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RESUMEN

La técnica de Dispersión Espectral es utilizada en una variedad de aplicaciones tales como

resolución de Sistemas Laplacianos y búsqueda de multicortes en un grafo mediante sus

propiedades espectrales. Esencialmente, aproxima el espectro de un grafo por un factor con-

stante reponderando algunas de sus aristas y eliminando otras. En la literatura existen algorit-

mos determińısticos aśı como probabiĺısticos para encontrar dispersores espectrales de grafos.

Dado las múltiples aplicaciones en sistemas distribuidos, es de gran interés encontrar disper-

sores espectrales en tales sistemas. En este trabajo, demostramos que la dispersión espectral

funciona bajo la suposición de que los datos de entrada están distribuidos en diferentes sitios.

Para lograr esto, introducimos una herramienta matemática que captura la noción de sola-

pamiento de datos entre diferentes sitios en un sistema distribuido. Además, describimos un

protocolo que computa un dispersor espectral de un grafo G = (V,∪si=1Ei) cuyas aristas, rep-

resentadas por {Ei}i≤s, están alojadas en s diferentes sitios. El resultado del protocolo es un

grafo H = (V,∪si=1Êi) donde H es un dispersor espectral de G y Êi es el conjunto de aristas

reponderadas en el sitio i.

La idea de datos que se solapan entre diferentes sitios nos ha inspirado a estudiar modelos

de comunicación, los cuales funcionan como herramientas teóricas para estudiar algoritmos que

trabajan con datos distribuidos. En particular, nos hemos enfocado en el modelo Number-

On-Forehead, el cual es una poderosa herramienta con aplicaciones teóricas en complejidad de

circuitos. Además, desarrollamos un protocolo que detecta si una familia dada de conjuntos de

puntos constituye una estructura combinatorial particular llamada Sistema-∆. Un Sistema-∆

es una familia de conjuntos con interesección única. Nuestro protocolo requiere a lo más 3 bits

de comunicación.

Finalmente, desarrollamos además un protocolo que aproxima el multicorte de un grafo

dado en el modelo Number-On-Forehead bajo la suposición de que la familia de subconjun-

tos de aristas constituye un Sistema-∆. Nuestro protocolo tiene un costo de comunicación

de O(log( n
ε2

√
1− δ)) donde ε es el factor de aproximación del dispersor espectral y δ es un

coeficiente que captura la mayor cantidad de datos solapados entre los sitios.

Palabras Clave: 1. dispersión espectral. 2. grafos densos. 3. algoritmos distribuidos. 4.
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ABSTRACT

Spectral sparsification is a technique used in a variety of applications such as solving Laplacian

systems and finding multicuts in graphs. Essentially, spectral sparsification approximates the

spectra of a given graph up to a constant factor by reweighting some edges and deleting others.

There are deterministic as well as probabilistic algorithms in the literature for finding spectral

sparsifiers of graphs. Due to the several applications of graphs in distributed systems, it is of

great interest to find spectral sparsifiers in such systems. In this work, we demonstrated that

spectral sparsification works under the assumption that the entire data set is distributed among

several sites. In order to do that, we introduced a mathematical tool that captures the notion

of overlapping data among different sites in a distributed system. As a result, we constructed

a protocol that computes an spectral sparsifier of a given graph G = (V,∪si=1Ei) whose edges,

represented by {Ei}i≤s, are allocated in s different sites. The result of the protocol is a graph

H = (V,∪si=1Êi) where H is an spectral sparsifier of G and Êi is the set of reweighted edges of

site i.

The idea of data that overlaps among different sites has inspired us to study models of

communication, which serves as a theoretical tool to study algorithms that works with dis-

tributed data. In particular, we focused in the Number-On-Forehead model, which is a model

with theoretical applications in circuit complexity. Furthermore, we developed a protocol that

detects if a given family of sets of points constitutes a particular combinatorial structure called

∆-System. A ∆-System is a family of sets with unique intersection. Our protocol requires at

most 3 bits of communication.

Finally, we developed a protocol that approximates a multicut of a given graph in the

Number-On-Forehead model under the assumption that the family of set of edges is a ∆-System.

Our protocol has a communication cost of O(log( n
ε2

√
1− δ)) where ε is the spectral sparsifier

approximation factor and δ is a coefficient that captures the greatest amount of overlapping

data among the sites.

Keywords: 1. spectral sparsification. 2. dense graphs. 3. distributed algorithms. 4. commu-

nication complexity. 5. data clustering.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Graph theory plays a fundamental role in the design of efficient algorithms. It is a transversal

area in computer science. Graphs are widely used to model discrete relationships between

objects into fixed systems. Moreover, many properties of graphs can be further analyzed by

means of their algebraic objects associated to them such as matrices. Its applications cover a

great variety of subjects in different areas, and machine learning is one of them. Due to the

highly increase of data storage, dense graphs are usually encounter in many applications. This

may yield to slowly processing of data and derive in non-efficient applications. For this reason,

approximation of graphs is of great interest in the graph theory community. This approximation

depends upon the properties of study. In this work we will be interested in approximating

graphs by their spectra. Such approximations have great impact in the development of efficient

algorithms for machine learning such as clustering [1] and principal component analysis [2, 3,

4] communities as we shall see.

The design of algorithms has not been always related to one computational model, and as

technology evolves new computational models appear as well. This thesis studies a compu-

tational model that does not take place into a single physical site. Moreover, every site may

represent a computer with the power to execute any kind of algorithm. Typical resources used

to measure the efficiency of algorithms such as time and memory are no longer useful to analyze.

This may bring in new challenges when designing efficient algorithms. For example, the input

may not be available for all sites at the same time, so they will need to communicate among

them. This yields the algorithm designer propose solutions with optimal communication, so

that the problem could be solved without overloading the communication channel.

The results of this thesis were previously presented in [2, 5, 6, 7].



1.2 Justification and Motivation

The fast increase of availability of data from multiple sources and the imperious necessity of

processing them using an optimal amount of resources motivates this work. This thesis focuses

on the study of the well known spectral sparsification technique for graphs [8]. It pretends to

contribute some theoretical results about spectral sparsification in distributed systems where

not all data is available for every site. Furthermore, data may be repeated multiple times so the

spectral properties of the resultant graph should be consistent with the original one. Moreover,

it is also presented some theoretical results on communication complexity, and a protocol for

computing the well known machine learning technique called spectral clustering [9].

1.3 Objectives

1.3.1 General Objective

Give a theoretical guarantee that spectral sparsification and its application called clustering

works when applied to distributed systems where data may appear multiple times due to the

several sources of information.

1.3.2 Specific Objectives

• Find a reliable representation for the Laplacian matrix of the input data graph in a

distributed system. As every site will work with a different Laplacian matrix of its input

data graph it is important to find a good representation of the entire input data graph in

terms of those Laplacians.

• Find a good approximation of the representation of the entire input data graph with

respect to the original input data graph which it is assumed has no repeated data.

• Show that the clustering technique combined with spectral sparsification works in the

Number-On-Forehead communication model under the assumption of the existence of a

sunflower structure in the underlying input data graph.

1.4 Book Organization

This thesis is organized as follows.

Chapter 2

We will give a brief introduction of spectral graph theory. We will focus only on the rele-

vant definitions and results for our work. Definitions such as Laplacian matrix and spectral

approximation of graphs will be given.

2



Chapter 3

In this chapter we will present our main result. First, we will introduce the notion of repeated

data and a set-theoretic idea to represent them. Then, we will use this structure to construct a

representation of the Laplacians that come from different sites. Finally, we will show how any

spectral sparsification algorithm approximates the representation of Laplacians to the original

one up to a constant factor.

Chapter 4

In this chapter we will give a brief introduction to the subject of communication complexity

and the Number-On-Forehead (NOF) model. We will also introduce the combinatorial struc-

ture called ∆-System or sunflower. Then, we will present an optimal algorithm for detecting

sunflowers in the NOF model with constant amount of communicated bits. Finally, we will

conclude with the applicability of communication complexity in other fields.

Chapter 5

In this chapter we will focus on introducing the well known machine learning technique called

spectral clustering. Then, we will propose a protocol on the NOF model for performing spectral

clustering under the assumption that the entire input data graph is a sunflower.

Chapter 6

In this chapter we will give general conclusions about the work and propose some future works

based on the results obtained in this thesis.

In [2] we started the study of spectral sparsification and in Chapter 2 we introduced the

notation given there. In [5] we introduced the basis of communication complexity and proposed

to study spectral clustering in a distributed model under the assumption of the existence of

overlapping data. This is reflected in Chapters 4 and 5. Furthermore, in [6] we proposed a

protocol for computing spectral clustering with overlapping data. This result is presented in

Chapter 5. Finally, in [7] we gave our main results about spectral sparsification with distributed

data. These results are presented in Chapter 3.

3



CHAPTER 2

SPECTRAL GRAPH THEORY AND

SPECTRAL SPARSIFICATION

In this section we will introduce some standard notations and definitions in spectral graph theory

and spectral sparsification as well as the algorithms used to find spectral sparsifiers of graphs.

First, in Section 2.1 we will introduce some important notations and definitions from graph

theory. In Section 2.2 we will define the Laplacian matrix of a given graph, some applications

in different areas and its most relevant properties for this work. In Section 2.3 we will define

the spectral sparsifier of a given graph and mention the most recent algorithms in this line of

work.

2.1 Graphs

This section presents only the kind of graphs we work with, that is, undirected graphs.

An undirected graph G is an ordered pair (V,E), where V is a finite set and E consist of

unordered pair of vertices {u, v} with u, v ∈ V and u 6= v. By convention, we use the notation

(u, v) for an edge, rather than the set notation {u, v}, and we consider (u, v) and (v, u) the

same edge. In simple undirected graphs, self-loops are forbidden, and so every edge consists

of two distinct vertices. We often use the notation e = (u, v) or e = uv for denoting edges in

undirected graphs. If e = (u, v) is an edge of an undirected graph G = (V,E) we say that e is

incident on vertices u and v. We also say that vertex u is adjacent to vertex v or the vertices

u and v are neighbors.

A path of length k from vertex u to vertex u′ in a graph G = (V,E) is a sequence

〈v0, v1, . . . , vk〉 of vertices such that u = v0 and u′ = vk, and (vi−1, vi) ∈ E for all i = 1, 2, . . . , k.

The length of the path is the number of edges on it. If there is a path p from u to u′, we say

that u′ is reachable from u via p. In an undirected graph, a path 〈v0, v1, . . . , vk〉 forms a cycle



if k ≥ 3 and v0 = vk; the cycle is simple if v1, . . . , vk are distinct. A graph with no cycles is

acyclic.

An undirected graph is connected if every vertex is reachable from all other vertices. The

connected components of a graph are the equivalence classes of vertices under the “is reachable

from” relation. An undirected graph is connected if it has only one connected component.

The edges of the connected component are those that are incident on only the vertices of the

connected component.

We say that G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. Given that

V ′ ⊆ V , the subgraph of G induced by V ′ is the graph G′ = (V ′, E ′) where E ′ = {(u, v) : u, v ∈
V ′}.

Several kinds of graphs has special names. A complete graph is an undirected graph in which

every pair of vertices is adjacent. A bipartite graph is an undirected graph G = (V,E) in which

V can be partitioned into two sets V1 and V2 such that (u, v) ∈ E implies either u ∈ V1 and

v ∈ V2 or u ∈ V2 and v ∈ V1. An acyclic, undirected graph is a forest, and a connected, acyclic,

undirected graph is a tree. There two variants of graph we will talk about. A multigraph is like

an undirected graph, but it can have both multiple edges between vertices and self-loops. A

hypergraph is like an undirected graph, but each hyperedge, rather than connecting two vertices,

connects an arbitrary subsets of vertices.

The degree of a vertex v ∈ V is the number of neighbors it has. We will represent the degree

of a vertex as a function d : V → N. The degree of a vertex v ∈ V is d(v) =
∑

uv∈E 1, this is,

we add 1 to d(v) if u is adjacent to v. Sometimes we will use the notation dv instead of d(v).

For a subset V ′ ⊆ V we define d(V ′) =
∑

v∈V ′ d(v).

A weighted, undirected graph G = (V,E,w) is an undirected graph whose edges has weights

assigned to them. The weights are defined by a function w : E → R. Notice that an unweighted,

undirected graph can be seen as a weighted graph G = (V,E,w) whose weight function is

w : E → {0, 1} assigning 0 to edges e 6∈ E and 1 to edges e ∈ E. We can also generalized the

definition of degree to weighted degree. Let v ∈ V a vertex of G, the weighted degree of v is

d(v) =
∑

uv∈E w(u, v). Also, for a subset E ′ ⊆ E the weight of E ′ is w(E ′) =
∑

uv∈E′ w(u, v).

