for suggesting a volatile long-term 

behavior of the deregulated power sector. The situation is explained due to the 

inherently unstable interaction between the power exchange and the profitability 

expectation of investors. In order to gain insights about this complex interaction, SD 

provides a tool known as the Causal Loop Diagram (CLD), which helps in giving an 

initial perspective about the feedback structure of the system under analysis. Such 

perspective eventually allows to formulate the differential equations that must describe 

rigorously the long-term system dynamics. 

 

The literature contains an example of the feedback structure that formalizes the process 

of capacity expansion in this study context by means of a CLD (Olsina et al., 2006). 

Such diagram is included in Figure 1. Unlike in the centralized paradigm, here a delay 

representing the investors’ decision-making under uncertainties is one of the factors 

preventing the timely adequacy of the installed capacity. This delay represents the 

Decision Time (DT) necessary for investors to develop enough certainty about the 

recovery of capital costs. Since investments in power plants are no longer of the now-

or-never type, investors are then likely to wait for the arrival of new and better 

information before undertaking new investment projects. 

 

With the advent of deregulation of the power industry, the decision-making of new 

generation investments has come to depend upon profitability expectations. In that 
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Figure 1:  Causal Loop Diagram of the long-term dynamics of electricity markets according 

to the literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

context, the prevailing market design has been the energy-only market (e.g. Bunn and 

Larsen, 1992; Bunn and Larsen, 1994; Kadoya et al., 2005; Eager et al., 2010; Pereira 

and Saraiva, 2011; Osorio and van Ackere, 2016; Movahednasab et al., 2017). In 

addition, many works have discussed alternatives for the remuneration of generating 

capacity after acknowledging the existence of imperfections and flaws in real markets 

(e.g. Vázquez, et al., 2002; Neuhoff and de Vries, 2004; Olsina, et al., 2014). In that 

sense. most of the revised SD-based models have assessed the implementation of 

mechanisms such as the so-called capacity payments and capacity markets (e.g. Ford, 

1999; Assili et al., 2008; de Vries and Heijnen, 2008; Hasani and Hosseini, 2011; 

Pereira and Saraiva, 2013; Hary et al., 2016; Ibanez-Lopez et al., 2017)  

 

According to the literature, an additional capacity remuneration mechanism can be 

either fixed or dynamic. Also, it can be classified as a price-based or quantity-based 

mechanism (Olsina et al., 2014). An example of a price-based dynamic remuneration 

is the mechanism introduced in England and Wales between 1990 and 2001. Under 
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this scheme, generators received a marginal clearing price in addition to a price uplift 

given by the probability of capacity shortfall, equal to the Loss of Load Probability 

(LOLP), times the electricity scarcity price, given by the Value of Lost Load (VOLL) 

(Olsina et al., 2014). 

 

A quantity-based method for remunerating the generators involves the capacity 

market. Here, an obligation of installed capacity is computed in advance, and it equals 

a peak demand forecast plus a target reserve margin. Suppliers make bids of existing 

and new capacity, juxtaposed to the conventional energy-only market, in order to reach 

that obligation. Then, the price set by the capacity market clearing is used to derive an 

additional remuneration for investors. This design is now operative in France and in 

Great-Britain (Hary et al., 2016). 

 

 

1.3 Valuing generation investments under uncertainties 

 

Despite the general agreement on the investment dynamics, the prevailing modeling 

design still assumes a risk-neutral profile for investors. Therefore, so far only a few 

long-term models have characterized the risk-aversion of investors when deciding the 

addition of new capacity. Some examples incorporate an Internal Rate of Return (IRR) 

delayed by a fixed investment time, which denotes the time necessary for developing 

enough certainty about the project feasibility (e.g. Olsina et al., 2006; Olsina and 

Garcés, 2008). In the work by Sánchez et al. (2008), the profitability of new power 

plants is based on a minimum rate of return, which represents the cost of debt incurred 

by the generating company, and is obtained by applying concepts of credit-risk theory. 

Other works focus on adjusting the investor’s previous risk-neutral expectations. For 

instance, the model presented by Eager et al. (2012), includes the Value at Risk (VaR) 

in the definition of project profitability. Moreover, the paper by Abani et al. (2016), 

expands the previous concept by including the Conditional Value at Risk (CVaR) for 

correcting a risk-neutral Net Present Value (NPV) of new power plants. Finally, Petitet 

(2016), and Petitet et al. (2017), propose a concave utility function for representing the 

value of the project under a risk-aversion assumption. 
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The revised methods are mainly based on adjusting the profitability expectations in 

order to account for the risk-averse response of investors. Despite the efforts, it is 

deemed that the literature can be improved in order to describe further behavioral 

features governing the capacity adequacy in actual power markets. In fact, empirical 

evidence suggests that investors are likely to defer new projects under uncertainties 

about future rents and market conditions (Arango and Larsen, 2011). This implies that 

the value of strategic flexibility for seizing opportunities and cutting losses contingent 

upon market evolution is, at least intuitively, accounted for (Blanco and Olsina, 2011). 

In that sense, strategic flexibility involves a risk management technique, suitable for 

coping with major market uncertainties in order to achieve a timely investment 

execution. 

 

The quantification of the strategic flexibility of an investment is strongly associated to 

the concept of Real Options (RO). RO analysis provides a well-founded background 

for valuing flexible investments under uncertainty, based on the theory of Financial 

Options (FO). In that context, the value of options embedded in investments in real 

assets can be computed by means of stochastic dynamic programming (Trigeorgis, 

1996). 

 

Unlike the traditional NPV approach, the RO method allows to seize the possibility of 

extraordinary profits, inherent to these high-risk projects. For this purpose, the 

available options are used for limiting the potential losses; while the possibility of high 

profits remains open. Therefore, the value given by the strategic flexibility is the key 

concept in the RO appraisal, since it is always positive and it adds significant value to 

the project. The availability of these options will generally impact on the actual 

decision-making process, and consequently, must be fairly quantified (Olafsson, 

2003). 

 

According to the literature review presented by Martinez-Ceseña et al. (2013), many 

articles have dealt with the RO-based financial valuation of generation projects. 

Notwithstanding, the revised works have assessed investment portfolios in such 

segment uniquely from the point of view of a single investor. It is deemed that the 
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literature body should be expanded in order to propose a RO-based framework for 

valuing investments in power plants from a systemic point of view of the long-term 

market development. 

 

It has been found that the use of RO analysis for assessing transmission investments 

has assumed a more general perspective of the electricity industry. For instance, the 

work by Blanco et al. (2011) proposes a technique based on stochastic simulation and 

Least-Square Monte Carlo for valuing the option of deferring transmission lines while 

gaining flexibility by investing in FACTS devices. Inspired by this concept, 

Konstantelos and Strbac (2015) assess the potential of additional flexible network and 

non-network technologies for creating valuable interim measures within a long-term 

planning strategy. Further articles focus on evaluating specific real options. The work 

by Pringles et al. (2015b) expands the work by Blanco et al. (2011) by proposing an 

approach for properly valuing the deferral option of a merchant transmission project. 

Moreover, the flexibility inherent to the option to defer, the option to expand and 

compound options, is appraised by Pringles et al. (2015a). Finally, the social benefit 

for a network planner given by the option to defer some transmission investments are 

studied by Henao et al. (2017). 

 



 

 

III METHODOLOGY 

 

 

Chapter 2  

Scope of the thesis 

 

 

It has been verified that System Dynamics (SD) simulation approach (Sterman, 2000) 

has been used widely during the last decade for addressing the problem of describing 

the long-term development of electricity markets, though recently is regaining interest 

among researchers (Leopold, 2015; Ahmad et al., 2016; Rios et al., 2016). The 

appealing of SD models relies on their usefulness for representing the logical 

interactions among market components that ultimately govern its long-term dynamical 

response. 

 

In that sense, this research work is based on the dynamics of a competitive generation 

system formulated by Olsina et al. (2006). This is due such work is well-recognized 

for describing a rigorous feedback structure of the capacity expansion process as a 

result of generators’ expectations upon profitability. However, this thesis is different 

as it focuses on modeling the microeconomics of investors’ decision-making process. 

Here, it is considered that the construction of new power plants is a function of the 

strategic flexibility under uncertainties given by the postponement option. Thus, the 

RO valuation approach is used to derive an optimal investment policy. The integration 

of a mathematical decision-making framework that accounts for the strategic 

flexibility under uncertainties of power investments within a long-term power market 

model is the main contribution of this work. 
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This research takes into account only the option to postpone new investments in power 

plants. Basically, this option refers to an owner’s right to defer the project execution 

while waiting for upcoming (though never complete) information about the market 

evolution. The proposed approach is designed to provide the profitability of both, 

immediately undertaking the investment, and postponing in order to wait for more 

favorable market conditions. In other words, the decision of new investments will be 

determined continuously by comparing the attractiveness of investing inmediately or 

in the future. This contribution aims to characterize the dynamics of capacity adequacy 

in a more realistic manner, and finally yield insights about the actual market evolution. 

