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Abstract. In this work a new approach based on multi-objective evolutionary 

algorithms (MOEA) is proposed for the routing and spectrum assignment (RSA) 

Problem in elastic optical networks (EON); where, given a set of unicast requests, 

the proposed MOEA minimizes (a) the total cost, and (b) the spectrum used, 

simultaneously under optical layer constraints. The test experimental indicates 

that the proposal is suitable for the RSA when it is compared to another MOEA 

of the-state-of-the-art considering different quality measures. Basically, the 

proposed MOEA sequences the requests to be served under random-and-cost 

based strategy while that considered the-state-of-the-art is just random.  

Keywords: Routing and Spectrum Assignment, Elastic Optical Networks, Multi-

objective Optimization, Evolutionary Algorithms. 

1   Introduction 

For the resolution of the numerous problems that have multiple objectives, a good meta-

heuristic for this type of problems are the evolutionary algorithms (EA - Evolutionary 

Algorithm). Traditional EAs are customized to adapt to multi-objective problems, 

through the use of specialized fitness functions and the introduction of methods to 

promote the diversity of the solution. There are general approaches to the optimization 

of multiple objectives. One is to combine the individual objective functions in a single 

compound function or move all, except one of them for the set of constraints. The next 

approach is to determine a whole set of optimal Pareto solutions or a representative 

subset. An optimal set of Pareto is a set of solutions that are not dominated with respect 

to the others [8]. This last approach is more convenient for making decision over a set 

of trade-off best solution instead of two first approaches. In this work, the main 

contribution is an approach based on a Multi-objective Evolutionary Algorithms 

(MOEA) for the RSA problem, in which it is determined that the proposed approach 

improves in terms of quality from the Pareto front to the work presented in [8]. The 

MOEA optimizes: (a) the spectrum used, and (b) the total cost, subject to the constraints 

of continuity, contiguity, and spectrum conflict imposed by the EON layer.  
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2   Elastic Optical Networks 

We can define the EON as an OTN (Optical Transport Network) where all the 

equipment and the control plane can handle optical channels of variable bandwidth and 

all the switching elements can support different granularities in the spectrum of the 

channels that transmit information. EONs introduce fixed granularity into the 

bandwidth of the channels transported through the fiber. The ITU-T G.694.1, 

establishes a series of fixed spectral grids, which divide the optical spectrum between 

1530-1565 nm, from the C band, ranging from 12.5 GHz. (Giga Herz) to 100 GHz, 

where most used are those of 50 GHz and 100 GHz [5]. The important change in the 

EON architecture is the replacement of the fixed grid (Fixed-grid) by a new flexible 

grid (Flexi-grid). The ITU-T is focused on the revision of a G.694.1 standard [5], for a 

division of the flexible optical spectrum called flexi-grid, for which the optical 

spectrum of the C band (1530-1565 nm) was defined, which is divided into FS 

(Frequency Slots) of fixed sizes of 6.25, 12.5, 25 and 50 GHz [6] and in addition a 

central frequency (CF, Central Frequency) is assigned to each elastic optical path (EOP 

- Elastic Optical Path) that must coincide with the beginning or the end of these slots 

existing differences in a fixed grid scheme and a flexible grid scheme In the case of the 

fixed grid scheme, we can observe the inefficient use of spectrum due to the fixed 

division that has the 50 GHz spectrum between each CF's, and if we observe the scheme 

of flexible grids can be noticed the free spectrum obtained thanks to the fine granularity 

that it offers and that allows to assign in a flexible way only the required bandwidth. 

The problem of RSA in Elastic Optical Networks is similar to the problem of Routing 

and Wavelength Assignment (RWA) in networks based on WDM. The difference 

between them (RSA and RWA) is the ability to flexibly assign the frequency spectrum. 

The RSA is classified into two types: Online/Dynamic and Offline/ Static traffic. In the 

case of the offline RSA problem, the list of all transmission requests is already entered 

as input, in order to proceed with the analysis and resolution with this input data. For 

the RSA online problem, the analysis and resolution is done as the requests arrive 

dynamically. In the first problem are can be applied optimization strategies; while in 

second one are usually developed heuristics. 

3   Related Work 

As the RSA is considered a NP-Complete problem [7], it has been treated with several 

techniques, exact and heuristic, both for dynamic traffic and for static traffic. Among 

the exact techniques are the ILP, while among the heuristics are optimizations with 

Colony of Bees (BCO, Bee Colony Optimization) [10], Genetic Algorithms (GA, 

Genetic Algorithm) [11] [12] [13], among others [14] [15]. 