Representing graphs is important for computational systems which operates with them.

There are many basic ways to represent graphs [10]: adjacency matrix representation, adjacency

list representation, edge list representation, incidence matrix representation, etc. In this work

we are focus on the adjacency matrix representation AG which is defined as follows

AG(u, v) = auv =

{
w(u, v) if (u, v) ∈ E

0 otherwise
, (2.1)

where the subscript G that indicates the underlying graph G will be omitted when is clear from

the context. Notice that AG will be a binary matrix1 if G is an unweighted graph; otherwise the

1A binary matrix is a matrix whose entries are elements of {0, 1}.

5



matrix is called weighted adjacency matrix. We can also define the degree matrix and weighted

degree matrix DG as well

DG(u, v) = duv =

{
d(u) if u = v

0 otherwise
. (2.2)

Lastly, we will introduce a notion that it will be used throughout the entire work. A cut in

a graph G = (V,E) is a subset of edges E ′ ⊂ E such that the subgraph G = (V,E − E ′) has

exactly two connected components. Each connected component has its own subset of vertices

and they constitute a partition of V . The size of a cut E ′ is given by w(E ′) and denoted by

cutG(V ′, V ′) or simply cutG(V ′) with V ′ ⊆ V .

2.2 Spectral Graph Theory

Spectral graph theory studies the properties of a graph from the linear algebra perspective.

It studies matrices associated to a given graph and their eigenvalues and eigenvectors. The

Laplacian matrix of a graph G is the main subject of study in this chapter. It is usually

represented by LG, when the graph G is clear from context the subscript is dropped. Laplacian

matrices are symmetric, have zero row-sums, and have non-positive off-diagonal entries. Some

applications of the Laplacian matrix found in [11] are regression on graphs, spectral graph theory,

solving maximum flow by interior point algorithms, resistor networks and partial differential

equations. Laplacian matrices could be studied over weighted or unweighted, undirected and

simple graphs. Some results on the study of unweighted Laplacian matrices given in [12] are

lower bounds on the diameter of a graph, number of spanning trees and number of connected

components. In this work we will focus on weighted graphs rather than unweighted. Now, we

will give the definition of Laplacian matrices.

Definition 2.1. Given a undirected weighted graph G = (V,E,w) with n = |V |, m = |E| ≤
(
n
2

)
and w : E → R≥0. Let AG ∈ Rn×n be the weighted adjacency matrix and DG ∈ Rn×n the

weighted degree matrix of G defined as in (2.1) and (2.2) respectively. The Laplacian matrix of

a given graph G is defined as

LG = DG − AG. (2.3)

An example of a Laplacian matrix is shown in Figure 2.1.

Another way to look at the Laplacian is through its quadratic form B.6. Given a vector

x ∈ Rn, the Laplacian quadratic form of G is

xTLGx =
∑

(u,v)∈E

wuv(xu − xv)2. (2.4)

Operational researchers and computer scientists are often interested in cutting, partitioning

6



=⇒




2 −1 0 0 −1

−1 3 −1 −1 0

0 −1 2 −1 0

0 −1 −1 4 −2

−1 0 0 −2 3




Figure 2.1: The graph at the left side has 5 vertices, every pair of vertices are connected by an
edge of weight 1 except the edge (4,5) with weight 2. The rows and columns of the Laplacian
matrix on the right side are indexed by the vertices of the graph. The diagonal contains the
weighted degree of every vertex, for example the element at the 4-th row and column is 4.
The non-diagonal elements denote the weight between every pair of vertices, for example the
element at the row four and column five is −2. If two pair of vertices does not share an edge
then, its corresponding element in the Laplacian matrix is equal to zero.

and clustering graphs. For those purposes the Laplacian quadratic form offers a nice charac-

terization. Let S ⊆ V be a subset of vertices, the of edges crossing S to V − S is known as the

boundary of S and denoted by ∂(S)—note that the boundary of S is equivalent to a cut that

partitions V into S and V − S. Let χS ∈ {0, 1}|V | be a vector with its entries indexed by the

vertices in V such that

χS(v) =

{
1 if v ∈ S
0 otherwise.

(2.5)

We call χS the characteristic vector of S. Then χTSLGχS is equal to the sum of the weighted

edges belong to ∂(S). Most common applications are often interested in minimizing the sum

of weighted edges in the boundary of S divided by the size of S. Thus, when we deal with

unweighted graphs we use the isoperimetric number defined as

ι(S) =
|∂(S)|

min(|S|, |V − S|)
. (2.6)

On the other hand, if we work with weighted graphs then we must use the conductance of

S defined as

φ(S) =
w(∂(S))

min(d(S), d(V − S))
, (2.7)

where w and d are the generalizations of weight and degree functions. The isoperimetric

number and the conductance of G are defined as the minima of these quantities over all subsets

of vertices

ιG = min
S⊂V

ι(S) and φG = min
S⊂V

φ(S). (2.8)
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When the set S that minimizes ιG or φG is found then it is common to cluster the graph G into

induced subgraphs over S and V −S. Later we will introduce a generalization of φG for finding

a partition of size k over the vertex set of G and we will introduce an algorithm called spectral

clustering for computing such partition. Now, we will introduce the normalized version of the

Laplacian.

Definition 2.2. The normalized symmetric Laplacian is defined as

LsymG = D
− 1

2
G LGD

− 1
2

G

= I −D−
1
2

G AD
− 1

2
G ,

and the random walk normalized Laplacian as

LrwG = D−1G LG

Notice that LsymG multiplies every i, j-th element of LG by 1√
di
√
dj

. On the other side, LrwG

multiplies every i-th row of LG by 1
di

.

In the following proposition we will summarize the properties of LG and LsymG . For a proof

we refer the reader to [9].

Proposition 2.1. The Laplacian and normalized Laplacian have the following properties:

1. LG and LsymG are both symmetric,

2. LG and LsymG are both positive semidefinite,

3. The algebraic multiplicity of the smallest eigenvalue of LG is equal to the number of

connected components of G

4. The second smallest eigenvalue approximates a sparse cut in G.

The three matrices are used for spectral partitioning of graph algorithms. We will study the

applications of LG and LsymG later. Information of how matrix LrwG is used for graph segmentation

can be found in [13].

We will now introduce the theory and algorithms for approximating an arbitrary graph by

a sparse one. First let us recall that sparse graphs are graphs with a number of edges less than(
n
2

)
. In fact, the literature consider that sparse graphs are families of graphs with number of

edges bounded by some constant or some logarithmic function on its number of vertices [14,

15]. There are other definitions of graph sparsity for general graph structures. In [16] and [17]

the authors defined a family of graphs being sparse if every subset of n′ ≤ n vertices spans

subgraphs of number of edges linear on n′. In this thesis, we are interested in sparse graphs

whose number of edges are bounded by a linear function over the number of vertices.

8



Spectral sparsification was first introduced in [18] to solve symmetric diagonal-dominant

(SDD) linear systems. Then, in [8] a new notion of graph sparsification was introduced and it

was based on spectral similarity of the Laplacian. They proved that every graph has a spectral

sparsifier of quasi-linear size and presented an algorithm to construct it in time O(m logcm),

where m is the number of edges in the original graph c is a positive constant. Furthermore,

in [19] an elementary deterministic algorithm was given for constructing spectral sparsifiers of

size O(n/ε2) in O(mn3/ε2) time. These algorithms use a greedy strategy to iteratively update

a matrix A by a rank-one matrix tvTv that depends on the Laplacian L and a constant t. Also

in [20] an algorithm that improves the spectral sparsifier size given in [8] was presented. The

size of the spectral sparsifier was O(n log n/ε2). This latter algorithm was based on random

sampling of the edges with a probability distribution based on their effective resistance. Such

probabilities are proportionally inverse to the edge weights. In [14] was summarized the results

of some algorithms presented in [8, 19, 20] and the notions of spectral sparsifiers which we

introduce now.

The approximation between graphs depend on a similarity notion. There are a vast number

of notions of similarity among graphs, we will explore some of them and then introduce the

one that we will work with. First, when we measure similarity between graphs we will assume

that they have the same number of vertices n. All these similarity notions were previously

mentioned in [14].

The cut similarity establishes that two graphs are similar if the size of their cuts are ap-

proximately the same. We say that two graphs G = (V,E,w) and G̃ = (V,E, w̃) are σ-cut

similar if

cutG̃(S)/σ ≤ cutG(S) ≤ σcutG̃(S) (2.9)

for all S ⊂ V . Moreover, every graph is cut-similar to a graph with average degree O(log n)

and it could be computed in polylogarithmic time. The notion of cut similarity was introduced

in attempts to develop faster algorithms for the minimum cut and maximum flow problems.

The distance similarity relies on the assignation of lengths to the edges. This induce a

shortest path between every pair of vertices, this is, distG(u, v) for all u, v ∈ V . We say that

two different graphs are σ-distance similar if every pair or vertices has approximately the same

shortest path, this is

distG(u, v)/σ ≤ distG̃(u, v) ≤ σdistG(u, v) (2.10)

for all u, v ∈ V .

The spectral similarity of graphs is defined using their quadratic form. Recall from Equation

B.6 we have that QG(x) = xTLGx for all x ∈ Rn. Then, two graphs G and G̃ are σ-spectrally

9



Figure 2.2: An illustration of how spectral sparsification works

similar if

QG̃(x)/σ ≤ QG(x) ≤ σQG̃(x) (2.11)

holds for all x. Furthermore, if χS is the characteristic vector of S ⊂ V then QG(χS) gives

a quantity related to a cut in G. This implies that cut similarity is a special case of spectral

similarity [14]. Now, we will introduce a similarity notion related to this one, the matrix

similarity.

First, for two symmetric matrices A and B in Rn×n, we write A 4 B to indicate 0 ≤
xTBx− xTAx for all x ∈ Rn, which in turns implies that B −A is positive semidefinite. Next,

we say that A and B are σ-spectrally similar if

B/σ 4 A 4 σB. (2.12)

This relation is named spectral similarity because it implies that A and B have similar eigenval-

ues. Recall from the minimax principle B.4 that λi(A) = minS:dim(S)=i maxx∈S;x 6=0
xTAx
xT x

. Thus,

if λ1, . . . , λn are the eigenvalues of A and λ̃1, . . . , λ̃n are the eigenvalues of B then, for all i

λi/σ ≤ λ̃i ≤ σλi. Using this notation we can write that

LG̃/σ 4 LG 4 σLG̃. (2.13)

That is, two graphs are σ-spectrally similar if their Laplacian matrices are σ-spectrally

similar. In general, [14] established that a good spectral sparsifier G̃ of G should have the

following three properties: I) G̃ is σ-spectrally similar to G, II) Edges of G̃ consist on reweighted

edges of G and III) G̃ has at most d|V | edges where d is a logarithmic function in n. An

illustration of a spectral sparsifier can be observed in Figure 2.2.
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2.3 Spectral Sparsification

As we observed, spectral sparsifier algorithms rely on two major characteristics to be considered

as optimal algorithms. This characteristics are the size of the spectral sparsifier and the time

required to compute it. To the best of our knowledge the best spectral sparsification algorithm

is presented in [21]. This algorithm relies on two important characteristic from the former

algorithms, a random sampling procedure based on effective resistance and rank-one update

based on barrier functions. The algorithm outputs a spectral sparsifier of O( qn
ε2

) edges in

Õ( qmn
5/q

ε4+4/q ) time. In this work we are more interested in the size of the spectral sparsifiers rather

than the time to compute it as we will see later. We should mention as well that spectral

sparsifiers have been studied in other computational models as streaming models [22]. In the

streaming model the goal is to compute the spectral sparsifier of a graph with low memory

requirements. That is, the memory use to store partial results of the algorithm is low. The

input data is received in a sort of array that should be processed. Results of spectral sparsifiers

in the streaming model are given in [22].

Finally, from now on we will use a notation of spectral sparsification different from the one

presented at Equation 2.13. For graphs G and H we will say that H is a spectral sparsifier of

G if

(1− ε)LG 4 LH 4 (1 + ε)LG, (2.14)

where 0 < ε ≤ 1 is the approximation factor. Notice that Equation 2.13 could be inferred from

Equation 2.14.