 

Likewise, this thesis is limited to study a generating system composed entirely of 

thermal units. Despite the mainstream academic discussion currently involves the 

transition towards renewables, here it is argued that fossil fuels will prevail as the 

world’s primary energy source, even in the long run. In fact, as exposed by Covert et 

al. (2016), the International Energy Agency (IEA) estimates that fossil fuels will 

supply 79% of the global energy still in 2040, if strong policies regarding carbon 

emissions are not implemented (IEA, 2015). As far as electricity generation is 

concerned, the same organization also projects that in 2035, 55% of the total electricity 

generated will be produced from fossil fuels, thereby firmly establishing their 

dominance in the energy mix. 

 

Despite the great potential, the aforementioned considerations imply that the transition 

towards renewable technologies will be rather slow, for instance, in emerging 

countries. Thus, accelerating their penetration will require an external impetus, absent 

until now in a grand scale (Toth, 2012). In this sense, and principally for less developed 

economies, the assessment of fossil-fuel-based investments remains especially 

important as conditions do not allow for costly sudden transitions. For instance, abrupt 

increases in the cost of energy may make it even more difficult for some developing 

countries to satisfy the energy needs of their populations (Toth, 2012). 

 

In that context, the scope of this research work is delimited to yield insights about the 

factors driving the market with the prevailing energy mix. Consequently, work delving 
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on the effects of large-scale energy transitions or the accomplishment of low-carbon 

policies is foreseen in further projects. In that sense, it is deemed that the availability 

of a RO-based investment decision-making model, in the context of a SD-based long-

term electricity market model, will be very valuable for studying the transition of a 

system towards a low-carbon generation mix. 

 



 

 

Chapter 3  

Valuing flexible investments with Real Options 

 

 

In this chapter, the reasoning behind the Real Options (RO) approach for valuing 

flexible investments in power markets is introduced. This chapter closely follows key 

outlines of the RO method presented by Blanco and Olsina (2011). 

 

 

3.1 Traditional investment valuation approach 

 

3.1.1 The Net Present Value (NPV) 

 

Traditionally, the assessment of financial feasibility has been delimited to compute the 

NPV of investment projects. The idea behind the NPV is straightforward. It is based 

on comparing the present-equivalent of the future cash flows to be generated by the 

project once undertaken, with the investments costs incurred today. Mathematically, 

this is described by: 

 

 ��� = ∑ �
���

∏ (����)
�
���

��
��� � = �� � (1) 

 

where ��� denotes the cash flows to be generated in year � within the valuation horizon 

�; and � represents the investments costs incurred in year 0. The discount rate � is the 

cost of capital for the company making the investment. This rate represents the 

project’s hurdle rate, i.e., the minimum acceptable rate of return in exchange of 
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funding the project. It is worth to mention that the discount rate may vary during the 

valuation horizon, as reflected by the subscript �. An investment is considered to be 

acceptable if the NPV is positive, that means, if the discounted cash flow exceeds the 

investment costs. Otherwise, i.e. the NPV equals zero or is negative, the project should 

be disregarded. 

 

3.1.2 Flaws and drawbacks of the NPV 

 

Key underlying assumptions of the NPV method might undermine its usefulness for 

the financial valuation of a project. For instance, the rule poses a now-or-never 

investment opportunity. This means that the only option available at the beginning is 

to execute the investment, or not. If the decision-maker does not execute the 

investment then, it will not be possible to execute it at any other year within the 

valuation horizon (Dixit and Pindyck, 1994). Hence, the decision-maker is confined to 

a fixed operating strategy. 

 

Even though some projects satisfy this hypothesis, not all do. This is crucial for 

investments in the power industry, which are characterized for including a huge 

component of irreversibility. In practice, decision-makers appreciate the ability to 

adapt their investment strategies in response to undesired events that may occur within 

the power market. Consequently, a major drawback when applying the NPV approach 

is that strategic options, which are embedded into most of power investments, are 

simply overlooked. 

 

 

3.2 Valuing investments under uncertainty and risk 

 

3.2.1 Uncertainty and risk in the creation of worth 

 

Generally, the evolution of some variables involved in the valuation process is 

essential for the project returns to accrue worth. If these variables unfold with 

uncertainty, the project value would develop a certain level of risk. 
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On one hand, as exposed by Blanco and Olsina (2011), uncertainty is the randomness 

of the external environment. Investors cannot influence on its level, and must take it 

as an input to the investment decision-making process. Several factors determine the 

level of exposure of a project to uncertainty, but mainly it depends on the firm’s 

business line, the cost structure and the nature of the market. 

 

On the other hand, risk derives from the possibility of key market variables evolving 

with uncertainty. Risk can be strictly associated to the probability of receiving a 

different return of investment than expected. Therefore, risk involves not only negative 

results, i.e. returns that are lower than expected (downside risk), but also positive 

results, i.e. returns that are higher than expected (upside risk) (Blanco and Olsina, 

2011). 

 

From the traditional point of view, under large uncertainties, the project value is low. 

However, if they are actively and strategically managed, great uncertainties may even 

increase the asset value. This possibility involves the use of risk management tools, 

which allow including the proper description of sources of uncertainty, and 

consequently the quantification of the risk inherent to a project, within the decision-

making process. Ultimately, this would permit investors to flexibly respond to 

uncertainty developments and define an optimal investment policy. 

 

By means of using the aforementioned risk management tools, decision-makers would 

be able to create an opportunity of huge gain, necessary to compensate for the hazards 

incurred when entering the business. For this purpose, they should be able to identify 

and seize the strategic options embedded into their investment projects. 

 

3.2.2 Uncertainty and risk in power generation investments 

 

Some sources of uncertainty incumbent to investors that determine the evolution of 

electricity markets are listed in the following (Olsina et al., 2006; Blanco and Olsina, 

2011): 
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 Electricity demand: It is given by the variability in energy consumption along time. 

It can be attached to the demographical and macroeconomic development of each 

country. 

 Generating costs: They can be tightly correlated with fuel prices. They are 

determined by a significant volatility present in actual fuel markets. 

 Long-term prices expectations: They depend on the prevailing balance of supply 

and demand, and the imperfect foresight of investors. 

 Technological innovation: The potential arrival of more efficient generating 

technologies represents a relevant threat for the firm’s positioning within the market 

 Regulatory: It represents the non-random uncertainty of periodical policy 

adjustment and regulatory intervention, given the particular context of each country 

or region. 

 

 

3.3 Option analysis applied to power generation investments 

 

The core concept behind RO analysis is to quantify the value generated by the intrinsic 

flexibility embedded into an investment project, and thereby provide a precise 

foundation for making strategic investment decisions (Brosch, 2001). In that sense, 

strategic flexibility involves the inherent asymmetry between gains and losses in the 

expected outcome of a project. The conventional (inflexible) NPV approach is then 

expanded by the RO notion, by means of adding the value associated to the flexibility 

inherent to an investment project (Olafsson, 2003): 

 

 ��������	��� = �����������	��� + �����	��	����������� (2) 

 

The value of flexibility is the key concept in the RO approach. Since it is always 

positive, its quantification allows increasing the value of the project. Therefore, the 

availability of strategic options will generally impact on the actual decision-making 

process, and consequently must be fairly quantified. 
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3.3.1 Financial Options (FO) 

 

The RO appraisal is founded on the theory of Financial Options (FO). In general, an 

option is the right but not the obligation, to make a particular decision in the future. 

This, a financial option might also be understood as a bilateral contract by which a 

party pays a sum of money to another in order to acquire the right (option) to conduct 

a transaction (purchase or sale) or claim a specific sum of money in the future. 

 

In this context, a financial option enables the owner to buy or sell an asset at a specified 

price on or before a certain date in the future. The amount agreed is called the strike 

or exercise price, and the date on or before which the option can be exercised is termed 

maturity. As referred by Blanco and Olsina (2011), FO are a particular type of financial 

assets named derivative securities. Thus, the value of the derivative is contingent upon 

the value of a primary asset, known as the underlying asset. 