Different ILP models for small instances and different heuristics for more real 

scenarios have been used successfully to solve the RSA problem. As an example we 

can mention in [16] an ILP model was proposed to minimize the use of the spectrum to 

serve a traffic matrix in an EON. The authors propose a method that divides the problem 

into two sub-problems, the first is the routing and the second is the spectrum assignment 

and solves them sequentially, using a route-based approach. They also propose a 
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heuristic algorithm that serves the connections one by one sequentially. Then in [2], the 

authors extend their previous results including consideration of modulation level. With 

this new consideration, a new problem was defined routing, modulation level and 

spectrum assignment (RMLSA), being outside the scope of this work. Other problems 

such as Fragmentation Aware and Dynamic Traffic are also not considered. Another 

ILP formulation and the proof that the RSA problem is a NP-complete problem can be 

found in [7].  The work proposed in [8], presents the multi-objective RSA problem and 

its associated algorithm model. Each request has many possible routes, and in each 

routing it has several spectrum assignment options. The problem is to minimize the 

spectrum width to support all requests and minimize the overall cost of the spectrum in 

the link. The objective function for the work proposed in [8] is as following: there are 

two objectives associated with each solution. The first objective f1, is the width of the 

spectrum that indicates the maximum indexed slice used in the network. The second 

objective f2 is the total cost of the spectrum link. Given a set of requests, the route and 

channel are calculated for each one. After attending each demand sequentially and 

without any sort of ordering, the spectrum availabilities vector of each link is updated. 

In this work it is developed a pure multi-objective approach to calculate a Pareto 

front. This approach is an extension of the work presented in [4] which has an approach 

based on weighted sum. In our work, as in [8] it has many possible routes, and in each 

routing it has several spectrum assignment options. The problem is to minimize the 

spectrum used and the overall cost of the link spectrum at the same time. The same 

objective function is taken from [8] and the requests are handled as follows: 

applications are ordered from highest to lowest, defined by the highest possible cost of 

said request, the first 30% of said list is attended in the first place, while the remaining 

70% is treated in a random manner, unlike [8] it is a random ordering. More details are 

given in section 7. 

4  Problem Statement  

Given the physical topology, the matrix of demands and a list of pre-calculated routes 

(as K-shortest path), we need to satisfy all the demands of source-destination 

connection; i.e. to determine the route and spectrum assignment for each traffic demand 

with optimum spectrum utilization and he total cost. The spectrum utilization is given 

by the maximum index FS used on all fibers in the network while the total cost is 

depending on the distance traveled and the FS requested. For the proposed model, the 

following assumptions are established: The spectral resource of each optical fiber is 

divided into FS; the capacity of the fiber in terms of FS is limited in all links; the 

connection demands are bidirectional, and a complete end-to-end optical path must be 

found for each demand; A set of K specific route is given for a connection in advance; 

the request is represented by three tuples (s, d, αsd), including the source node s, the 

destination node d, and the bandwidth / data rate demanded α considered in the quantity 

of FS requested. 
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4.1 Multi-Objective Formulation Problem 

Given: 

G  : Network topology, which represents an EON 

E  : Set of links, in G 

V  : Set of vertices, in G 

GB  : Amount of FS for Band Guard 

Ftotal  : Amount of FS available in each fiber 

P  : Set of K routes for each demand 

K  : Number of available routes 

SD  : Quantity of demands 

 

The notations and the formulation are presented below: 

Constants:  

dist_max   : Maximum distance traveled considering the  

                                        longest routes. 

espectrum_max : Maximum FS index available. 

cost_max   : Total cost of applications considering their maximum  

                                        distances. 

 !"#$
%&   : Distance of the route p 

αsd   : Quantity of FS requested by the application   

                                         where s, d, ' V 

 

Indexes: 

sd   : Demand index, sd ' {1, 2, …, SD}  

p   : Route index, p ' {1, 2, …, SD} 

mn   : Directional link index, m ≠ n 

 

Variables: 

($
%&   : 1 if the path p is used to meet the request sd,  

                                        Otherwise 

 

Λsd   : First FS assigned to the request sd, sd '  

                                       {0,…, Ftotal - 1} 

 

Δsd, s’d’  : Indicator that is equal to 0 if Λs’d’ < Λsd, and                            

                                        1 in otherwise. 