In the following chapter we will present a general approach to compute LH from Equation

2.14 when the graph G is expressed as the union of different subgraphs Gi. An application

of this known result will yield a distributed algorithm for computing H when each Gi are in

different physical places.
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CHAPTER 3

OVERLAPPING CARDINALITY

PARTITION

In this chapter we will introduce a mathematical object that could be used to represent over-

lapping information in computational systems. We use this structure to show that the spectral

sparsification technique introduced in the last chapter works well under distributed systems

with overlapping information. The main contribution of this chapter, presented in Theorem

3.1, is an estimation of the approximation factor and an explicit calculation of the edge weights

in the union of the spectral sparsifiers of graphs Gi allocated in a distributed system. The

chapter is divided in three sections. Section 3.1 will introduce a mathematical object to ex-

press how many times an item of a set is repeated in a family of subsets. In Section 3.2 we will

use the idea of repeated data to show that the Laplacian of a given graph can be expressed as

a linear combination of Laplacians that depends on those repeated data. In Section 3.3 we will

show that the union of spectral sparsifiers of given graphs is a spectral sparsifier of the union

of such graphs.

3.1 Overlapping Cardinality Partition

Duplicated data is often found in database systems because of redundancy policies, registers

that have been saved more than once or overlapping source of information. As we work with

distributed systems, this could lead to data that is saved in more than one database system.

Furthermore, as we work with input data graphs, repeated data could lead to repeated edges

or repeated vertices. In this section we will characterize duplicated data in distributed systems

as a family of sets over N as is observed in Figure 3.1. Furthermore, every set in the family

will represent data from a unique source of information, and, different sets in the family will

represent data from a different source of information. Then, we will construct a more suitable



holds A1
holds A2

holds A3

holds A4
holds A5

holds A6

Figure 3.1: This distributed system has its data distributed along six databases or sites.
Every site holds the dataset Ai which consist of a set of points in N. These points could
represent vertices or edges of the input graph. The entire family of sets is represented as
{A1, A2, A3, A4, A5, A6}.

representation of data in terms of the Laplacian of a graph introduced in the last chapter.

The family of sets observed in Figure 3.1 will be our main subject of study. We will have

typically that Ai ⊆ [m]1 and
⋃t
i=1Ai = [m] where t denotes the number of sites. Given a point

a ∈ [m], we want to know how many subsets of {Ai}i≤t contains a so we define the occurrence

number.

Definition 3.1 (Occurrence Number). Let A = {A1, . . . , At} be a family of subsets of [m].

For any a ∈ [m], the occurrence number of a in A, denoted #(a), is the maximum number of

sets from A in which a appears.

The occurrence number captures how many times a given element appears in different

subsets. Example 3.1 shows how Definition 3.1 works.

Example 3.1. Let m = 11 and A = {{1, 4, 5}, {1, 2, 3, 5, 6, 7, 8}, {3, 7, 8, 9}, {4, 5, 6, 10},
{7, 8, 9, 11}}. Here we have that #(1) = 2, #(2) = 1, #(3) = 2, and so on.

Now, we may want to count how many elements appears an equal number of times in

different subsets. This could be carried out by the overlapping cardinality of a subset which we

define as follows.

Definition 3.2 (Overlapping Cardinality). Let A = {A1, . . . , At} be a family of subsets of [m]

for some fixed m and A =
⋃t
i=1Ai. The overlapping cardinality of a subset A′ ⊆ A in A is

a positive integer c such that for each a ∈ A′ its occurrence number #(a) = c; otherwise the

overlapping cardinality of A′ in A is 0.

1See Section A.1
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The overlapping cardinality identifies the maximum number of times the elements of a

subset appears in a family of subsets. Also notice that if all subsets of A have overlapping

cardinality equal to 1 then, A is a partition of [m]. In the following example it is shown how

to compute the overlapping cardinality of a subset.

Example 3.2. Let m = 11 and A be as in Example 3.1. Here we have that A =
⋃t
i=1Ai = [m].

Now consider the sets {5, 8} and {1, 2, 3}.

• The overlapping cardinality of {5, 8} in A is 3, because #(5) = #(8) = 3.

• The overlapping cardinality of {1, 2, 3} in A is 0 because the occurrence number of one

of the elements of the set is different from the others, namely, #(1) = #(3) = 2, and

#(2) = 1.

In the following definition we use the idea of overlapping cardinality to construct a partition

on the set A of subsets of [m].

Definition 3.3 (Overlapping Cardinality Partition). Given a family A as in Definition 3.2, an

overlapping cardinality partition over A on A is a partition {A′1, . . . , A′k} of A where each A′i

has overlapping cardinality ci on A. We call the sequence (c1, c2, . . . , ck), with 1 ≤ c1 < c2 <

· · · < ck, the overlapping cardinalities over the family A.

From Definition 3.3 it is easy to observe that subsets with different overlapping cardinalities

are different. Now, observe the following fact

Fact 3.1. Let X and Y be two subsets of A with the same overlapping cardinality and

{A′1, . . . , A′k} an overlapping cardinality partition over A. Then, X
⋃
Y is a subset of some A′i.

From Fact 3.1 is easy to notice that an overlapping cardinality partition is not unique. Now,

observe an example of overlapping cardinality partition.

Example 3.3. Take A from Examples 3.1 and 3.2. An overlapping cardinality partition is

{{2, 10, 11}, {1, 3, 4, 6, 7, 9}, {5, 8}}.

Here, {2, 10, 11} has overlapping cardinality equal to 1 because #(2) = #(10) = #(11) = 1.

The subset {1, 3, 4, 6, 7, 9} has overlapping cardinality equal to 2 because #(1) = #(3) =

#(4) = #(6) = #(7) = #(9) = 2. Finally, in Example 3.2 we saw that the subset {5, 8} has

overlapping cardinality 3.

A pictorial representation of Example 3.3 is shown in Figure 3.2.

In the next section we will use the overlapping cardinality partition to decompose a Lapla-

cian matrix over an input data allocated along different sites as a linear combination of Lapla-

cians.
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A1 A2 A3

A4 A5

1 2 3

4
5
6 7

8
9

10 11

Figure 3.2: From Example 3.3, the elements of the partition {{2, 10, 11}, {1, 3, 4, 6, 7, 9}, {5, 8}}
belongs to 1, 2 and 3 sets of the family and are colored in blue, violet and red respectively.

3.2 Input Data Graph and Laplacian Decomposition

We begin with an idea of how a subset of natural numbers could be represented as a graph. Let

us take a family A of subsets of [m] as in Example 3.1. For every Ai ∈ A, the elements e ∈ Ai
will represent the edges of our graph. As every edge is represented as a pair of vertices, usually

(i, j) then, the element e in the i-th row and j-th column of any n× n matrix could represent

the edge (i, j). We will use an enumerating process. Given n and e, an O(n2) algorithm can find

the corresponding edge (i, j) in G. Just take e, initialize a counter in 1 and go along through

the columns and rows of the upper triangular part of the given adjacency matrix increasing the

counter in one unit until its equal to e. The i-th row and j-th column at which the counter is

equal to e is the desired edge (i, j). Also, as the graph is undirected, the (j, i) element should

be equal to e as well in the given matrix. Suppose the sites only know the value of m and that

G is a dense graph. Then, they can compute the number of vertices by finding the maximum

n such that
(
n−1
2

)
< m. The enumerating process is observed in Figure 3.3. Let us consider

E ⊂ N and its corresponding graph G = (V,E) constructed by an enumerating process. We

will call E the enumerating edges of G. We should remark that this enumerating process is just

to keep track of the edges that every site is aware of and to make notation more comfortable.

That is, instead of representing an edge and its weight in a given graph as a triplet i, j, wij we

will represent it as weij.

Now, we will continue with a lemma that shows that the Laplacian of an input graph can

be rewritten as a linear combination of Laplacians. These Laplacians correspond to induced

subgraphs constructed from an overlapping cardinality partition of the family of edge-set.

LetG = (V,E,w) be an undirected and weighted graph with a weight function w : E → R≥0,
let E = {E1, . . . , Et} be a collection of subsets of E such that

⋃t
i=1Ei = E where Ei 6= ∅ and

Gi = (V,Ei, wi) is an induced subgraph of G where wi : Ei → R≥0 and wi(e) = w(e) for all
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=⇒




0 1 2 3 4
1 0 5 6 7
2 5 0 8 9
3 6 8 0 10
4 7 9 10 0




Figure 3.3: In this example we have a complete graph with 5 vertices. We will use the enumer-
ating process to represent a set of points in N as an undirected graph with no loops which is
exactly what the Laplacians usually represent.

e ∈ Ei and 0 otherwise.

Lemma 3.1. If 1 ≤ c1 < c2 < · · · < ck are the overlapping cardinalities over the family E with

an overlapping cardinality partition {E ′cj}j≤k, then
∑t

i=1 LGi
=
∑k

j=1 cjLG′cj where LG′cj is the

Laplacian of G′cj = (V,E ′cj , w
′
cj

).

Proof. First notice that, for all e = xy ∈ E ′cj there exists a subfamily of E with cardinality

equal to cj such that e belongs to every member of it and of its associated subgraph.

Take any xy ∈ E ′cj for some j ∈ {1, . . . , k}. There exists cj induced subgraphs Gi1 , . . . , Gicj

of G that have xy as an edge, and all other induced subgraphs Gk1 , . . . , Gk` do not have xy as

and edge, where cj + ` = t. This means that

t∑
i=1

LGi
(x, y) = cj · LG′cj (x, y) = −cj · w(x, y). (3.1)

Now, let dG(x) denote the degree of x in G. We know that dG(x) =
∑

y w(x, y) where xy ∈ E.

Since {E ′cj}j≤k is a partition of E, we can rewrite the degree of x as

dG(x) =
∑

xyc1∈E′c1

w(x, yc1) + · · ·+
∑

xyck∈E′ck

w(x, yck). (3.2)

Then, the degree of x in the graph G′cj is

LG′cj (x, x) =
∑

xycj∈E′cj

w(x, ycj) = dG′cj (x). (3.3)

If we take an edge xycj ∈ E ′cj , where x is fixed, we know that xycj appears only in the induced

subgraphs Gi1 , . . . , Gicj
, and hence, we obtain

t∑
i=1

 ∑
xycj∈E′cj

wi(x, ycj)

 = cj · dG′cj (x). (3.4)

If we take another edge uv ∈ E ′cm , with m 6= j, note that uv does not belong to any of
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w1
12

w2
13 w4

23 w5
24

w1
12

w3
14 w5

24

w1
12

w4
23 w5

24

w2
13 w4

23

w6
34

Figure 3.4: Subgraphs of K4 as stated in Example 3.4. The union of them is K4. Lemma
3.1 claims that the sum of the Laplacians of these subgraphs could be rewritten as the sum
of Laplacians of subgraphs induced by the overlapping cardinality partition associated to their
family of edges.

the graphs Gi1 , . . . , Gicj
and each Laplacian matrix LGi1

, . . . , LGicj
has 0 in its (u, v)-entry.

Therefore, adding uv to Eq.(3.1) we have that

t∑
i=1

(LGi
(x, y) + LGi

(u, v)) = cj · LG′cj (x, y) + cm · LG′cm (u, v).

Extending this argument to all equivalent classes in {E ′cj}j≤k, for each non-diagonal entry (x, y),

with xy ∈ E, it holds
t∑
i=1

LGi
(x, y) =

k∑
j=1

cj · LG′cj (x, y). (3.5)

A similar argument can be made for the diagonal entries with Eq.(3.4), thus obtaining

t∑
i=1

 ∑
xyc1∈E′c1

wi(x, yc1) + · · ·+
∑

xyck∈E′ck

wi(x, yck)

 =
t∑
i=1

LGi
(x, x) =

k∑
j=1

cj · LG′cj (x, x). (3.6)

Equations (3.5) and (3.6) imply the lemma.

In the following example we show how Lemma 3.1 works
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Example 3.4. Let G be a the complete, undirected and weighted graph K4 with its edges

distributed along four different sites. The family E = {{1, 2, 4, 5}, {1, 3, 5}, {1, 4, 5}, {2, 4, 6}}
represents the enumerating edges of G. Furthermore, E ′ = {{1, 4, 5}, {3, 6}, {2}} is the over-

lapping cardinality partition of E and 3, 1 and 2 are the overlapping cardinalites of the sets in

E ′ respectively. We can induce from E every subgraph of G as is observed in Figure 3.4.