 

Basically, there exist two types of FO. On one hand, an option to buy (call option) 

entitles the holder to acquire an asset at a specified price on or before a certain date in 

the future. On the other hand, an option to sell (put option) implies the possibility to 

trade an asset at a specified price on or before a certain date. The holder of an option 

is deemed to assume a long-position in an option contract, while the issuer takes a 

short-position. The seller (the short-position) is obliged to buy or sell the asset 

(underlying) at the exercise price to or from the owner of the right (the long position), 

who aims to take advantage of her position. 

 

Unlike the conventional strategy that involves buying assets directly (i.e. taking long-

position in the underlying), the investor might be willing to defer the investment and 

purchase the right to buy the asset later (i.e. taking long-position in the call option), in 

response to the unfolding of market uncertainties. Thus, the holder of the option pays 

a premium to the call issuer, which represents the cost of the risk assumed by the seller 

for taking the short-position (Olafsson, 2003). 
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The profitability of a long-position in an asset is determined by the incurred costs of 

capital. If the asset value rises above the purchase price, there will be gain, and 

conversely if it falls below the purchase price, there will be loss. Hence, the expected 

returns vary linearly, both upward and downward, alongside with the asset value. 

 

The rent profile of a long position in a call option is different. By ignoring the incurred 

premium, it can be described by the following expression (Blanco and Olsina, 2011): 

 

 ���� = ���(� �, �) (3) 

 

In Eq. (3), � is the value of the underlying, while � denotes the exercise price. The 

difference between both values is termed the intrinsic value of the purchase option. In 

this case, the potential gains are also unbounded: an increase in the asset value leads 

to a linear increase in the option intrinsic value. Nevertheless, the profitability of a 

long position in a call option is limited underneath only by the loss equal to the 

premium paid for it. 

 

3.3.2 Real Options 

 

The RO approach applies the theory of FO in the decision-making of capital projects. 

Thus, the key issue is to use the available options in order to define a lower limit to 

potential losses while the opportunity of extraordinary profits remains open. The RO 

method allows strategically managing a portfolio which includes the underlying 

project together with all available options. As mentioned by Blanco and Olsina (2011), 

RO according to Copeland and Antikarov (2003), can be disaggregated into: 

 

 Postponement option: It represents the right of an owner to postpone an investment 

for a period of time. In exchange, he rejects the cash flows that would be generated, 

if the project is executed immediately. From a financial point of view, it can be 

interpreted as a call option. 
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 Abandonment option: It allows suspending activities and selling off the assets that 

comprised the initial project. It is comparable to a put option with a strike price 

equal to the scrap value of the investment. 

 Expansion or Growth option: It permits expanding production capacity and/or 

accelerating the use of available resources, if the market conditions that develop 

after the original investment is executed, are more favorable than expected. This 

option is equivalent to a call option. 

 Reduction or Contraction option: It involves the opportunity of reducing the size of 

operations if conditions are unfavorable. Financially, it can be seen as a put option. 

 Extension or Pre-cancellation option: It is the possibility to extend or reduce the 

lifespan of an asset or the term of a contract. The extension option is similar to a 

call option while the chance of reducing is equivalent to the put type. 

 Switch option: It allows using the same assets and inputs to produce different 

products. Furthermore, it is also available if there is the possibility to change the 

primary inputs without altering the final product. These options can be interpreted 

as a financial portfolio with both call and put options. 

 Closing and Re-opening option: It provides the opportunity to stop or restart the 

operation of the project according to market conditions. The possibility to restart 

operations is equal to a call option. Stopping operations is alike a put option. 

 

 

3.4 Real Options valuation methods 

 

According to Blanco and Olsina (2011), different methods were developed to value 

FO. However, their suitability for assessing RO is subject to the particularities of each 

problem. In that sense, three general solution methods can be classified. Such methods 

are presented in detail in the following. 

 

3.4.1 Stochastic differential equations 

 

The first method seeks for solving a Partial Differential Equation (PDE) in order to 

provide the option value as a direct function of model inputs. Formally, the PDE 
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describes the dynamics of the option value under specific conditions. The Black-

Scholes's equation represents a well-known analytic formulation of this solution 

(Black and Scholes, 1973). 

 

This method involves many solution tools, while algorithms are quite fast. However, 

the computational complexity increases with the addition of sources of uncertainty. 

Furthermore, it usually works as a black-box, hampering the analysis of contingent 

decisions. 

 

3.4.2 Stochastic dynamic programming 

 

Dynamic programming is another useful approach to deal with dynamic optimization 

problems under uncertainty (Dixit and Pindyck, 1994). This method separates the 

whole decision sequence into two components: the immediate decision and the 

subsequent decisions deriving from it, which consequences are encapsulated by a 

valuation function. A renowned example is given by the binomial lattice method, 

introduced by Cox et al. (1979). 

 

Such method allows analyzing a large number of applications of RO. Also, it is 

practical because it resembles the analysis of a discounted cash flow. Therefore, this 

model permits to develop a good picture of the problem so the decision can be easily 

traced. Nevertheless, the binomial lattice relies on strong assumptions. The most 

important include a perfect financial market, and a constant, short-term risk-free 

discount rate throughout the valuation period. 

 

Another technique involves the stochastic Dynamic Programming based on the 

expected Present value (DPE) (Blanco et al., 2012). It allows properly coping with 

problems associated to the implementation of binomial trees, i.e. expected returns with 

supernormal volatilities. 
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3.4.3 Stochastic simulation model 

 

In this case, several potential paths of the underlying asset evolution from current date 

to the moment of decision-making are taken into account. A popular method for 

simulating these paths is given by the Monte Carlo technique. At the maturity, the 

optimal investment sequence for each realization can be obtained, and thus the 

probability distribution of expected returns can be computed. 

 

Monte Carlo simulations are suitable for handling various aspects of real world 

applications, allows direct processing of all types of assets, whatever the number and 

stochastic behavior of uncertainties. In addition, the inclusion of new sources of 

uncertainty is much simpler in comparison with other models. As a drawback, it 

requires a huge computation effort (Blanco et al., 2011). 

 



 

 

Chapter 4  

Decision-making of flexible investments under uncertainties within 

long-term electricity market models 

 

 

4.1 Model overview 

 

Figure 2 shows the Causal Loop Diagram (CLD) that explains the feedback structure 

governing the long-term market development under the proposed decision-making 

framework. Such diagram expands the CLD presented in Figure 1. First, investors 

assess the prevailing market prices, based on the current state of installed capacity, 

electricity demand and fuel prices, in order to estimate the profitability of undertaking 

new generation projects immediately, i.e. the exercise value (loop B1). At the same 

time, investors develop expectations upon future market prices, based on a stochastic 

sample denoting the potential upcoming values of the same market parameters. By 

means of Real Options (RO) analysis, these expectations are used to compute the 

continuation value, that is, the project value if the decision is to postpone its execution, 

waiting for more profitable conditions (loop B2). An investment profitability index is 

then obtained from the ratio between the exercise value and the continuation value. 

Such ratio determines the commissioning of new power plants, which come online, 

however, only after a given Construction Time (CT). Finally, a new state of installed 

capacity is defined by the existing capacity, the addition of new investments and the 

decommissioning of old power plants that have accomplished their lifetime. 

 

The model by Olsina et al. (2006) is used to assess the implementation of the proposed 

investment valuation framework, since it is recognized for providing a comprehensive 
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Figure 2:  Causal Loop Diagram of the long-term dynamics of electricity markets with the 

proposed decision-making framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mathematical formulation of the long-term dynamics of liberalized electricity markets. 

The literature already contains examples of articles inspired by such work (Assili et 

al., 2008; Olsina and Garcés, 2008; Hasani and Hosseini, 2011). Here, main outlines 

of the market model are included. For a deeper understanding, it is suggested to review 

the literature. 