 

Objective function: 

Minimize f(x) = [f1,  f2] 

 

Subject to: 

 
· The Spectrum use: 
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· The total cost:
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The objective function (1) represents the maximum spectrum used, and (3) 

represents the total cost. On the other hand, we have that, for all request sd, s'd' and the 

paths p $ Psd and p' $ Ps'd' with p and p' sharing at least one common link mn the 

constraints (3), (4), (5), (6), (7) and (8) represents the total cost. Restrictions (3), (4) and 

(5) ensure that the portions of spectrum that are assigned to connections that use paths 

that share a common link do not overlap and are adjacent. Also, for all requests sd, s’d’  

that have p $ Ps’d’, with p and p' sharing at least one common link (H mn : nm $ p I mn 

$ p’), the constraints (6), (7) and (8) ensure that either δsd,s’d’ = 1 means that the initial 

frequency Λsd is smaller than the initial frequency Λs’d’, that is, Λsd < Λs’d’, o δs’d’,sd = 1, 

in which case Λsd > Λsd. Note that Λsd and Λs’d’ are always bounded superiorly by Ftotal, 

and that therefore their difference will always be less than Ftotal. 

5  NSGA II Implementation 

Our algorithm, which is an extension of the algorithm MOEA presented in [4], begins 

with the creation of the initial population. This MOEA is called Non-dominated Sorting 

Genetic Algorithm II, NSGAII. The best solutions are found over several generations. 

Operators such as crossing and mutation explore other possible solutions. In this 

implementation, the objective is to find the route and the set of FS for each request, 

such that the total distance traveled, the maximum FS used and the total cost are 

minimized; all this complying with the respective RSA restrictions. The 

implementation of the NSGAII is described below in Algorithm 1. 

 

Algorithm 1: NSGAII 

INPUT: Route table P; Total amount of FS; List of demands; 

Size of the population; Probability of mutation; Stop 
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Criterion; FS Assignment Algorithm; Total Distance, Maximum 

FS, Maximum Cost 

  OUTPUT: ParetoFront 

  1: Initialize Population (P) 

  2: While the stop criterion is not met 

  3:      Q = generate individual (P) by selection, crossing 

              and mutation 

  4:      Q = Q   P 

  5:      R = Construct the Pareto front from Q based 

              in dominance 

  6:      Build Pareto fronts (R) 

  7:      Calculate Distance of Crowding (R) 

  8:      P = [0] 

  9:      while P < PopulationSize 

 10:             Include the solution R in population P 

 11:      End while 

 12: End while 

 13: return ParetoFront (P) 

 

In the NSGA II presented in this work, the chromosome represents a set of requests 

attended. Basically, the chromosome is a compound vector in which each gene 

represents an attended request. Each element of said vector contains: the index of the 

assigned route (taken from the table of pre calculated routes), and the index of the 

assigned FS of the request. The steps of the algorithm procedure can be described 

below: 

Initial Population. The first step is to initialize the population. The NSGA II begins 

with an initial population of chromosomes, defined as explained below. The Algorithm 

deals with the requests in a determined order, which was taken from a paper presented 

in [1]. At work, the order is defined as follows: orders are ordered from highest to 

lowest, defined by the highest possible cost of said request, the first 30% of said list is 

attended in the first place, while the remaining 70% is attended at random. This order 

is represented by the positions of the genes in the chromosome and is maintained 

throughout the execution of the algorithm. Then, randomly assign the routes and FS to 

the demands, taking into account the previously defined order. Each chromosome 

encodes a valid solution. 

Selection of chromosomes for the next generation. The NSGA II algorithm shows 

us that the cycle begins with the selection of individuals, in step 3. The stochastic 

universal sampling method is used to select two parents to produce new individuals for 

the next generation [9]. 

Crossover operator. In this work we used the two-point cross operator [9] through 

which two cut points are randomly generated in each player, using the same points 

generated, assigning intercalary each segment generated from the parents to each child. 

In algorithm 1 is applied in step 6. In Figure 1, we can observe the crossing procedure 

in which the cut points generated randomly were 1 and 2, dividing the player into 3 

segments. The first segment of player 1 is assigned to the first segment of descendant 

1, so the first segment of player 2 is assigned to the first segment of descendant 2. Then, 

the second segment of player 1 is assigned to the second descendant, while the second 

segment Player segment 2 is assigned as the second segment of the first descendant. 
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Then the last segments are interspersed, resulting in both descendants shown in figure 

4. This process is repeated until crossing the entire current population. 

 

Figure 1: Crossing of 2 reproducers 

Mutation. This procedure is applied after crossing, in each individual 

independently, in step 7 of algorithm 1. For the individual selected, according to the 

mutation probability obtained, a position of the vector is chosen randomly to change 

the route used in said position. Selecting a route from those available for said position, 

you have a higher probability of generating a feasible solution.  