Then, when computing the sum of their Laplacians LG1 + LG2 + LG3 + LG4 we get
d11 −w1

12 −w2
13 0

−w1
12 d12 −w4

23 −w5
24

−w2
13 −w4

23 d13 0

0 −w5
24 0 d14

+


d21 −w1

12 0 −w3
14

−w1
12 d22 0 −w5

24

0 0 d23 0

−w3
14 −w5

24 0 d24

+


d31 −w1

12 0 0

−w1
12 d32 −w4

23 −w5
24

0 −w4
23 d33 0

0 −w5
24 0 d34

+


d41 0 −w2

13 0

0 d42 −w4
23 0

−w2
13 −w4

23 d43 −w6
34

0 0 −w6
34 d44


(3.7)

where the superscript for every diagonal element indicates the site. Notice that the degree

of every vertex is not the same in all sites but their sums are over the same set of possible

neighbors. As an example observe d11 and d21. The first is the sum of w1
12 and w2

13 and the

second is the sum of w1
12 and w3

14. Now, the Sum 3.7 is equivalent to
d1 −3w1

12 −2w2
13 −w3

14

−3w1
12 d2 −3w4

23 −3w5
24

−2w2
13 −3w4

23 d3 −w6
34

−w3
14 −3w5

24 −w6
34 d4

 , (3.8)

where
d1 = d11 + d21 + d31 + d41

= 3w1
12 + 2w2

13 + w3
14,

d2 = d12 + d22 + d32 + d42

= 3w1
12 + 3w4

23 + 3w5
24,

d3 = d13 + d23 + d33 + d43

= 2w2
13 + 3w4

23 + w6
34,

d4 = d14 + d24 + d34 + d44

= w3
14 + 3w5

24 + w6
34.

(3.9)
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Then, it is easy to see that the matrix in (3.8) could be expressed as the following sum
d1
′

1 −3w1
12 0 0

−3w1
12 d1

′
2 −3w4

23 −3w5
24

0 −3w4
23 d1

′
3 0

0 −3w5
24 0 d1

′
4

+


d2
′

1 0 −2w2
13 0

0 d2
′

2 0 0

−2w2
13 0 d2

′
3 0

0 0 0 d2
′

4



+


d3
′

1 0 0 −w3
14

0 d3
′

2 0 0

0 0 d3
′

3 −w6
34

−w3
14 0 −w6

34 d3
′

4

 .

(3.10)

Notice that every matrix correspond to a Laplacian of a subgraph induced from E ′i ∈ E ′

multiplied by a natural number. This number is the overlapping cardinality of E ′i. Finally, we

get

3LG′1 + 2LG′2 + LG′3 (3.11)

as Lemma 3.1 claimed.

In the following section we will use Lemma 3.1 to show how the spectral sparsification works

when the edges of a graph G are distributed as in Example 3.4.

3.3 Constructing Spectral Sparsifiers from Induced Sub-

graphs

Here we present our main contribution, we will use Lemma 3.1 to show that the spectral

sparsifier of
∑k

j cjLG′cj is a spectral sparsifier of the Laplacian LG of an input graph G. We

assume that the edges of G are distributed among different sites and every site is aware of a

subgraph of G. Furthermore, every site i can compute a spectral sparsification of Gi. As a

final step every site will send its sparsified graph G′i through some communication channel.

Then, the union of the spectral sparsifiers will be denoted computationally by the sum of their

Laplacians. Our contribution is stated in the following theorem.

Theorem 3.1. Let (1 = c1 < c2 < · · · < ck) be the overlapping cardinalities over the family E
with {E ′cj}j≤k its associated overlapping cardinality partition and LG1 , . . . , LGt be the Lapla-

cians of G1, . . . , Gt. If Hi = (V,Di, hi) is an ε-spectral sparsifier of Gi, then H = (V,
⋃t
iDi, h)

is an ε′-spectral sparsifier of G where h(e) =
∑t

i hi(e)

c1ck
and ε′ ≥ 1− 1−ε

ck
.

Proof. Let LHi
be the Laplacian of Hi. By hypothesis we have that for every i ∈ [t] and x ∈ RV

(1− ε)xTLGi
x ≤ xTLHi

x ≤ (1 + ε)xTLGi
x.
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Then we may take the summation over all i ∈ [t] to get

(1− ε)
t∑
i

xTLGi
x ≤

t∑
i

xTLHi
x ≤ (1 + ε)

t∑
i

xTLGi
x. (3.12)

Now, lets consider the left hand side of the Equation (3.12). Using Lemma 3.1 we get

(1− ε)
t∑
i=1

xTLGi
x = (1− ε)

k∑
i=1

ci · xTLG′cix

≥ (1− ε)c1
k∑
i=1

xTLG′cix

= (1− ε)c1xTLGx,

where the last equality follows from the fact that {E ′cj}j≤k is a partition of E. Similarly for the

right hand side of Equation (3.12) we have that

(1 + ε)
t∑
i

xTLGi
x ≤ (1 + ε)ckx

TLGx. (3.13)

Therefore, by multiplying equations (3.13) and (3.13) by 1
c1ck

we obtain

(1− ε)x
TLGx

ck
≤ xTLHx ≤ (1 + ε)

xTLGx

c1
,

where xTLHx = (
∑t

i=1 x
TLHi

x)/(c1ck).

To finish the proof, note that we want 1−ε′ ≤ (1−ε)/ck and (1+ε)/c1 ≤ 1+ε′ with ε ≤ ε′ < 1.

In order to solve this, we choose an ε′ ≥ 1− 1−ε
ck

. First notice that 1− ε′ ≤ 1− 1 + 1−ε
ck

= 1−ε
ck

.

Then we have that 1+ε
c1
≤ 1+ε′

c1
= 1 + ε′.

An example of what Theorem 3.1 states is shown in Figure 3.5.

Before concluding this chapter we should remark that these results could be extended to

subgraphs Gi with different weights. Notice that the function h from Theorem 3.1 is a summa-

rizing function of the other subgraphs weights functions. In the next chapter we will introduce

one way in which algorithms in distributed systems are analyzed.
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Figure 3.5: At the top we can observe the subgraphs of K4 from Example 3.4 with their
respective spectral approximations. At the bottom is shown what Theorem 3.1 claims, that is,
the union of spectral sparsifiers is a spectral sparsifier of the union of subgraphs.
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CHAPTER 4

SUNFLOWERS AND

NUMBER-ON-FOREHEAD

COMMUNICATION

In this chapter we will introduce the rich subject of communication complexity and its the-

oretical applications. The main result of this chapter is a multiparty protocol that detects

whether or not a given family of subsets is a well known mathematical object called ∆-System.

We will start in Section 4.1 describing the communication protocols and how they are used to

solve problems in distributed systems. The formal definition of protocols and the cost of them

will be given as well. We will focus on the most basic and simple scenario where there are

just two players. In Section 4.2 we will introduce the multiparty communication problems and

their two most relevant models, the Number-In-Hand and Number-On-Forehead model. We

will primarily focus on the latter. Then, in the Section 4.3 we will introduce the well known

mathematical structure called ∆−System. Furthermore, we will develop a protocol to verify

whether such structure exist or not in the Number-On-Forehead model. Finally, in Section 4.4

we will describe how communication complexity helps to develop better algorithms in different

computational models.

4.1 Communication Protocols

Suppose that there are two o more computers, systems or humans that want to jointly solve a

problem which they cannot do it by themselves. These problems may arise in many contexts

such as a computer with multiple processors that need to communicate among them through

a bus or many computers distributed along different physical sites that need to process some

function over the entire data they hold, or maybe two humans that hold each of them a binary



string number and wish to know if the sum of such numbers is odd or even. More generally,

if any problem has its underlying data distributed among different pieces then, there will be

some kind of communication among the parts in order to solve such problem. The component,

computers or systems that holds these pieces of distributed data are usually called players, sites

or parties.

As in the study of algorithms, the complexity associated to a communication problem

measures the amount of resources used to solve problems. In this case, the resources are the

bits exchanged. A problem may have different solutions, the measurement of bits exchanged of

a given solution is called the cost of the solution. We should emphasize that the complexity of

a given problem is the cost of the most efficient solution.

The problem is usually represented as a function f over the inputs of every party. A solution

to the problem is usually called a protocol. A protocol specifies a sequence of interactions among

the parties, just as an algorithm specifies a sequence of instructions. The maximum number

of bits exchanged in the protocol over the worst-case input is the cost of the protocol. The

complexity of a problem is the deterministic communication complexity of the function f , that

is the minimum cost over all protocols which compute f .

Protocols usually have a pictoric and more intuitive representation called protocol trees. A

protocol tree is a tree where the internal nodes and the root represent parties and the edges

represent the communicated bits from one party to another. The leaves of the tree represent

the outcome of the protocol. An example is showed in Figure 4.1. Now, we will introduce the

definition of protocol trees which can be found in [23].

Definition 4.1. A protocol P over a domain X × Y with range Z is a binary tree where each

internal node v is labeled either by a function av : X → {0, 1} or by a function bv : Y → {0, 1},
and each leaf is labeled with an element z ∈ Z. The value of the protocol P on the input (x, y)

is the label of the leaf reached by starting from the root, and walking on the tree. At each

internal node v labeled by av walking on the left if av(x) = 0 and right if av(x) = 1, and at

each internal node labeled by bv walking left if bv(y) = 0 and right if bv(y) = 1. The cost of

the protocol P on input (x, y) is the length of the path taken on input (x, y). The cost of the

protocol P is the height of the tree.

We will start with the most basic model, which arises from two parties, let us analyze the

following example.

Example 4.1. Suppose that Alice and Bob hold x ∈ {0, 1}n and y ∈ {0, 1}n respectively and

they wish to compute the function f : ({0, 1}n)2 → {0, 1} defined as follows

f(x, y) =

{
1 if x+ y is an odd number

0 otherwise
. (4.1)

In the following we will describe the protocol presented at Figure 4.1 according to Definition

4.1. Alice and Bob both evaluate the functions a1 : X → {0, 1} and b2, b3 : Y → {0, 1} at the
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A

B

0 1

B

1 0

0

0 1

1

0 1

Figure 4.1: A protocol tree to evaluate the Function 4.1 from Example 4.1. The protocol goes
as follow, one of the parties computes its less significant bit and send it to the other party.
Then, the other party evaluates if the numbers sum up to an odd number or not. Finally, the
second party may send f(x, y) to the other party and the total communication cost is 2 bits.
A more detailed explanation is given in Example 4.1.

first and second level respectively. The function a1 evaluates to 0 if xn−1 = 0 as well as b2 and b3

evaluate to 0 if yn−1 = 0 (the less significant bits). On the other hand, if the values of xn−1

and yn−1 are 1 then, a1, b2 and b3 evaluate to 1. Then, the paths in the tree are formed by

the evaluation of the function on the inputs x and y respectively. The values getting by the

functions labeled every edge of the tree. If x and y sum up to an even number then, their values

are represented by the most right and most left paths of the protocol tree with a leaf labeled

with 0. Otherwise, the two internal paths lead to leaves labeled with 1. The protocol tree is

observed as well in Figure 4.1.

Notice that, the problem is usually represented as a function that depends on the distributed

data and, the most important resource we want to measure is the amount of bits exchanged.

Given that, we will assume that the parties have unlimited computational power.

Now, we will introduce the multiparty communication model which is of great interest in

our work.

4.2 Multiparty Communication Models and

Number-On-Forehead Model

A multiparty communication model involves more than two parties. There are three natural

models according to the way of communication among the parties [24]. The first one is the

blackboard model, where any message sent by a player is written on a blackboard visible to all

the parties. Imagine a board game with k players siting around a table where all the game

movements should be done on the table where every player can see it. The second model is
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called the message-passing model, where a player pi sending a message specifies another player

pj that will receive this message. The third model is called the coordinator model, where

there is an additional (k + 1)−th player called the coordinator, who receives no input. Players

can only communicate with the coordinator, and not with each other directly. The message-

passing model and the coordinator model are both related to each other [24] and to another

computational model studied in distributed computing called the congested clique model [1].

From now on, we will focus on the blackboard model of communication. There are two models

that are reference for this subject. The Number-In-Hand (NIH) model and the Number-On-

Forehead (NOF) model. The first is a generalization of the two party case where every site

only has access to its own input. On the contrary in the NOF model every site has access to all

inputs but not to its own. Both models have theoretical applications on proving lower bounds

on other computational models and we will also summarize them in Section 4.4. Now we will

introduce the NOF model.