 

 

4.2 Simulation of the long-term power market dynamics 

 

4.2.1 Modeling the development of generating capacity 

 

The generating system is composed of three technologies: base (Hard Coal - HACO), 

middle (Gas-Fired Combined Cycles - CCGT) and peak (Gas Turbines - GAST). The 

capacity is distributed for each technology in five vintages, ��, following a modeling 
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approach proper of System Dynamics theory, known as the aging chain. This aims to 

describe the development of the age structure of generating units comprising the 

system, according to the progress of their thermal efficiency. Now, the capacity of 

technology � at each time � is described through an accumulation resulting from the 

rate at which new capacity enters its first vintage, and the rate at which old capacity 

abandons its last vintage, denoted by ���
��(�) and ���

���(�), respectively. Formally, this 

accumulation is represented by the following integral equation: 

 

 ��(�) = ∫ ����
��(�) ���

���(�)� ��
�

�
+ ��(0) (4) 

 

Here, ��(0) is the initial capacity of technology �; ���
��(�) represents the rate at which 

power plants are being brought online; and ���
���(�) is the decommissioning rate, 

which depends on the average technology lifetime. If Eq. (4) is differentiated by time, 

the net change in capacity for technology � at any time is expressed as: 

 

 ��(�) = ���
��(�) ���

���(�) (5) 

 

It is deemed that ���
��(�) depends on the investment rate that prevailed at time � ���

�, 

with ���
� defining an average construction time for technology	�. So, the investment 

rate at time � ���
�, ���� ���

��, is computed as: 

 

 ���
��(�) = ���� ���

�� = �� ������ ���
��� ��

���
�� ���

�� (6) 

 

On one hand, ��
���
�� ���

�� is the investment rate in technology � in the long-run 

equilibrium, which means, investments made under zero-profit expectations. It is 

expressed as the capacity decommissioning rate, ���
����� ���

��, plus the addition rate 

necessary to cover the expected growth of maximum load served by such technology 

under an optimal generation mix, ���� ���
��: 
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 ��
���
�� ���

�� = ���
����� ���

�� + ���� ���
�� (7) 

 

On the other hand, the multiplier of the investment rate for technology �, 

�� ������ ���
���, depends upon profitability expectations formed at time � ���

�. 

Taking into account the system’s feedback structure, the expectation formation is 

based on the prevailing balance of supply and demand, jointly with fuel prices. Hence, 

the investment multiplier can be described as a function of the total capacity, demand 

and fuel prices at such time: 

 

 �� ������ ���
��� = �� ����� ���

��, ��� ���
��, ���� ���

��� (8) 

 

A logistic function is adopted for capturing the effect of the profitability index, ���, on 

the multiplier of the investment rate for each technology �, ��. The three functions 

employed in the context of the present study, one for each technology, are displayed 

in Figure 3 (Olsina et al., 2006). Such curves are obtained from the following 

expression: 

 

 ��(�) =
��
���

������� ���(�)����
 (9) 

 

where ��
��� is the saturation level; �� controls the slope; and �� determines the 

location of the function respect to the x-axis, for each technology �. The tipping point 

in every case is given when the corresponding profitability index equals one. 

 

4.2.2 Modeling the development of thermal efficiency 

 

It is supposed that the average thermal efficiency of the generating system evolves 

according to the efficiency progression and the development of capacity in each 

vintage. Then, the average thermal efficiency for vintage � of technology � at time �, 
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Figure 3:  Investment multiplier as a function of the profitability index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�̅��(�), results from the ratio between the accumulation of change in fuel consumption 

and the existing capacity. This is expressed as: 

 

 
�

����(�)
=

�

���(�)
∫ �

���
��(�)

���
��(�)

���
���(�)

���
���(�)

�
�

�
�� +

�

����(�)
 (10) 

 

where ���
��(�) and ���

��(�), and ���
���(�) and ���

���(�), represent, respectively, the rates 

and the efficiencies of the capacity entering and abandoning the vintage � of 

technology � at time �; while ���(�) represents the existing capacity; and �̅��(0), 

accounts for the average initial efficiency. Finally, the average marginal cost of 

generation for the capacity of vintage � from technology � at time �, ���������(�), is 

formulated as: 
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 ���������(�) =
���(�)

����(�)
	 (11) 

 

In Eq. (11), ���(�) denotes the fuel price, and �̅��(�), the average thermal efficiency 

for vintage � of technology � at time �. 

 

 

4.3 Simulation of investors’ expectation formation upon profitability 

 

4.3.1 Modeling expectations upon stochastic exogenous market variables 

 

This thesis assumes that the market is driven exogenously by the demand and fuel 

prices. Alongside with the installed capacity and fuel consumption, the assessment of 

these variables is essential for investors when forming expectations upon profitability. 

In that sense, this model computes the current and the expected state of such variables 

at each step of the simulation horizon. 

 

A deterministic growth pattern is assumed for describing the current state of demand 

and fuel prices. Therefore, the maximum and minimum demand, and the fuel price for 

technology �, at time � are formulated as: 

 

 ����(�) = ����(0) �
�� �; ����(�) = ����(0) �

�� � (12) 

 ���(�) = ���(0) �
���� � (13) 

 

Here, ����(0) and ����(0) refer to the initial maximum and minimum demand, while 

�� represents the annual growth rate in the long run. Accordingly, ���(0) denotes the 

initial fuel price for technology �, and ���� is the annual rate driving its long-term 

evolution. 

 

The expected state of system variables at any time is characterized by a stochastic 

evolution. In that sense, a mean-reverting stochastic process is prescribed for 
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describing the uncertain path of growth rates under consideration. This implies a 

process where the uncertain variable evolves fluctuating around a known long-term 

mean. A common mean-reverting process, known as the arithmetic Ornstein-

Uhlenbeck stochastic process, is given by: 

 

 �� = �(�̅ �)�� + ��� (14) 

 

Here, the expected change in a growth rate, ��, after a time increment, ��, depends 

upon the deviation from a long-run growth rate, �̅, and a speed of the reversion towards 

the mean, �. It also depends upon a volatility parameter, �, and a variable following a 

Wiener process, also known as Brownian Motion, ��. It can be shown that an 

infinitesimal increment of the Wiener process, ��, is represented in continuous time 

by: 

 

 �� = �√�� (15) 

 

where � is a normally distributed random variable with mean zero and standard 

deviation of 1, i.e. � = �(0,1).  

 

In order to represent the market evolution in a more realistic way, the correlation 

between, in one hand, the growth rates of demand and total installed capacity, and on 

the other hand, prices of hard-coal and natural gas, is assumed. In that sense, the set of 

random variables ��; � = 1,2, … ,� must be replaced by a set of correlated variables 

��; � = 1,2, … , �. For computing the values of ��, the Cholesky decomposition is 

applied to the correlation matrix, �, of the corresponding growth rates (Huang, 2009; 

Pringles et al., 2015b): 

 

 � = �
��� ���

��� ���

� = ��� (16) 
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In Eq. (16), � is a lower triangular matrix with elements ���; �, � = 1,2, … ,�, and �� 

is the transpose matrix of �. Then, the value of ��; � = 1,2, … ,� is derived as the 

linear combination of �, and the vector of independent variables �, which size is � ×

1: 

 

 �
��

��

� = �
1 0

��� 1
� × �

��

��
� (17) 

 

By writing Eq. (14) as a difference equation, Monte Carlo techniques can be applied 

for simulating multiple stochastic realizations of correlated growth rates. Finally, a 

realization � for the expected market parameters at time �� = � + ��, is derived by: 

 

 ����
� (��) = ����(�) �

��
� ��; ����

� (��) = ����(�) �
��
� �� (18) 

 ��
�(��) = ��(�) �

��
� �� (19) 

 ���
�(��) = ���(�) �

����
� ��

 (20) 

 

On one hand, ����
� (��) and ����

� (��) denote a realization of the expected maximum 

and minimum demand at time ��, given a stochastic growth rate, ��
�. Furthermore, a 

possible evolution of the total installed capacity is represented by ��
�(��), according 

to a correlated growth rate, ��
� . In that context, ��(�) is the total capacity of the system 

at time �, which results from the dynamic model described in the previous subsection. 

On the other hand, ���
�(��) illustrates a realization of the expected fuel price of 

technology � at time ��, given a stochastic growth rate, ����
� . Similarly to the case of 

demand and installed capacity, the growth rates of prices for both technologies are 

correlated to each other. 

 

The modeling approach presented here assumes that the aforementioned market 

variables are observable for each investor at any time � within the simulation horizon. 

Such parameters are therefore described by means of constant growth rates, aiming to 
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characterize the development of the market in the long term. Notwithstanding, it is 

supposed that investors are equally concerned about the ongoing uncertainties that 

might divert the future growth rates from their average values. Thus, by using the 

observable values at each time, the proposed model allows computing a stochastic 

sample of future market variables. These parameters are employed in order to form 

each investor’s expectations upon profitability at an expiration time �� = � + ��. An 

example of the simulation of current (at time �) and expected (at time �� = � + ��) 

values for the demand growth at any time is illustrated in Figure 4. 

 

4.3.2 Modeling expectations upon operating profits 

 

A price duration model, based on a probabilistic Price Duration Curve (PDC), is used 

for deriving the current and the expected short-term, infra-marginal revenue being 

perceived at each time by each technology, and thereby the market signals for decision-

making of new power plants. In order to define the appropriate PDC for each case, the 

corresponding market variables, both at time �, and at time �� = � + ��, are taken into 

account, by following the outlines exposed in the previous subsection. 