Let P1, P2, . . . , Ps be a set of sites where a site Pj has an input xj ∈ {0, 1}r, with r a positive

integer. In a multiparty communication protocol, with s ≥ 3, the sites want to jointly compute

a function f : {0, 1}r × · · · × {0, 1}r → Z for some finite codomain Z. In the Number-On-

Forehead model of communication, or NOF model, each site only has access to the other sites’

input but not to its own, that is, a site Pj has access to (x1, ..., xj−1, xj+1, ..., xs). In the board

game’s context the NOF model corresponds to k players holding each one a card on its forehead

and only visualizing the cards of the other parties, and where all game movements depend upon

the card that every player can see. In order to compute f the sites must communicate, and

they do so by writing bits on a blackboard which can be accessed by all sites in the model.

The protocol tree P in the NOF model is a binary tree as well. The only difference is that the

internal functions of every node are represented as fi : X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xs → Z

for i ∈ [s].

Now, let us analyze the following example.

Example 4.2. There are s ≥ 3 sites who wish to compute the function f : ({0, 1}n)s → {0, 1}
defined as follows

f(x1, x2, . . . , xs) =

{
1 xi = xj for all i, j ∈ [s]

0 otherwise
.

This function can be computed with at most 2 bits of communication. First, a given site Pi

verifies whether the values (x1, ..., xi−1, xi+1, ..., xs) are equal or not. If not, then Pi sends

0 to the blackboard and the protocol ends with 1 bit of communication. Otherwise, Pi

sends 1 to the blackboard and the protocol continues. Next, any other site Pj verifies if

(x1, ..., xj−1, xj+1, ..., xs) are equal. If they are not equal, then xi is the only input different

from the rest and Pj sends 0 to the blackboard. Otherwise, the entire set of inputs are equal

and Pj sends 1 to the blackboard and the protocol ends with 2 bits of communication. The

protocol tree for this example is observed in Figure 4.2.
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Pi1

0 Pi2

0 1

0 1

0 1

Figure 4.2: Given any two sites Pi1 and Pi2 with internal functions fi1 and fi2 respectively. The
functions fi1 and fi2 output 1 if their inputs are equal. Pi1 sends 0 if the values he holds are
not equal, this is observed at the most left leaf. Otherwise, he sends 1 and Pi2 takes its turn.
If Pi2 notice that its values are not equal then, he reports 0 which is observed at its most left
child. Otherwise he reports 1. The protocol concludes with communication cost at most 2 bits.

The example above shows that a protocol in the NOF model can take advantage of the

overlapping information among the sites. Now, we will introduce the main function we want

to compute.

4.3 ∆-Systems in NOF model

A sunflower or ∆-System is a family of sets A = {A1, ..., At} where Ai ⊆ [n] and (Ai ∩ Aj) =⋂t
k=1Ak = K for all i 6= j and some natural n. We call K the kernel of A and Ai a petal of the

sunflower. The family A is a weak ∆-System if |Ai ∩ Aj| = λ for all i 6= j for some constant λ

[25]. It is known that if A is a weak ∆-System and |A| ≥ `2 − ` + 2, where ` = maxti=1{|Ai|},
then A is a ∆-System [26].

In the NOF model every site Pi holds a subset Ai but it is not aware of it. Given that Pi

is not aware of Ai but the rest, we will denote {A1, . . . , Ai−1, Ai+1, . . . , As} as A−i. We will

say that Pi observes a ∆-System if and only if A−i is a ∆-System. Now, as Ai is a subset of

{1, . . . , n} we may use an n-binary string xi to represent the subset Ai with xij = 1 if j ∈ Ai
and xij = 0 otherwise. Then, we can define the following function f : ({0, 1}n)s → {0, 1} as

follows

f(x1, . . . , xs) =

{
1 if the sets Ai uniquely intersect at some subset K

0 otherwise
.

Now, we will develop a protocol to compute f in the NOF model. Notice that the existence of
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the sunflower may reduce the communication cost of any protocol due to the common knowledge

that every site will be aware of. We express that in the following fact

Fact 4.1. If s = |A| ≥ 3 and A is a ∆-System with kernel K, then any A−i is a ∆-System

with kernel K.

Now, we will introduce some technical lemmas and propositions that will help us to construct

a protocol for verifying whether or not a given family of subsets is a ∆-System. The following

lemma states a sufficient condition for the existence of a ∆-System in the input data in the

NOF model with the requirement, however, that we need at least four or more sites.

Lemma 4.1. Let s = |A| ≥ 4. If, for all i ∈ [s], we have that A−i is a ∆-System, then A is a

∆-System.

Proof. Suppose that A is not a ∆-System, then we want to prove that for some 1 ≤ i ≤ s, A−i
is not a ∆-System.

With no loss of generality, suppose that there exists exactly two sets Ai and Aj that certify

that A is not a ∆-System; that is, there exists Ai and Aj such that Ai ∩Aj = K ′, and, for any

a 6= i and b 6= j, it holds that Aa ∩ Aj = Ab ∩ Ai = K, with K 6= K ′. Now take any A−c, with

c different from i and j. Then A−c cannot be a ∆-System because Ai and Aj belong to A−c
and there is at least another set in A−c because |A| ≥ 4.

With Lemma 4.1 we can construct a protocol that certifies whether A is a ∆-System or not

with at most s bits of communication. Before doing that let us analyze the following fact

Fact 4.2. Let A be a family of sets in the NOF model and let i ∈ [s]. If A−i is not a ∆-System

then A is not a ∆-System.

Proof. Suppose that A−i is not a ∆-System. Then there must be two sets, Aj and Ak such that

Aj ∩ Ak = K ′ and for any a, b 6= i and a 6= j and b 6= k, it holds that Aa ∩ Aj = Ab ∩ Ak = K

with K 6= K ′. In order to get
⋂
l≤sAl we may intersect Ai with K. But, notice that no matter

what elements Ai has, the sets Aj and Ak will always avoid A being a ∆-System.

With Fact 4.2 the sites can know when A is not a ∆-System. Now, the following proposition

describes a protocol to detect a ∆-System in the NOF model.

Proposition 4.1. There exists a protocol that verifies if A, with |A| ≥ 4, is a ∆-System or

not with at most s bits of communication exchanged.

Proof. Every site Pi will send a bit indicating whether or not A−i is a ∆-System, 1 if it is and

0 otherwise. If s 1’s are sent to the blackboard then A is a ∆-System by Lemma 4.1. If a 0 is

sent then by Fact 4.2 A is not a ∆-System.

With Proposition 4.1, a multiparty communication protocol with a number of sites s ≥ 4

can check for the existence of a sunflower structure in its input data. Furthermore, if the input
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data is allocated among sites as a sunflower, then, by Fact 4.1, any site immediately knows the

kernel of the sunflower.

Now, we will improve the protocol described in Proposition 4.1 to detect a ∆-System with

a constant amount of communication. Let us analyze the following Lemma.

Lemma 4.2. Let s = |A| ≥ 4. If A is not a ∆-System then no more than 2 sites observe a

∆-System.

Proof. We will follow the proof of Lemma 4.1. Suppose that A is not a ∆-System. Then, there

must be at least two sites Ai and Aj such that they intersect at K ′ with K ′ 6= K =
⋂s
l=1Al.

We will analyze three cases: (i) Exactly two sites intersect at K ′, (ii) More than two, but not

s − 1, sites intersect at K ′ and (iii) Exactly s − 1 sites intersect at K ′. In the first case, if Ai

and Aj are the only subsets that intersect at K ′ then, A−i and A−j are the only subfamilies

that are a ∆-System. For the second case, suppose that there exists some Al that intersects

to Ai and Aj at K ′ as well, then, neither A−i nor A−j nor A−l is a ∆-System because every

family has two subsets that intersects at K ′ 6= K. For the third case, s− 1 subsets intersect at

K ′ and only one subfamily of A is a ∆-System.

Notice that the contrapositive of Lemma 4.2 says that we only need to know if any three

sites observe a ∆-System to certify that the family A is indeed a ∆-System.

With the Lemma 4.2 and Fact 4.2 we can define a protocol with a constant amount of

communication that verifies whether a family of sets is a ∆-System or not in the NOF model.

The former idea is presented in the following lemma

Lemma 4.3. Let A be a family of subsets Ai ⊆ [n] and {A−i} the family of subsets that

represent the NOF model. Then, there exists a protocol that verifies whether or not A is a

∆-System with at most 3 bits of communication.

Proof. The protocol goes as follow. Let i1, i2 and i3 be three arbitrary sites. Every site l ∈
{i1, i2, i3} must send a bit to the blackboard as follows

Pl sends

{
1 if A−l is a ∆-System

0 otherwise
.

Now, if Pi1 sends 0 then by Fact 4.2 A is not a ∆-System and the protocol ends with

f(x1, . . . , xs) = 0 and 1 bit of communication. Otherwise, the protocol continues and Pi2

must sends a bit indicating whether A−i2 is a ∆-System or not. As in the first case, if Pi2 sends

0 then, by Fact 4.2 the protocol ends with f(x1, . . . , xs) = 0 and 2 bits of communication.

On the other side, if Pi2 sends 1 the protocol continues. At the third step, Pi3 must check

whether A−i3 is a ∆-System or not. If Pi3 sends 0 then, by Fact 4.2 we have f(x1, . . . , xs) = 0.

Otherwise, by Lemma 4.2 we have f(x1, . . . , xs) = 1. In both cases the protocol ends with 3

bits of communication.
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Figure 4.3: The left child of Pi1 indicates that Pi1 does not observe a ∆-System. At its right
child he sends 1 and Pi2 takes its turn. If Pi2 does not observe a ∆-System then, he concludes
the communication sending a 0 to the blackboard. Otherwise, he sends 1 and Pi3 takes its turn.
Again, if Pi3 does not observe a ∆-System he sends 0 to the blackboard. Otherwise he sends 1
and the protocol concludes with at most 3 bits of communication.
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We conclude this section with a protocol tree that emerges from Lemma 4.3 which is observed

in Figure 4.3. In the next chapter we will use the protocol derived from Lemma 4.3 to construct

an efficient protocol in the NOF model for performing a well known machine learning technique

under the assumption that the input data has a sunflower structure. Finally, in the next

section we will introduce some applications of communication complexity to construct efficient

algorithms in different computational models. This will allow us to give a general perspective

of how communication complexity could be applied in future works.

4.4 Communication Complexity Applications

Communication complexity is a rich theoretical subject which is widely used to prove optimality

of algorithms in different computational models in terms of resources such as time and space.

Communication complexity is mostly applied to prove lower bounds on problems. A lower

bound usually characterizes the minimum amount of a resource we need to complete a task.

Proving lower bounds is considered harder than proving upper bounds on problems. This is

because one may need to prove that no algorithm performs better with less resources than the

possible lower bound. On the other hand, proving an upper bound only requires to construct an

algorithm for such problem. Now, we will begin describing some applications of communication

complexity.

The most obvious application is found in distributed computing. Distributed computing

also studies algorithms and protocols in distributed systems. The differences with communi-

cation complexity relies on the fact that the network topology is not known for all the parties

and the resource to measure complexity of the algorithms are the rounds of communication.

More formally, a distributed system is defined as a graph with n vertices where every vertex

represents a party. The parties may hold part of the input but the most studied algorithms

try to learn something about the structure of the network and there is not inputs besides the

names of the vertices. Communication complexity provides lower bounds on the number of

rounds needed to execute an algorithm over the network. Usually, those algorithms are called

distributed algorithms on the contrary of the so called protocols in communication complexity.

In order to prove lower bounds in a distributed setting the n vertices of the network are mostly

partitioned into few parts. Each part represents a standard party in the communication com-

plexity problem and, the messages between the parts are viewed as communication between the

parties. Examples of distributed algorithms are given as follows. Given a network, the diameter

is the largest distance between two vertices in the underlying graph. Intuitively, the diameter

corresponds to the maximum time (number of rounds) it takes to pass a message between two

points in the network. The proof of the lower bound computing the diameter is by reduction to

the randomized two-party communication complexity of disjointness [23, 27]. The girth, which

is a fundamental parameter of graphs, is the length of the shortest cycle in the graph. The

proof of its lower bound is via reduction to the disjointness problem in the NOF model with 3

parties [27].

30



Communication complexity is also used to prove lower bounds on one of the most natural

models for computing boolean functions, that is, boolean circuits. Circuits are directed acyclic

graphs whose vertices, often called gates, are associated with boolean operators or input vari-

ables. They have two major complexity measures, the size, that is the number of vertices on

the underlying graph and the depth, that is the length of the longest path between two vertices

in the graph. It is well known that any function computed by an algorithm on time T (n) steps

can also be computed by circuits of size approximately T (n) [28]. This implies that to prove

a lower bound on any algorithm it suffices to show that no small circuit can carry out the

computation. This can be done by the connection of circuit complexity and communication

complexity due to the so called Karchmer-Wigderson game [27] which is a two party protocol

where Alice and Bob are trying to compute a relation rather than a function [23].

Other applications that rely on reduction from two party communication complexity are

proof systems and data structures complexity [27]. A proof system consists of a set of rules that

allow one to logically derive theorems from axioms. Proof systems provide a formal framework

for proving theorems and for studying the complexity of proofs [27]. Data structures provide

efficient access to data, many fundamental algorithms rely on them. Lower bounds on the

performance of data structures are often obtained by appealing to communication complexity.

The complexity of a data structure is usually focused on the space of the data structure and

the time used to perform the operations.

Finally, the last application of communication complexity we will review is related to the

amount of memory required to solve a problem. Specifically, we will focus on algorithms with

bounded memory. The standard way of studying such algorithms are branching programs or

binary decision diagrams which are equivalent [29]. A branching program is a layered directed

graph [27] with length ` and width w. Branching programs are related to communication

complexity via circuit complexity. Programs with width 5 and length 2O(D) can simulate boolean

formulas of depth D [27].

A special kind of branching program is a streaming algorithm. The input of a streaming

algorithm is called data stream and is often read once in order: x1, . . . , xn. Streaming algorithms

are motivated by applications where massive amounts of data need to be processed quickly.

Communication complexity is used to show space lower bounds in streaming algorithms for

solving a variety of problems. One of the most remarkable problem is the estimation of frequency

moments which represent demographic information about the data [30]. Its relevance relies on

query optimization methods for relational and object-relational database systems as well as

many parallel database applications [30]. The k-th frequency moment, for k ≥ 0, of a sequence

of elements (a1, . . . , am) with ai ∈ [n] for n ∈ N is defined as

Fk =
k∑
i=1

mk
i , (4.2)

where mi = |{j : aj = i}| is the number of occurrences of i in the sequence. The streaming
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algorithm that approximates the value of Equation 4.2 is due to [30]. Further, a logarithmic

lower bound for an approximation of Equation 4.2 was shown in [30] by a reduction to the well

studied communication problem called disjointness in the two party model and NIH model.

The general approach for the reduction in the two party case is to split the stream data into

two parts. Alice simulates the execution of the algorithm on the first part of the stream. Then,

she sends to Bob her results allowing Bob to continue the simulation on the second part of the

stream [27]. Graph problems such as connectivity, spanners, sparsifiers and matchings were

also well studied in the streaming model as well [31, 32, 33].

Branching programs are more powerful than streaming algorithms because it may read the

variables multiple times in an arbitrary order. Communication complexity is used to prove

lower bounds on branching programs too. To prove a lower bound first it is necessary to

prove that any branching program can be efficiently simulated, at least in some sense, by a

communication protocol in the NOF model as we shall see. A key claim in [27] states that

any branching program of length γn log2 n, with γ ≥ 0, and width w is equivalent to a k party

communication protocol in the NOF model with O(γ log(w) log2(n)) bits of communication.
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CHAPTER 5

APPLICATIONS ON THE MULTICUT

GRAPH PROBLEM

In this chapter we will show an application of Theorem 3.1 to distributed data clustering

in the Number-On-Forehead model of communication for the case when the input data is

allocated as a sunflower among sites. We will start introducing the well known unsupervised

machine learning task called clustering in Section 5.1. In Section 5.2 we will introduce the

graph clustering technique and the spectral clustering algorithm used to solve it. In Section

5.3 we will developed a protocol for computing clustering in the NOF model.

5.1 Clustering

Data analysis provides a basis for the understanding of all kind of objects and phenomena.

One of the most important tasks of data analysis activities is to classify or group data into a

set of categories or clusters. Data objects that are classified in the same group should display

similar properties based on some criteria [34]. Classification systems play a fundamental role

in accomplishing such tasks. Basically, classification systems are either supervised or unsuper-

vised, depending on whether they assign new data objects to one in a finite number of discrete

supervised classes or unsupervised categories [34]. The supervised classes are known before the

classification procedure begins whereas the unsupervised categories are not. Supervised classifi-

cation often make use of a mathematical function y = f(x,w) to map the set of input variables

x ∈ Rd, where d is the dimensionality of the space of inputs, to a set of classes y ∈ {1, . . . , C},
where C is the total number of class types and w is a vector of adjustable parameters. The val-

ues of w are determined by an inductive algorithm executed on a finite data set of input-output

examples {(x, y)i}i≤N where N is the number of available data [34].

In unsupervised classification, also known as clustering or exploratory data analysis, no



Figure 5.1: On the left side of the image we observe the hard partitional clustering which
does not allow points to belong to more than one cluster. On the right side it is observed
the hierarchical clustering which construct a tree-like family of connections among the studied
objects.

labeled data are available. The goal of clustering is to separate a finite, unlabeled data into a

finite and discrete set of “natural”, hidden data structures [34]. This label assignment depends

upon the closeness among the objects in the dataset. The objects the clustering algorithms

deals with are usually represented as a set of points X = {x1, . . . , xn} where xi ∈ Rd for some

natural d and i ∈ [n]. The features of every object are the components xij ∈ R for j ∈ [d].

The categories that the algorithms are seeking for are subsets Cl ⊆ X for l ∈ [k] where k

is the number of categories. These categories should have a meaningful representation in the

application or context where the clustering task is being used on. A rough but widely agreed

framework is to classify clustering techniques as hierarchical and partitional clustering, based

on the properties of clusters generated [35]. The former may assign more than one category

to each object whereas the latter assigns to each object a single category. Mathematically, the

two subtasks are defined as follows

Definition 5.1 (Hard Partitional Clustering). Algorithms in this category attempt to find a

family of subsets of X, {C1, . . . , Ck} such that

• Ci 6= ∅ for all i ∈ [k],

•
⋃k
i=1Ci = X and

• Ci ∩ Cj = ∅ for all i 6= j ∈ [k].

Definition 5.2 (Hierarchical Clustering). Algorithms in this category attempt to find a tree-

like nested structure of X, H = {H1, . . . , Hq} with q ≤ n such that Ci ∈ Hm and Cj ∈ Hl with

m > l implies Ci ⊂ Cj or Ci ∩ Cj = ∅ for all i, j 6= i,m, l = 1, . . . , q.

For hard partitional clustering, each data object is exclusively associated with a single

cluster. It may also be possible that an object is allowed to belong to all K clusters with a

degree of membership, such approach is studied in fuzzy clustering [34]. Examples of the two
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types of clustering are observed in Figure 5.1. We will focus on hard partitional clustering in

this work. Now, cluster analysis is a machine learning task that goes from preprocessing data

to results interpretation. The typical clustering analysis usually consists on four general steps

in a machine learning application which are described as follows.

1. Feature selection or extraction, consists on choosing the more distinguishing features from

a set of candidates, while feature extraction utilizes some transformations to generate

useful and novel features from the original ones.

2. Clustering algorithm design or selection, this step is usually combined with the selection

of a proximity measure and the cluster criterion function. The proximity measure di-

rectly affects the formation of the clusters and the clustering criterion function makes the

partition of clusters an optimization problem.

3. Cluster validation, this step provides the users a degree of confidence on the clusters

obtained from the execution of the algorithms, usually there are three types of validation

criteria: external indices, internal indices and relative indices.

4. Results interpretation, this step attempts to provide users with meaningful insights from

the original data.

The results of this chapter are related to the steps 1 and 2 of the clustering analysis procedure

observed above. In particular we will study an algorithm that transforms the original features

into a more suitable one. In the following section we will study a specific clustering technique

called graph clustering. Such clustering technique involves several approaches and we will focus

specifically on spectral clustering. We will also define the proximity measure and clustering

criteria function in order to get the optimization model for our problem.

5.2 Graph Clustering and Spectral Clustering

As we saw, a general but widely agreed framework is to classify clustering techniques based

on the structure of the clustering generated. We could also classify them by the theories and

techniques used to construct the clustering algorithms. This framework includes square-error

based, graph theory, combinatorial search techniques, fuzzy set theory, neural networks and

kernel techniques [35]. This work is focused on graph theory techniques. However, the well

known square-error based algorithm called K-means is used as well and, for a general review of

it we recommend the survey [35]. Before getting into the clustering graph theoretical approach

we will introduce the notion of proximity. Most clustering algorithms rely on the proximity

measure between the objects, this measure could be splitted as well into two categories [34]

defined as follows.

Definition 5.3 (Distance or Dissimilarity Function). Let D : X × X → R be a function on

the set X that satisfies the following conditions
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• Symmetry, D(xi, xj) = D(xj, xi),

• Positivity, D(xi, xj) ≥ 0 for all xi, xj ∈ X.

If conditions

• Triangle Inequality, D(xi, xj) ≤ D(xi, xk) +D(xk, xj) and

• Reflexivity, D(xi, xj) = 0 if and only if xi = xj for all xi, xj, xk

hold then, the distance function D is also called a metric.

Definition 5.4 (Similarity Function). Let S : X × X → R be a function on X that satisfies

the following conditions

• Symmetry, S(xi, xj) = S(xj, xi),

• Positivity, S(xi, xj) ≥ 0 for all xi, xj ∈ X.

If the conditions

• S(xi, xj)S(xj, xk) ≤ [S(xi, xj) + S(xj, xk)]S(xi, xk) and

• S(xi, xj) = 1 if and only if xi = xj for all xi, xj, xk

are also satisfied then, the function is called a similarity function.

As we mentioned before, the goal of clustering is to divide a set of points into clusters such

that points in the same cluster are similar among them and points from different clusters are

not. In the graph theoretical context, each data point is interpreted as a vertex of a graph G

and each edge between a pair of vertices represents the proximity between this points. There

are a lot of definitions of graph clustering in the literature, for a reference we recommend [36].

Despite all the definitions, there is a desirable property that a graph clustering algorithm should

hold. Every cluster as a set of vertices should be connected, that is, for every pair of vertices

there must be at least one, preferably several paths between them. If v cannot be reached from

u then, they must not be in the same cluster. Furthermore, the paths should be internal to the

cluster, that is, if a subset of vertices C forms a cluster in G then, the induced subgraph by C

should be connected in itself. This property is related to a very well known concept in clustering

called minimum cut [10]. In the following we address two examples of graph clustering from

[36].

Example 5.1. Suppose that we have a bipartite graph G = (C ∪ P,E) where C represents

a set of costumers and P a set of products. Every edge (x, y) represents that the costumer x

bought product y. Two possible clustering targets could be to partition the set of costumers by

the type of products they purchase or to partition the set of products purchased by the same

people.
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Example 5.2. Suppose that we have a set of points X ⊂ Rd and a similarity function f :

X ×X → R according to Definition 5.4. We want to find a partition of X such that every pair

of points in the same subset has high similarity between them and every pair of points from

distinct subsets has low similarity between them. Next, every point in X could be represented

as a vertex of a graph G and given two points x and y in X, they are connected in G by an

edge with weight f(x, y).

These are just two examples of how clustering problems may arise in a graph theoretical

context. However, we will focus on dealing with problems that come up as Example 5.2 in

distributed systems. The technique we will use to solve such problem is called spectral clustering

and a general guide on it can be found in [9]. A solution to the problem in Example 5.2 concerns

finding a multicut in G which is equivalent to minimize the function

cut(V1, . . . , Vk) =
k∑
i=1

cut(Vi, Vi), (5.1)

with respect to all families of subsets V1, . . . , Vk ⊂ V . However, minimizing Function 5.1 could

lead to subsets with only one vertex which is not a reasonable output. Clustering algorithms

should partition the set of points into a reasonable family of larger subsets. This problem can be

overcome by making the cut larger when the size or volume1 of their sets are not proportional.

The functions RadioCut and Ncut [9] are used to accomplish be that

RadioCut(V1, . . . , Vk) =
k∑
i=1

cut(Vi, Vi)

|Vi|
, (5.2)

NCut(V1, . . . , Vk) =
k∑
i=1

cut(Vi, Vi)

d(Vi)
. (5.3)

The only difference between Equation 5.2 and 5.3 is that the former takes into account the

importance of the vertices in terms of their degree. Notice that both functions are different

clustering criteria functions and they will lead us to different optimization problems. Now, the

function RadioCut can be relaxed in the following way

min
H∈Rn×k

Tr(HTLH) subject to HTH = I, (5.4)

and the function Ncut in the following way

min
U∈Rn×k

Tr(UTLsymU) subject to UTU = I. (5.5)

Both equations have the standard form of the trace minimization problem [37] and the Rayleigh-

Ritz theorem tells us the solution. Problem 5.4 is solved by a matrix H with the first k

eigenvectors of L as columns and Problem 5.5 by a matrix U with the first k eigenvectors of

1In this context we define the volume as the generalization of the degree function of a vertex.
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Lsym as columns [9].