 

Each PDC is computed schematically from a Load Duration Curve (LDC), jointly with 

an industry supply curve. An example of such definition is included in Figure 5. First, 

the LDC determines the annual probability for the system demand to equal or exceed 

a certain level between its maximum and minimum values. In that sense, it is assumed 

that the LDC accounts for a linear distribution, preserving such pattern over the entire 

simulation horizon. Second, the industry supply curve defines the costs of supplying 

to the different levels of system demand. This curve results from sorting the capacity 

available in each vintage of the system following an economic dispatch merit order, 

that is, according to their respective marginal cost of generation, from lower to higher. 

The availability of capacity for each vintage is computed by means of a probabilistic 

model, which accounts for the reliability of generating units, and the variability of 

electricity demand (Olsina et al., 2006). 
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Figure 4:  Simulation of current (at �) and expected (at ��) demand growth at any time. 
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Figure 5:  Example of the schematic definition of a Price Duration Curve (PDC). 
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Thus, the PDC yields (in the x-axis) the yearly probability, ���, for the capacity of 

vintage � from technology � to operate over its own marginal cost of generation (in the 

y-axis). These probabilities are computed as follows: 

 

 ��� = �

1
���
��������

���������

0

					

���
��� < ����

���� ≤ ���
��� ≤ ����

���� < ���
���

 (21) 

 

Here, ���
��� indicates the position of the cumulative available capacity of vintage � 

from technology � within the industry supply curve; while ���� and ����, are the 

maximum and minimum load, respectively. 

 

Generally, an annual equivalent of operating profits that a MW of capacity from 

technology � would make on the power market, denoted by ��, is determined from the 

enclosed area between the PDC and the marginal generation cost for such technology, 

�������� (the red area in Figure 5): 

 

 �� = 8760 ∫ [��� ��������]	��
��
�

 (22) 

 

where ��, is the annual probability for the capacity of technology � to operate over its 

own marginal cost of generation. 

 

The annual equivalent of operating profits includes the estimation of price-spikes 

revenues to be collected by online generators. This value is calculated as the yearly 

expected deficit duration, ����, times the Value of Lost Load (VOLL): 

 

 ���� = 8760 ���� ���� (23) 
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Here, ���� is the approximate annual duration of load curtailment. This value is 

obtained from Eq. (21), accounting for the cumulative available capacity of the entire 

system. Moreover, 8760 represents the number of hours in a year, since �������� in Eq. 

(22), and ���� in Eq. (23), are given by EUR2/MWh. 

 

Assuming that the cash flows from the first year remain constant, the present value of 

the future stream of operating profits over the amortization period �� for one MW from 

technology �, denoted by ���, can be approximated as: 

 

 ��� = �� (1 + �)
����

� �

�
[1 (1 + �)���] (24) 

 

In Eq. (24), �� is the annual equivalent of operating profits computed by technology �, 

in the first year of the amortization period, while � is assumed as the required revenue 

rate by which �� must be discounted. Likewise, it is deemed that investors account for 

a time lag in the construction of new power plants. Consequently, �� is also discounted 

by the average construction time for each technology, ���
�. 

 

The approximation of future cash flows to be generated by the investment project can 

be interpreted as an efficient energy forward contract auction. In real markets, these 

auctions offer long-term contracts based on current price levels, aiming at reducing 

financial risks for newcomers in the generation activity (Moreno et al., 2010). 

 

 

4.4 Simulation of investors’ decision-making under uncertainties 

 

4.4.1 Computing a Profitability Index based on Real Options analysis 

 

In this subsection, a new procedure for determining the addition of capacity based 

upon profitability expectations is detailed. For this purpose, a novel method elaborated 

                                                           
2 EUR is the code for Euro, the official currency of the Eurozone, which is comprised by 19 of the 28 
member states of the European Union.  
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upon the notion of RO analysis is proposed. This is the main contribution of this work, 

since it focuses on integrating a RO-based framework for valuing power plants under 

uncertainties within a long-term dynamic market model. 

 

Rigorously, an optimal investment policy for each technology at each time can be 

derived by comparing the intrinsic value of immediately undertaking new generation 

projects with the value of keeping alive the postponement option. Backward Dynamic 

programming based on Expected Present value (DPE) is a suitable tool for performing 

this task (Blanco et al., 2012). Moreover, it has been verified experimentally that the 

DPE allows avoiding problems related to applying other dynamic programming tools 

(e.g. the binomial lattice method), for instance, when dealing with highly-volatile 

future profits, as in this study case. 

 

In that context, the exercise value for technology �, ��
��(�), is defined by the Net 

Present Value (NPV) of new generation projects, according to the current state of the 

system at time �. This can be expressed as: 

 

 ��
��(�) = ���(�) ��(�) (25) 

 

where ���(�) is the present value of cumulated operating profits perceived by 

technology � at time �; and ��(�) represents the capital outlay for bringing online a new 

generator of technology � at the same time. 

 

On the other hand, an expiration time is used to represent the future threshold when 

the execution of the project must be reassessed, if the decision is to postpone it. At the 

expiration time, equal to �� = � + ��, the decision problem for technology � can be 

therefore modeled as: 

 

 ��������, ��	��(��) = �[���(��)] > ��(��) (26) 

 ��	���	��������, ��	��(��) = �[���(��)] ≤ ��(��) 
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Exercise Value Continuation Value 

Thus, the optimal investment policy for technology � at time ��, �� (��), can be defined 

as: 

 

 �� (��) = ������[���(��)] ��(��)�; 0� (27) 

 

On one hand, �[���(��)] denotes the expected present value of cumulated operating 

profits for technology � at time ��, which is obtained based on the stochastic sample 

of expected market conditions at such time. On the other hand, ��(��) represents the 

investment costs expected for the same technology at time ��. 

 

By considering only a single period, ��, between the current and the expiration time, 

the continuation value of the postponement option for technology � at time �, i.e. the 

project value if the decision is to postpone its execution, ��
����(�), can be expressed 

as: 

 

 ��
����(�) =

�� (��)
(1 + �)��
�  (28) 

 

where � represents a risk-free discount rate. According to the implementation of the 

DPE method, this value is equal to a hurdle discount rate3, which adjustment follows 

a non-neutral valuation of risk. 

 

The optimal investment policy for technology � at each time �, �� (�), can be then 

derived from the following optimization problem (Blanco et al., 2012): 

 

 

 �� (�) = max �����,�(�) ��(�); 					
�� (��)

(1 + �)��
� � (29) 

 

                                                           
3 The hurdle discount rate can be understood as the Weighted Average Cost of Capital (WACC) of 
investment projects. 
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As mentioned by Blanco et al. (2012), the relationship given by Eq. (29) allows 

extending the conventional NPV-based rule for characterizing the feasibility of new 

projects. In that sense, a new investment decision threshold can be defined as follows: 

“At time �, the decision-maker should not invest in a new project (and wait for 

reassessing it after a given period ��) unless the current NPV of the investment 

portfolio (the Exercise Value) is greater than the Continuation Value”. 

 

Accordingly, a new investment profitability index (PI) for technology � at time � can 

be defined as the ratio resulting from dividing the exercise value, ��
��(�), by the 

continuation value, ��
����(�): 

 

 ���(�) =
��
��(�)

��
����(�)

�  (30) 

 

Finally, this profitability index is set to determine the addition of new investments 

within the dynamic model, which is adopted in order to analyze the long-term 

development of the liberalized electricity market. 

 

4.4.2 Investor responsiveness under uncertainties 

 

It is worth to notice that, under this new framework, the attractiveness of undertaking 

investments, as a function of the PI, can be described schematically, as in Figure 6 

(Luehrman, 1998). Whenever the exercise value is positive and it exceeds the 

continuation value, the optimal strategy should be to invest now (Region 1). However, 

when the exercise value does not exceed the continuation value, the investor would be 

cautious about the market’s uncertain conditions and would probably reconsider to 

invest later (Region 2). 

 

It is intuitive to assume that the project appraisal will be much more pessimistic 

whenever its instant NPV is negative. In that context, it is natural for each generator 

to withhold investments until new information about the market evolution arrives 

(Region 3). Moreover, when the exercise value is negative, and its absolute exceeds 
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Figure 6:  Investment decision regions in the Exercise-Continuation Value plane. 

the continuation value, there would be no incentives to invest whatsoever (Region 4). 