Whereas spectral clustering algorithms based on Problems 5.5 and 5.4 was extensively ap-

plied in different machine learning applications, to the best of our knowledge not much theoreti-

cal work on the algorithms was done in terms of approximation factors with respect the optimal

partition. This scenario changes when we look at Function 2.7 that tells us the proportion be-

tween the outer and inner connectivity into a subset of vertices. The notion of conductance can

be generalized to the well known k-way expansion constant which is defined as

ρ(k) = min
V1,...,Vk

max
1≤i≤k

φ(Vi). (5.6)

Despite widespread use of various graph partitioning schemes over the past decades, the quanti-

tative relationship between the k-way expansion constant and the eigenvalues of the Laplacian

matrix of a graph were unknown until the authors of [38] proved the following inequality

λk
2
≤ ρ(k) ≤ O(k2)

√
λk, (5.7)

known as the discrete cheeger inequality. Informally, Inequality 5.7 shows that G has a k-way

partition with low conductance if and only if λk is small. This is expressed as a suitable lower

bound on the gap Υ = λk+1

ρ(k)
. Well-clustered graphs which satisfy a gap assumption on Υ have

been studied in [39]. The gap assumption on Υ is closely related to the gap between λk and

λk+1 observed in [9]. Structural results that show close connections between the eigenvectors

and the indicator vectors of the clusters have been also given in [39]. In fact, if {Si}ki=1 is a

k-way partition of G achieving ρ(k), {gi}ki=1 are the normalized indicator vectors of {Si}ki=1,

{f i}ki=1 are the eigenvectors corresponding to the k smallest eigenvalues of Lsym and Υ = Ω(k2)

then the vectors gi and f i are close up to factor of O(k/Υ).

Finally, we will describe the spectral clustering algorithm. First, let us define the spectral

embedding F : V → Rk by

F (u) =
1

µ(u)
· (f1(u), . . . , fk(u))T , (5.8)

where µ(u) =
√
du is typically used as a normalization factor for u ∈ V [39]. The spectral

clustering consists on applying the k-means algorithm over the embedded points F (u) for every

u ∈ V . Now, let {Ai}ki=1 be a partition returned by the spectral clustering algorithm. It was

shown in [39] that every Ai has low conductance and there exists a large overlap between every

Ai and Si. This provides theoretical justification for the widespread use of spectral clustering

algorithms.

Finally, we should mention that other parameters as Ncut can be used as well to bound an

approximation factor of the clustering results as well as the k-way expansion constant does [39].

This is because the normalized cut is the sum of conductance of all sets in a given partition.

In the following section we will construct a protocol in the NOF model that will exploit the
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E1
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Figure 5.2: In the above picture it is observed a ∆-System of 4 sets representing a NOF model
of communication of 4 sites with an underlying graph as an input. Each site holds a subset
of edges Ei for i ∈ [4]. The family of edges E = {E1, E2, E3, E4} constitute a sunflower with
unique intersection K. The petal in green represent the site P4 which is aware only of E−4 and
∆4 is the symmetric difference between the sets in E−4.

existence of a ∆-System to execute the spectral clustering algorithm over the underlying input

graph.

5.3 Data Clustering with Sunflowers

Whereas clustering analysis and spectral clustering are widely studied and implemented in

centralized settings, not much work was done in the distributed setting. Spectral clustering

was first studied in distributed systems in [1], where a protocol for computing clustering in the

message passing model and the broadcast model was proposed. Both models can be classified as

a NIH model of communication. In particular, Chen et al [1]. showed that spectral clustering

can be executed in the message passing model and the broadcast model with Õ(ns) and Õ(n+s)

bits of communication respectively.

In this section, we will present a NOF communication protocol that execute spectral clus-

tering over the underlying input data graph. We will assume that the set of edges is distributed

among s sites and they have a unique intersection as we can see in Figure 5.2. We saw in

Chapter 4 that we need constant communication to verify whether or not a family of sets has

unique intersection. Furthermore, if a ∆-System exists every site immediately knows the kernel.

In our application the kernel represents a set of edges that every site is aware of. As every site

is aware of a part of the input they only need to know the missing part. This missing part is in

the forehead of every site. We will develop a protocol to compute spectral clustering in every

site by making every site aware of a spectral sparsifier of the entire input data graph.
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First, we start by defining an overlapping coefficient of the edges of G which can be seen

as a measure of how well spread out are the edges among sites. We will use the same notation

introduced in Chapter 3. The edges of G will be distributed among s sites in the NOF model.

The family E = {Ei}i≤s will represent the distributed edges of G and, the family E−i will

represent the edges that site i can “observe”. Furthermore, Fj will be equal to the union of all

sets in E−j and ∆j for j ∈ [s] will represent the symmetric difference among the elements in

E−j.

Definition 5.5. The overlapping coefficient on site Pj is defined as δ(j) =
|
⋂

i 6=j Ei|
|Fj | and the

greatest overlapping coefficient is defined as δ = maxj∈[s] δ(j).

The following proposition presents a simple protocol that makes every site aware of the

entire input graph.

Proposition 5.1. Let Pj be a site and let E be a weak ∆-System with each |Ek| = ` for

k = 1, 2, . . . , s, with a kernel of size λ. Suppose that s ≥ `2 − ` + 3. If site Pj sends all the

edges in ∆j, then every other site will know the entire graph G. The number of edges this

communication protocol sends is at most |Fj|(1− δ) + `.

Proof. We will prove this proposition by showing how each site constructs the graph G. First,

a given site Pj computes ∆j and writes it on the blackboard. Since s ≥ `2− `+ 3, by the result

of Deza [26], we know that E is a sunflower with kernel K and by Fact 4.1 this kernel is the

same in all sites. At this point all sites i 6= j know ∆j, therefore, they can construct G by their

own using the kernel K of E . In one more round, one of the sites i 6= j writes Ej so that site

Pj can also construct G.

In order to compute the communication cost of the protocol, first notice that

δ = λ/(|
⋃
i 6=j Ei|) = λ/(|∆j|+ λ),where we used the fact that the union of all edges in every

site equals the union of the symmetric difference and the kernel K. Then we have that

δ|∆j| = λ − δλ, which implies |∆j| = λ−δλ
δ

= |
⋃
i 6=j Ei||(1 − δ), where the last equality fol-

lows from the fact that |
⋃
i 6=j Ei| = λ/δ. Finally, after Ej was sent to the blackboard the

communication cost is |
⋃
i 6=j Ei||(1− δ) + `.

The protocol described in Proposition 5.1 can be used to make every site aware of the

complete input data graph. Once every site knows the entire input they can apply spectral

clustering on it. Now, we will show how spectral sparsification can be used to reduce the

amount of communicated bits.

Theorem 5.1. Let E be a weak ∆-system with each |Ek| = ` for k = 1, 2, . . . , s, and suppose

that s ≥ `2− `+ 3. There exists a communication protocol such that after two rounds of com-

munication every site knows an ε-spectral sparsifier of the entire graph G with communication

cost O
(
log
(
n
ε2

√
1− δ

))
.

Proof. From [26] we know that E is a sunflower with a kernel K of size λ and, by Fact 4.1, K

is equal in all sites. First, a site Pj computes a spectral sparsifier Hj = (V, ∆̂j) of the induced
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subgraph Gj = (V,∆j) using the spectral sparsification algorithm of [21]. This way we have

that |∆̂j| = O(n/ε2) where 0 < ε ≤ 1/120. Then site Pj writes ∆̂j on the blackboard. Any other

site i 6= j constructs an ε-spectral sparsifier H ′i = (V, Êj) of G′i = (V,Ej). By Theorem 3.1, the

graph H = (V, ∆̂j ∪ Êj) is a ε′-spectral sparsifier of G. In a second round, a given site Pi writes

Êj on the blackboard. Finally, site Pj receives Êj and by Theorem 3.1 it can also construct

an ε′-spectral sparsifier for G. Finally, the communication complexity is upper-bounded by

O
(
log
(
n
ε2

(1− δ)
)

+ log
(
n
ε2

))
= O

(
log
(
n
ε2

√
1− δ

))
.

Finally, from Theorem 5.1 we can observe that every site is aware of an ε′-spectral sparsifier

H of G and every site can compute spectral clustering.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis we studied three different areas of theoretical computer science with a variety

of applications in real world problems. Two of the three areas were focused on graphs related

problems and efficient algorithms to deal with them. The third area was more focused on

algorithms that perform with distributed data. In the following we present general conclusions

about the results we obtained.

General Conclusions

The first and most relevant result of this thesis was the distributed spectral sparsification ap-

proximation factor given in Chapter 3. This approximation factor guarantees that any spectral

sparsifier algorithm will work under any circumstances where data is distributed and over-

lapped. This is of great importance due to the wide usage of spectral approximation of graphs

in different areas of computer science. We also believe that the structure introduced to achieve

such results could have great relevance on other areas where there is a lack of representation

of overlapping data. This is because, to the best of our knowledge, no great amount of studies

about how repeated data affects algorithms in different computational models was done.

The second result of this thesis was a constant communication protocol for detecting ∆-

Systems in the NOF model. As we saw in Chapter 4, communication complexity has a variety of

applications in different computational models. The importance of this results relies on optimal

protocols that could lead to optimal algorithms in other computational models. For instance,

various algorithms try to find intersections among data when solving computational problems.

Furthermore, the sunflower problem is related to the well known disjointness problem which is

widely applied to show lower bounds on different problems. We believe that a detailed analysis

in the relation between the sunflower and disjointness problem could be further studied.



The last result was an application of the two previous results. We take advantage of the

constant communication protocol developed in Chapter 4 to construct a protocol for performing

spectral clustering in the NOF model. Due to the constant cost protocol, it was easy to assume

that the family of edges of the underlying input graph was a sunflower. Given the common

knowledge of the kernel and the possibility of applying spectral sparsification in every site, we

showed that spectral clustering could be executed efficiently in the NOF model. Although the

NOF model has more theoretical applications, clustering, also known as the partition problem,

could be used to show optimality in other models.

We conclude this thesis with possible future lines of works which emerged from our studies.

Future Work

Generalization of Results on Distributed Spectral Sparsification

The concept of “union of graph” expressed as sum of Laplacians introduced in Chapter 3

can be further studied. For instance, the family of subsets {E1, . . . , Et} could be interpreted

as a multigraph and the function h =
∑t

i=1 hi(e)/c1ck could be generalized to a summarized

function for deriving a graph from the multigraph. In that case, better summarizing functions

could be studied so that the approximation factor improves. There is also a possibility of

studying different approximation factors for every site ε1, . . . , εt given that every site computes

its spectral sparsifier on its own.

Detection of Overlapping Cardinality Partitions in Distributed Sys-

tems

The sunflower structure studied in Chapter 4 under the NOF model is a special case of an over-

lapping cardinality partition where there exists only two sets in the partition with cardinalities

c1 = 1 and c2 = k. Further studies on a generalization of the constant protocol for detecting

∆-System could be done in order to construct protocols for getting any kind of overlapping

cardinality partitions. There is also a possibility of shifting the computational model from

NOF to NIH or the congested clique model where common information about the parties can

also reduce complexity measures.

Analysis of Optimality Factors of Spectral Clustering with Spectral

Sparsification in Distributed Systems

In Chapter 5 we gave a brief introduction to the subject of graph partitioning based on spectral

embedding which has a variety of applications as clustering for machine learning. Despite all

the recent achievements on showing that such technique is theoretically optimal [39], to the

best of our knowledge, not much work has been done in terms of studying the optimality of
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spectral clustering applied using distributed data and spectral sparsification. Furthermore, as

we saw in Chapter 5 there is no connection between the optimization functions normalized cut

and k-way expansion constant. Such a connection between these two functions could further

improve the optimality approximation factors in terms of the eigenvalues of the Laplacian.