In this case, the investor could even consider switching of business. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

IV RESULTS & DISCUSSION 

 

 

Chapter 5  

Simulation analysis 

 

 

5.1 System data and initial conditions 

 

Simulations were carried out in order to apply the proposed framework. Information 

about the generation test system is included in Table 1. Likewise, Table 2 shows 

parameters of the logistic function that describe the effect of the profitability index on 

the multiplier of the investment rate for each technology. Now, the initial system 

installed capacity sums 16.47 GW, while the optimal technology mix indicates 69.6% 

for HACO; 18.7% for CCGT; and 11.7% for GAST, with a reserve margin of 9.78%4. 

The Delay Differential Equations (DDE) defining the system dynamics were solved 

by means of MATLAB’s dde23 function. The simulation period extends for over 20 

years. 

 

Electricity demand is characterized by an initial peak of 15 GW; an initial minimum 

of 10 GW; and a long-run growth rate of 1%/year. At the initial time, fuel prices are 

6.50 EUR/MWh and 10.50 EUR/MWh, for hard coal and natural gas, respectively. It 

is assumed that both prices evolve following an average growth rate of 0.02%/year 

(Frydenberg et al., 2014). In addition, parameters for describing the stochastic 

development of these variables are presented in Table 3. 

                                                           
4 The study case is inspired by Olsina et al. (2006). 
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Table 1:  Input data for the generation test system. 

Technology HACO CCGT GAST 

Capacity [MW] 11460 3080 1930 

Construction delay [month] 36 18 9 

Lifetime [year] 40 30 20 

Amortization period [year] 25 20 15 

Investment costs [EUR/kW] 1000 600 300 

Fuel costs [EUR/MWh] 6.50 10.50 10.50 

Discount rate [%/year] 12.5 12.5 12.5 

 

 

Table 2:  Parameters of the logistic function for the multiplier of the investment rate for 

each technology. 

Parameter HACO CCGT GAST 

Saturation, ��
��� 1.50 3.00 2.00 

Alpha, �� 3.50 2.00 2.50 

Beta, �� -2.8069 -2.6932 -2.500 

 

 

Table 3:  Parameters to characterize the stochastic growth rates of maximum and minimum 

demand (��), total installed capacity (��), fuel price of hard-coal (���,����) and 

fuel price of natural gas (���,���). 

Parameter �� �� ���,���� ���,��� 

Initial growth rate [%/year] 1.00 1.00 0.02 0.02 

Long-term growth rate [%/year] 1.00 1.00 0.02 0.02 

Speed of reversion [%/year] 50.0 50.0 50.0 50.0 

Volatility [%/year] 2.00 2.00 1.85 3.95 

Correlation [dmnl] 0.80 0.80 0.71 0.71 

 

 

The number of Monte Carlo realizations is 50,000, in order to satisfy convergence 

criteria in the statistical estimation of the expected value of future profits. 
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The RO investment valuation model considers European options with an expiration 

time, ��, equal to one year for each technology. Likewise, a hurdle discount rate equal 

to 12.5%/year is adopted for each technology. This value indicates a risk-free discount 

rate, adjusted following a non-neutral valuation. Finally, the Value of Lost Load 

(VOLL) is set to 1000 EUR/MWh. 

 

 

5.2 Base case simulation 

 

In Figure 7, the simulation of evolution of installed capacity and reserve margin in the 

test system is plotted, jointly with the expected value of peak demand. Results are 

relevant because it is observed that the proposed investment valuation approach allows 

reproducing explicitly the construction cycles that have occurred in several electricity 

markets after the liberalization (Arango and Larsen, 2011). This is explained due to 

the more refined characterization of investors’ decision-making under uncertainties, in 

addition to the embedded construction delays for new power plants of each technology. 

 

The system response is described as follows. Given the zero-profit conditions at the 

beginning of simulations, i.e. long-run market equilibrium, the continuation value 

outweighs the exercise value of power plants for each technology. Thus, generators 

find more attractive to withhold new projects because they have the possibility to 

invest later and collect extraordinary profits associated to situations of supply deficit 

(Region 2 and Region 3 in Figure 6). This leads to a dramatic reduction of reserve 

margins during the first years, just after the liberalization of the electricity market. 

Notwithstanding, it is worth to mention that such reduction displays a discontinuous 

behavior. An explanation is that the completion rate lag the investment rate by the 

construction time for each technology. Therefore, during the period � ≤ ���
�, power 

plants are still being completed according to the ordering rate given under the long-

run market equilibrium. Only after � > max����
��, the aggregate completion rate start 

to reflect investment rates resulting from the commercial decisions of investors in each 

technology. Then, the evolution of installed capacity and reserve margin begins to 

display a continuous behavior. 
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The installed capacity decreases until reaching an extremely low value around year 4, 

when the investment exercise is finally able to surpass the continuation value for each 

technology. Only then it becomes attractive to invest now due to the high revenues 

being perceived thanks to the critical supply condition (Region 1 of Figure 6). A stream 

of new units is thereby incorporated to the system, and remains until the continuation 

value begins to surpass the exercise value once again, due to the excess of capacity, 

around year 14. The construction cycle then starts over once more. 

 

This remarkable fluctuating behavior impacts on the electricity prices that must be paid 

by consumers. In Figure 8, the annual-average market prices simulated under the 

proposed framework are depicted. According with the alerted cyclical behavior, the 

Real-Options-based case derives a market affected by significant price spikes, 

coincident with the critical reduction of installed capacity. 

 

 

5.3 Sensitivity analysis on exogenous market variables 

 

5.3.1 Mean of demand growth rate 

 

A sensitivity analysis was carried out respect to the mean of demand growth rate. In 

that sense, the simulation of capacity adequacy with long-term load growth rates of 

0%/year and 2%/year is depicted in Figure 9. Initially, it is verified that the system 

shows a more dramatic reduction of reserve margins with higher growth rates. An 

explanation is that increased growth rates yield greater expectations upon deficit 

conditions in the short term for each technology. Hence, the continuation value 

severely outweighs the exercise value, and investors constrain even more the addition 

of new capacity. 

 

When investment exercise becomes attractive, it is observed that the stream of new 

power plants is incorporated to the system at a higher rate, for higher growth rates. 

This would cause later a pronounced situation of capacity excess, which would define 
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Figure 7:  Simulation of evolution of installed capacity and reserve margin. 
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Figure 8:  Simulation of evolution of market price. 
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again the start of a new construction cycle, but of increased amplitude. Therefore, it is 

reasonable to predict a more volatile market condition as the demand growth rate 

increases. 

 

5.3.2 Volatility of demand growth rate 

 

Figure 10 shows the simulation of capacity adequacy for different volatilities of the 

demand growth rate. With higher volatilities, it is found that the market experiences a 

more dramatic depletion of reserve margins along the first years. As in the previous 

example, this is explained because the higher the volatility, the more likely the deficit 

conditions that imply extraordinary profits in the short term for each technology. 

 

After the first drop of reserve margins, the market with lower volatilities needs to reach 

an overstepped capacity situation for the continuation value to exceed once again the 

investment exercise value for each technology. This behavior is explained due to the 

fewer uncertainties about the market evolution, which leads to the reduction of the 

continuation value and gives the signal to invest in more power plants than required. 

Later on, this leads to a more dramatic reduction of reserve margins, which impacts 

directly on the stability of market prices. 

 

On the opposite side, fewer investments are required to be added for the continuation 

value of each technology to surpass again the exercise value in a highly-volatile 

scenario. Despite the more stable market behavior, this means that the reserve margin 

is constantly below the economic optimum, which settles the market clearing prices 

on a rather high average value. An explanation is that investors are likely to execute 

new projects proportionally in order to maintain a low reserve margin and secure high 

deficit profits, in response to expectations upon a highly uncertain market evolution. 

 

The described patterns are coherent with the experience in actual electricity markets. 

In fact, lessons learned suggest that the combination of strong demand growth rates, 

with high volatilities, was one of the main reasons that led to crises in supply security 
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Figure 10:  Simulation of evolution of reserve margin with different volatilities of the LGR. 

Figure 9:  Simulation of evolution of reserve margin with different Load Growth Rates 

(LGR) 
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in several liberalized markets. Specifically, this is consistent with the situation 

experienced in South America after the first step of the deregulation process during 

the 1990s (Rudnick et al., 2005) 

 

5.3.3 Volatility of fuel prices growth rates 

 

The simulation of reserve margins with different volatilities for both fuel prices growth 

rates is depicted in Figure 11. It has been verified that for small increments of the 

volatility, a change in the system response respect to the base case is almost negligible. 

This might be explained because the uncertainty in the evolution of fuel prices mainly 

affects expectations upon profitability during normal operating conditions. However, 

the higher component of expected rents is derived from deficit situations, which are 

conditioned by the uncertainty of demand growth and future installed capacity. In that 

sense, only an unusually high amount of volatility for both fuel prices growth rates 

allows to determine by itself high expectations upon profits at the expiration time. 

Then, the system exhibits a similar behavior as with the high volatility of demand 

growth rate, described in the previous subsection. 

 

 

5.4 Policy implications 

 

5.4.1 Implementation of regulatory schemes 

 

The impact of different regulatory schemes in dampening the emerging construction 

cycles, considering rational delays in the investment decisions, is also studied. In that 

sense, three schemes are proposed in order to provide additional investment incentives: 

 

 Setting the VOLL at double the value of the base case (VOLL = 2.00x). 

 Implementing a capacity market mechanism (+ Cap. Market). 

 Implementing a capacity payment mechanism (+ Cap. Paym.). 
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Figure 11:  Simulation of evolution of reserve margin with different volatilities of fuel prices 

growth rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On one hand, the VOLL is a key variable which setting is within reach of regulators. 

It is deemed that a higher VOLL might help in timely undertaking new power plants 

because investors would perceive a higher profit in the energy-only market without 

arriving to a severe deficit situation. On the other hand, the capacity market and the 

capacity payment are regulatory mechanisms that intend to remunerate generators 

separately from the energy-only market. In that sense, the formulation of the additional 

revenues to be expected by each technology is given in detail in the Appendix. Such 

profits must be eventually summed to Eq. (22) in order to determine the full expected 

profitability for each technology with the implementation of each regulatory scheme. 

 

At each time, it is assumed that the existing capacity participates entirely in the 

capacity market, while only the base technology makes bids of new capacity. It is 

supposed that these offers are always equal to the 15% of the instant system capacity 
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(Hary et al., 2016). The target system capacity is given by the observable peak demand 

and the target optimal reserve margin, which is equal to 9.78%. 

 

Accordingly, the LOLP necessary to compute the capacity payment is derived from 

the annual-average system availability. It remains constant over the simulation 

horizon, and is based on the optimal deficit duration, according to the system’s initial 

conditions. 

 

Results for the simulated reserve margin are included in Figure 12, while the simulated 

market prices are depicted in Figure 13. 

 

5.4.2 Performance of the capacity adequacy 

 

Two metrics are adopted to characterize the performance of capacity adequacy over 

the simulation horizon. First, the Root Square Mean Error (RSME) to the Target 

Reserve Margin (TRM) is used to indicate the degree of supply security. Next, the 

signal of economic performance is given by a so-called Annual-average Unitary 

Expenditure (AUE). It denotes the yearly equivalent amount that consumers would 

have paid for each MW of the system, over the average production costs, during the 

entire simulation horizon. This value can be computed from the enclosed area between 

the simulated market price and the corresponding production costs. For the sake of 

clarity, the mathematical expression for both metrics is included in the Appendix. 

 

The performance of each market design according to the proposed metrics is illustrated 

in Figure 14. Numerical values are provided in Table 4. It is verified that the capacity 

payment mechanism offers the best performance regarding the security of supply. 

Nevertheless, this happens at expense of an extremely high profit for investors. From 

the point of view of consumers, the energy-only market derives a much more moderate 

amount of expenditure. However, in that case, there is a higher risk of deviating from 

the target reserve margin, even with the increase in the VOLL, affecting the security 

of supply. 
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Figure 13:  Simulation of evolution of market price with the adoption of regulatory schemes.

Figure 12:  Simulation of evolution of reserve margin with the adoption of regulatory 

schemes. 
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Figure 14:  Performance metrics of capacity adequacy with the adoption of regulatory 

schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Table 4:  Performance metrics of capacity adequacy with the adoption of regulatory 

schemes. 

Metric Energy-only VOLL = 2.00x + Cap. Market + Cap. Paym. 

AUE 

[EUR/MW·year] 
170,490 257,942 337,133 823,675 

RSME to TRM 

[%] 
2.91 2.33 1.21 0.06 

 
 
Simulations are relevant considering that the expected profitability for each technology 

approximates to an efficient long-term contract auction. Supposedly, this mechanism 

is well-suited for reducing risks and deriving sufficient incentives to the addition of 

new capacity. However, according to the cyclical development of the market, investors 

still might be attracted to allocate new investments inefficiently, waiting for more 

profitable conditions defining their long-term contract auctions. In that context, only 

capacity remunerations mechanisms seem proper to give sufficient incentives for 

overcoming the investment threshold imposed by the postponement option, and thus 

ensuring a more stable capacity adequacy. 
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5.5 Sensitivity analysis on Real Options parameters 

 

5.5.1 Expiration time 

 

The impact of different expiration times is also subject of discussion. It is worth to 

recognize that the expiration time, also known as the option maturity, conventionally 

denotes a threshold after which investments can no longer be undertaken. Due to the 

irreversibility, this might derive in conveniently setting different expiration times for 

each generating technology. Therefore, here it is assumed that investors might consider 

investment expiration times equal to the multiple of 36, 18 and 9 months for HACO, 

CCGT and GAST, respectively. On one hand, this setting explains that investors in 

base technologies will be more cautious about the market uncertain development due 

to the higher sunk costs. On the other hand, investors in peak technologies will not be 

prone to delay investments excessively because of the lower irreversibility. The 

simulated scenarios are presented in Table 5. 

 

Results are shown in Figure 15. It is observed that the simulations with disaggregated 

option maturities exhibit a more significant reduction of reserve margins in the first 

years respect to the base case. This is explained due to the longer expiration times for 

base technologies, which results in market uncertainties determining even more 

profitable conditions if the decision is to postpone investments. This leads to a rapid 

reduction of reserve margins because of the insufficient addition of base capacity, 

which accounts for the greatest proportion of capacity within the system energy mix. 

 

Furthermore, it is verified that the market with disaggregated maturities requires fewer 

investments for the continuation value to exceed the exercise value once again. This 

implies the setting of market prices on higher average values, representing the strategic 

behavior of base investors in response to increased uncertainties at the maturity. The 

situation also determines the reduction of the period in the construction cycles, which 

leads to an increased instability of the market development, when considering a higher 

irreversibility for base power investments. 
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Figure 15:  Simulation of evolution of reserve margin with different maturities for the 

postponement option. 

Table 5:  Input data for the scenario simulation with different maturities for the 

postponement option. 

Expiration times by scenario HACO CCGT GAST 

Base case [month] 12 12 12 

1.00x Maturity [month] 36 18 9 

2.00x Maturity [month] 72 36 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.2 Risk-free discount rate 

 

The risk-free discount rate for the base case simulations was risk-adjusted following a 

non-neutral assumption. However, the valuation of real options according to a risk-

neutral supposition might find sufficient to define risk-free discount rates at lower 

values than the conventional project hurdle rates. In that sense, a sensitivity analysis 

was carried out considering risk-free discount rates of 6.25%/year and 3.12 %/year. 
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Figure 16:  Simulation of evolution of reserve margin with different risk-free discount rates. 

The simulation of reserve margins in this case is depicted in Figure 16. It is verified 

that with lower risk-free discount rates the market suffers a more critical reduction of 

installed capacity during the first years. A reason is that the lower risk-free discount 

rates increase the continuation value for all technologies. Therefore, there are greater 

incentives for investors to withhold new power plants then because higher profits will 

be certainly collected later on. 

 

Furthermore, it is observed that the cyclical behavior of the market dampens gradually 

with the reduction of the hurdle discount rate. This might be explained because, even 

when a reduction of reserve margins defines an increased exercise value, a low risk-

free discount rate determines an interesting continuation value as well. Thus, after the 

critical decrease of reserve margins, the recovery of installed capacity results from 

slower addition rates with smaller discount rates. In that context, investors might be 

likely to execute investments proportionally in order to ensure low reserve margins 

and collect great deficit profits in response to a great value of project continuation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

V CONCLUSIONS 

 

 

After developing this research work, it is concluded that a novel decision-making 

framework to assess the long-run capacity adequacy in liberalized power markets has 

been proposed. The designing of the methodology has taken advantage of a well-

founded background for simulating the long-term market dynamics, based on a System 

Dynamics simulation approach. However, the proposed research work is different as 

it has focused on modeling the investors’ decision-making process, accounting for the 

strategic flexibility of generation investments under uncertainties. For this purpose, a 

new investment valuation framework, elaborated by means of Real Options analysis, 

has been presented. 