Spectral Clustering in the NOF Model Applications

Finally, an ultimate line of work is about how the clustering problem in the NOF model could

be applied in other computational models. We propose two sublines of work here. First, it

is well known that the partitioning problem is NP-hard [9] and, that it is used to show that

other problems are NP-hard via reduction [10]. Could the clustering problem be applied to

show lower bounds as well in the NOF model? Secondly, could we extend the notion of NOF

model to sites that are aware of less than k− 1 inputs and applied this in other computational

models? Other questions emerged in the context of Ordered Binary Decision Diagrams which

are ultimate related to the NOF model of computation as we saw in Chapter 4. Such models

are used in different computational models which means that our result could be used to show

the minimum requirement of resources for applying clustering in other computational models.

In order to do that we first need to show lower bounds on our protocol.
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APPENDIX A

Sets, Functions and Asymptotic Notation

Most chapters of this thesis deals with elements of discrete mathematics. This section reviews

some necessary notations to follow this book such as sets, functions and asymptotic notation.

A.1 Sets

A set is a collection of distinguishable objects, called its members or elements. If an object x

is a member of a set S, we write x ∈ S. If x is not a member of S, we write x 6∈ S. We can

describe a set by listing its elements. For example a set S containing the numbers 1, 2 and

3 could be expressed as follow {1, 2, 3}. Given a natural n ∈ N the set {1, 2, . . . , n} will be

represented as [n]. Usually, it is not allowed for a set to contain the same element more than

once, and its elements has not prior order. A set with repeated elements is called a multiset.

Two sets A and B are equal if they contain the same elements. We will denote the empty set

as ∅.
If all elements of a set A belongs to a set B then, we say that A is a subset of B and denote

as A ⊆ B. A set A is a proper subset of B, written as A ⊂ B, if A ⊆ B and A 6= B. For any

set A we have A ⊆ A. For two sets A and B we have, A = B if and only if A ⊆ B and B ⊆ A.

For any three sets A, B and C, if A ⊆ B and B ⊆ C then A ⊆ C. Finally, for any set A, we

have ∅ ⊆ A.

We sometimes define a set in terms of another set. Let A a set and B a subset of A. We

can define B by stating a property that distinguishes the elements of B. For example, we can

define the set over the naturals by {2x : x ∈ N}. Given two sets A and B, we can also define

new sets by applying set operations :
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• The intersection of sets A and B is the set

A ∩B = {x : x ∈ A and x ∈ B} (A.1)

• The union of sets A and B is the set

A ∪B = {x : x ∈ A or x ∈ B} (A.2)

• The difference between the set A and B is the set

A−B = {x : x ∈ A and x 6∈ B} (A.3)

• The symmetric difference of sets A and B is the set

A∆B = (A−B) ∪ (B − A) (A.4)

The generalization of intersection and union for n subsets is defined as

n⋂
i=1

Ai = {x|x ∈ Ai for all i = 1, . . . , n} and (A.5)

n⋃
i=1

Ai = {x|x ∈ Ai for some i = 1, . . . , n}. (A.6)

Also, we will use a generalization of the symmetric difference defined as the union of all

elements that belong to just one subset

∆n
i=1Ai =

n⋃
i=1

{x : x ∈ Ai and x 6∈ Aj for all j 6= i}. (A.7)

The elements of a set can also be sets, such sets are called family or collection of sets.

Given a family of sets A = {A1, A2, . . . , An}, we will usually use a shorthand notation defined

as {Ai}i≤n to denote such family. Often, all the sets under consideration are subsets of some

larger set U called universe. For example, if we are considering various sets made up only of

naturals, the set N is an appropriate universe. Given an universe U , we define the complement

of a set A as A = U − A. Two sets A and B are disjoint if they do not have elements in

common, that is A ∩ B = ∅. A collection {Ai}i≤n of nonempty sets forms a partition of a set

A if

• the sets are pairwise disjoint, that is, Ai ∩ Aj = ∅ for all i, j ∈ [n],

• their union is A, that is
⋃n
i=1Ai = A.

The number of elements in a set A is the cardinality (or size) of the set and its denoted as

|A|. The cardinality of the empty set is |∅| = 0. If the cardinality of a set is a natural number
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we say the set is finite; otherwise, it is infinite. A finite set of n elements is sometimes called

an n-set. A subset of k elements of a set is sometimes called a k-subset.

We denote the set of all subsets of a given set A, including the empty set and A itself, by

2A; we call 2A the power set of A. The power set of a set A has cardinality 2|A|.

The Cartesian product of two sets A and B, denoted A×B, is defined as

A×B = {(a, b) : a ∈ A and b ∈ B}, (A.8)

where (a, b) is called an ordered pair. When A and B are both finite sets, the cardinality of

their Cartesian product is |A × B| = |A|· |B|. The Cartesian product of n sets A1, . . . , An is

the set of n-tuples

A1 × · · · × An = {(a1, . . . , an) : ai ∈ Ai for i = 1, . . . , n}, (A.9)

whose cardinality is |A1×· · ·×An| = |A1| · · · |An|. We denote an n-fold Cartesian product over

a single set A by the set An whose cardinality is |An| = |A|n if A is finite.

A.2 Functions

A binary relation R on two sets A and B is a subset of the Cartesian product A × B. If

(a, b) ∈ R, we sometimes write aRb. When we say that R is a binary relation on a set A, we

mean that R is a subset of A×A. For example, the “less than” relation on the natural numbers

is the set {(a, b) : a, b ∈ N and a < b}. An equivalence relation is a binary relation R on a set

A holding three properties: (i) Reflexivity, aRa for all a ∈ A. (ii) Symmetry, aRb implies bRa

for all a, b ∈ A. (iii) Transitivity, aRb and bRc implies aRc for all a, b, c ∈ A. A well known

fact about relations is that an equivalence relation on a set A is equivalent to a partition of A

[10].

Given two sets A and B, a function f is a binary relation on A×B such that for all a ∈ A,

there exists precisely one b ∈ B such that (a, b) ∈ f . The set A is called domain of f , and

the set B is called codomain of f . We sometimes write f : A → B; and if (a, b) ∈ f , we write

b = f(a), since b is uniquely defined by the choice of a. Given a function f : A→ B, if b = f(a)

we say that a is the argument of f and that b is the value of f at a.

When the domain of a function f is a Cartesian product, we often omit the extra parentheses

surrounding the argument of f . For example, if we had a function f : A1 × · · · × An → B, we

would simple write b = f(a1, . . . , an). We also call each element ai an argument of f , though

technically the (single) argument of f is the n-tuple (a1, . . . , an).

If f : A→ B is a function and b = f(a), then we sometimes say that b is the image of a under

f . The image of a set A′ ⊆ A under f is defined as f(A′) = {b ∈ B : b = f(a) for some a ∈ A′}.
The range of f is the image of its domain, that is, f(A).

A function f is a surjection if its range is its codomain. A function f : A→ B is an injection
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if distinct arguments to f produce distinct values, that is, a 6= a′ implies f(a) 6= f(a′). Finally,

a function f : A→ B is bijection if it is injective and surjective.

A.3 Asymptotic Notation

The order of growth of resources used by an algorithm gives a simple characterization of the

algorithm’s efficiency and also allows to compare the relative performance of alternative algo-

rithms. When we look at input sizes large enough to make only the order of growth of resources

used relevant, we are studying the asymptotic efficiency of algorithms. The notations used to

describe the asymptotic behaviour of algorithms are defined in terms of functions whose domain

is the set of natural numbers.

Definition A.1. [40] Let f(n) and g(n) be two functions from positive integers to positive

reals that describe the amount of resources used by an algorithm given the input size n. We

say that f = O(g) (which means that “f grows no faster than g”) if there is a constant c > 0

such that f(n) ≤ c · g(n)

For a given function g(n), we pronounce O(g(n)) as “big-oh of g of n” or sometimes just

“oh of g of n”. The constant c allows to disregard what happens for small values of n. For

example, suppose we are choosing between two algorithms for a particular computational task.

One is characterized by f1(n) = n2, while the other by f2(n) = 2n + 20. Which is better?

This depends on the value of n. For n ≤ 5, f1 is smaller; thereafter, f2 is the clear winner.

The superiority of f2 is captured by the big-oh notation. Now, suppose that another algorithm

comes along and uses f3(n) = n + 1 resources. In this case, f3 is better than f2 but only by a

constant factor. We usually treat functions as equivalent if they differ only by multiplicative

factors.

Bih-Oh notation provides an asymptotic upper bound on a function. We can also define an

analogous notation for lower bounds as follow

f = Ω(g) means g = O(f). (A.10)

For a function g(n) we pronounce Ω(g) as “big-omega of g of n” or sometimes just “omega of

g of n”. Ω-notation provides an asymptotic lower bound.
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APPENDIX B

Linear Algebra

This chapter introduces some basic definitions and notations of Linear algebra.

B.1 Spectral Theory

Spectral theory analyzes matrices by decomposing them into their basic constituents. The main

object of study is the following equation

Ax = λx, (B.1)

where λ ∈ C, A ∈ Cn×n and x ∈ Cn. The scalar λ is the eigenvalue of A associated to the

eigenvector x. Notice that by Equation B.1 x is a vector whose direction is not affected by

the multiplication of A. It only gets rescaled or reoriented according to the value and sign of

λ. This and other relevant properties for this work will be reviewed in this section. First, lets

rewrite the Equation B.1 as

(A− λI)x = 0. (B.2)

Then, as x 6= 0 we deduce that x belongs to the nullspace of (A− λI), which implies that

det(A− λI) = 0 (B.3)

The last assertion implies that there exists an algebraic equation of degree n for λ [41]. The

left-hand side of B.3 is called the characteristic polynomial of the matrix A and is denoted as

pA.

According to the fundamental theorem of algebra, a polynomial of degree n with com-
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plex coefficients has n complex roots; some of the roots may be multiple1. The roots of the

characteristic polynomial are the eigenvalues of A.

Theorem B.1. Eigenvectors of a matrix A corresponding to distinct eigenvalues are linearly

independent.

From Theorem B.1 we deduce the following theorem

Theorem B.2. If the characteristic polynomial of an n×n matrix A has n distinct roots, then

A has n linearly independent eigenvectors.

In this case the eigenvectors forms a basis; therefore every vector y in Cn can be express as

a linear combination of the eigenvectors. In general, when the characteristic polynomial of A

has multiple roots, we cannot expect A to have n linearly independent eigenvectors. To face

this situation one turns out to generalized eigenvectors [41].

B.2 Spectral Theory of Symmetric Matrices

The scalar product of two vectors x and y is defined by

xTy =
n∑
j=1

xjyj. (B.4)

Definition B.1. Two vectors x and y are called orthogonal (perpendicular), denoted as x ⊥ y,

if

xTy = 0.

Furthermore, an n × n matrix M is called orthogonal if MTM = I. A symmetric matrix

A ∈ Rn×n obeys the following property

AT = A. (B.5)

A symmetric matrix A ∈ Rn×n has real eigenvalues and a set of eigenvectors that form an

orthonormal basis of Rn [41]. The set of eigenvalues of A are called the spectrum of A. Fur-

thermore, every symmetric matrix induce a quadratic form

Q(x) = xTAx (B.6)

=
n∑

i,j=1

aijxixj.

1An element a of a field F is a root of multiplicity k of a polynomial p(x) if there is a polynomial s(x) such
that s(a) 6= 0 and p(x) = (x − a)ks(x). If k = 1, then a is called a simple root. If k ≥ 2, then a is called a
multiple root
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Quadratic forms are used to show an important result about symmetric matrices which we

state as follow

Theorem B.3. Given any symmetric matrix A ∈ Rn×n, there is an orthogonal matrix M such

that

MTAM = D, (B.7)

where D is a diagonal matrix whose entries are the eigenvalues of A, M satisfies MTM = I

and the columns of M are the eigenvectors of A.

We will now give a variational characterization of eigenvalues that are very useful to locate

them. Let A ∈ Rn×n be a symmetric matrix with a set eigenvectors which forms a orthonormal

basis of Rn. The Rayleigh quotient of A is defined by

R(x) =
xTAx

xTx
, (B.8)

for all x ∈ Rn. Then, the following theorem holds

Theorem B.4. Let A ∈ Rn×n be a symmetric matrix. Denote the eigenvalues of A, arranged

in increasing order by λ1, λ2, . . . , λn. Then

λj = min
dimS=j

max
x∈S;x 6=0

R(x), (B.9)

where S linear subspace of Rn.

Theorem B.4 is due to E. Fischer and it is also called minimax principle. The matrix A is

called positive if xTAx > 0 and positive semi-definite if xTAx ≥ 0 for all x ∈ Rn.
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