 

In that context, the simulation of multiple scenarios for depicting the market uncertain 

evolution has allowed to quantify the value of postponing new power plants in order 

to be reconsidered later. At each time, a new profitability index has been obtained by 

relating such continuation value with the value of undertaking the investment 

immediately. This relation has ultimately defined the entrance of new capacity for each 

generating technology. 

 

Results have shown that with the proposed model the long term market development 

has been defined by explicit construction cycles. Several sensitivity analyses respect 

to key market variables has been performed in order to test the robustness of the 

described framework. In that sense, it has been suggested that the combination of 

strong demand growth rates with large volatilities would derive an even more volatile 

evolution of installed capacity. Likewise, the new Real- Options-based methodology 
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has been applied to assess the implementation of three different regulatory schemes 

intended to dampen the perceived construction cycles. Simulations have illustrated 

that, for ensuring the supply security, higher incentives must be offered in order to 

counteract the investor’s behavior when deciding strategic projects under uncertainty. 

 

Likewise, the impact of different maturity horizons and hurdle discount rates has been 

explored. In that sense, it has been verified that an increase in the expiration times for 

base technologies, due to the irreversibility, would determine an even more unstable 

market development. Furthermore, the reduction of the hurdle discount rate might 

suppress the perceived construction cycles, but at expense of significantly narrowing 

the market reserve margins, because of the increased value of investment continuation. 

 

The cyclical investment pattern depicted in this research work has reproduced the 

empirical evidence that have been reported by several electricity markets after the 

deregulation. In that sense, the main contribution of this work has been a rigorous 

mathematical description of the origins of this phenomenon. This might help in the 

design of investment incentives, suitable for deriving a stable development of the 

liberalized power industry in the long term. 

 

The following points will be included in further research: 

 

 Critical review of the expectation formation model: The possibility of multiple 

paths for describing the uncertain evolution of the observable market variables 

will be considered from the beginning of the simulation horizon. 

 Application of other Real Option methods: The impact of using binomial lattices 

or stochastic simulation models, like Least-Square Monte Carlo techniques, will 

be considered for valuing the American type of real options in the decision-

making of each technology. 

 Incorporation of non-thermal generating technologies: The generation test 

system will be expanded, in order to include further generating technologies, 

especially, renewables. This will help in studying the impact of large-scale 

integration of renewable energy, which is now center of interest. 
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APPENDIX 

 

 

A1 Modeling expectations upon profitability in the Capacity Market 

 

At each time, the Capacity Market is defined analogously as an industry supply curve. 

It results from sorting the cumulated bids of new and existing capacity according to an 

economic dispatch merit order. On one hand, bids of existing capacity are given by the 

entire available capacity residing instantly at each vintage from each technology of the 

generating park, together with their respective marginal cost of generation. On the 

other hand, it is assumed that the bids of new capacity are an obligation only of the 

base technology. Thus, the bid quantity of new capacity at any time, ����,���(�), can 

be expressed as a proportion of the total installed capacity: 

 

����,���(�) = � ��(�) 

 

where ��(�) is the total installed capacity of the system at time �, and � is the bidding 

proportion of new generating capacity. Based on the revised literature, it is assumed 

that the value of � equals 15%, and remains constant over the whole simulation 

horizon. It is worth to acknowledge that a sensitivity analysis over the value of � would 

provide a more refined insight about its impact on the system response. Likewise, the 

bid price of new capacity at any time, ����,���(�), can be derived from the marginal 

cost of generation from the base technology to be added into the system, �����������(�): 

 

����,���(�) = �����������(�) 
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Now, the target installed capacity for the market at any time, �������(�), can be defined 

as a function of the expected peak demand, ����(�), jointly with the target reserve 

margin, ��������: 

 

�������(�) = ����(�) �1 + ��������� 

 

The target reserve margin is assumed to equal the initial reserve margin, obtained 

according to the optimal energy mix at the beginning of simulations. Moreover, it is 

assumed to remain constant over the whole study horizon. 

 

The capacity market clearing price at any time, ���(�), can be formulated as the price 

at which the cumulated bid capacity equals, or immediately exceeds, the target 

installed capacity for the system: 

 

���(�) = � �����,���(�) ≥ �������(�)� 

 

Finally, the expected annual profitability that a MW of technology � will make in the 

capacity market at any time, ��,��������, can be approximated by: 

 

��,��������(�) = 8760 ����(�) ��������(�)� 

 

At time �, ���(�) denotes the capacity market clearing price; ��������(�) represents the 

marginal cost of generation for technology �; and 8760 is the number of hours in a 

year, since prices and costs are given by EUR/MWh. 

 

According to the literature, the capacity market mechanism presented here is inspired 

by the design that is now operative in France and in Great-Britain. 
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A2 Modeling expectations upon profitability with Capacity Payments 

 

The expected annual profitability that a MW of technology � will make from capacity 

payments at any time, ��,�������(�), can be modeled as: 

 

��,�������(�) = 8760 ���� ����� ��������(�)� 

 

where ����, the Lost of Load Probability, represents the probability of capacity 

shortfall; ���� is the Value of Lost Load, fixed to 1000 EUR/MWh; and ��������(�) 

denotes the marginal cost of generation for technology �. It is worth to note that this 

definition is inspired by price-based dynamic remuneration mechanism introduced in 

England and Wales between 1990 and 2001. 

 

The ���� is assumed as an indicator of the optimal system availability. It is a function 

of the initial maximum and minimum demand, and the initial deficit duration and 

reserve margin, obtained according to the optimal energy mix at the beginning of the 

simulations. Mathematically, it can be expressed as: 

 

���� =
�����(0) ����(0)� ���� + ����(0)

����(0) �1 + ���������
 

 

Here, ����(0) and ����(0) denote the initial maximum and minimum demand, 

respectively; ���� represent the initial optimal deficit duration; and �������� is the 

initial optimal reserve margin. According to the microeconomics of investments in 

power plants, the optimal deficit duration can be understood as the duration of load 

curtailment necessary for the peak technology to recover completely its fixed costs 

thanks to the Value of Lost Load. 
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A3 Modeling the performance metrics of the capacity adequacy 

 

First, the Root Square Mean Error (RSME) to the Target Reserve Margin (TRM) can 

be modeled as: 

 

���� = �
1

�
�(��(�) ���)�
�

���

 

 

where ��(�) is the simulated reserve margin for the time step � within the simulation 

horizon; ��� denotes the constant Target Reserve Margin (TRM); and � represents 

the number of integration steps, between the initial and the final simulation time, at 

which the solution of the delay differential equations is defined. 

 

Then, the Annual-average Unitary Expenditure (AUE) can be expressed as: 

 

��� =
1

20
� ���(�) ��(�)�
��

�
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Here, ��(�) is the simulated market price, and ��(�) is the simulated production cost, 

at time � within the simulation horizon; while 0 and 20 denote the initial and the final 

simulation time. 

 



 

 

PUBLICATIONS 

 

 

RIOS, D., BLANCO, G., & OLSINA, F. (2017). Integrating Real Options Analysis 
with Long-term Electricity Market Models. Working paper. Under revision 
in Energy Economics. 

RIOS, D., BLANCO, G., & OLSINA, F. (2017). Investment Valuation in Liberalized 
Power Markets: Integrating Real Options with System Dynamics. ENERGY7 
- The Seventh International Symposium on Energy, (Extended Abstract). 
Manchester, UK. 

RIOS, D., FERNANDEZ, F., & BLANCO, G. (2016). Análisis de Interacciones entre 
Procesos de Expansión de Generación y Transmisión de Energía Eléctrica 
con Dinámica de Sistemas. XVII ERIAC Decimoséptimo Encuentro Regional 
Iberoamericano del Cigré, (pp. 1-6). Ciudad del Este, PY. 

RIOS, D., FERNANDEZ, F., & BLANCO, G. (2016). Analysis of power systems 
expansion processes based on System Dynamics - State-of-the-art. 2016 IEEE 
Biennial Congress of Argentina, (pp. 1-6). Buenos Aires, AR. 

 



 

 

ABOUT THE AUTHOR 

 

 

Daniel Rios was born on September 24th, 1990 in 

Asunción Paraguay. In May 2015, he graduated in 

Electrical Engineering at the National University of 

Asunción (UNA), Paraguay. In August of the same year, 

he was awarded with a two-year scholarship by the 

National Council for Sciences and Technology from 

Paraguay (CONACYT) to pursue the degree of Master of 

Science in Electrical Engineering. Currently, he is with Research Group in Energy 

Systems at the Polytechnic Faculty, National University of Asunción, Paraguay. 

 

The research fields of interest for Mr. Rios include power system economics, modeling 

of dynamic systems, stochastic methods and Real Options. 