Pareto dominance. In step 4 the union of the two populations Q = Q   P is 

performed, in step 5 and 6 the population is classified into categories (ranking) on the 

basis of non-dominance. Each solution is assigned a fitness value equal to its non-

domain range (rank 0 is the best). Then the newly formed population is classified into 

categories (rank) according to their domain relation, and then, as explained in step 7, 

calculate the Crowding Distance of each individual, and then select the best ones in the 

next cycle that begins in the step 8, select the individuals with the best rank and 

crowding distance to fill the size of the population, as seen in steps 9, 10 and 11 of 

algorithm 1. Therefore, the algorithm starts all over again, from the election of breeders, 

until it reaches the stop condition. 

Spectrum assignment. The algorithm used in this NASGA II is Random Fit, which 

randomly assigns the free FS found that complies with the constraints of the problem. 

Stop criterion. A maximum execution time is used as stopping criterion. 

6  Experimental Tests and results. 

In this section we present the difference with the work proposed in [8] and the work 

presented by us, in addition the results of the experimental tests are presented and 

analyzed. The work proposed in [8], presents the multi-objective RSA problem and its 

associated algorithm model. Each request has many possible routes, and in each routing 

it has several spectrum assignment options. The problem is to minimize the spectrum 

width to support all requests and minimize the overall cost of the spectrum in the link. 

The objective function for the work proposed in [8] is as follows: there are two 

objectives associated with each chromosome. The first objective f1, is the width of the 

spectrum that indicates the maximum indexed slice used in the network. The second 

objective f2 is the total cost of the spectrum link. Given a chromosome, the route and 
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channel are calculated for each demand. After attending each demand sequentially and 

without any sort of ordering, the spectrum availabilities vector of each link is updated. 

In this developed work, which is an extension of the work presented in [4] which has 

an approach based on weighted sum, a pure multi-objective approach with Pareto fronts 

is presented. In our work, as in [8] it has many possible routes, and in each routing it 

has several spectrum assignment options. The problem is to minimize the spectrum 

width to support all requests and minimize the overall cost of the link spectrum. The 

same objective function is taken from [8] and the requests are handled as follows: 

applications are ordered from highest to lowest, defined by the highest possible cost of 

said request, the first 30% of said list is attended in the first place, while the remaining 

70% is treated in a random manner, unlike [8] it is a random ordering. The tests carried 

out considering different types of traffic load, on the NSF topology of 14 nodes, 

different K values (paths) and different amounts of demands, try to replicate various 

possible scenarios of the problem to solve. The experimental tests carried out show that 

our proposal for the ordering of the requests presents promising results. 

6.1  Testing environment 

The experiments were performed on a computer with an Intel Core i3 processor (3.40 

GHz) and 8 GB of RAM. The implementation and execution of the MOEAs were 

carried out with JAVA 8. The traffic loads used were of the all-to-all type, that is, each 

node of the network makes a transfer request to all others in the network. In addition, 

the type of traffic load was random. The loads are divided into 3 categories, 50, 100 

and 150 (low, medium, high), that is to say that for the category of 50 FS, for each 

demand a random value between 1 and 50 was generated as a requested quantity of FS; 

For category 100, for each demand a random value between 1 and 100 was generated 

as the requested quantity of FS and for category 150, a random value of 1 and 150 was 

generated as requested quantity of FS. Another variant that was taken was the number 

of shortest routes pre-calculated, that is, the value K. They were made with the 

following values of k = 2, 3, 4 and 5 for the network. For the executions of the NSGA 

II, the values shown in Table 1 were used as evolutionary parameters. The metric used 

for the comparison of the algorithms are hyper-volume and coverage [4]. 

Table 1.  Parameters used for the execution of the NSGA II  

Parameters Value 
Size of the population 50 

Probability of mutation 0.1 

Stop Criterion (in minutes) 5 

Number of independent runs 15 

Size of the population 50 
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6.2  Hyper-volume Metric and Coverage Metric 

For the hyper-volume and coverage metric you can see the figure number 2, for load 

type 50 (low), with the number of paths k = 2, our proposed algorithm of order 30/70 

obtains better results before the algorithm without ordering. With k = 3 paths, again our 

algorithm with order 30/70, exceeds the algorithm without ordering. With k = 4, the 

algorithm without ordering obtained better results with our algorithm 30/70. For k = 5, 

our algorithm 30/70 obtained good results. For the hyper-volume and coverage metric 

for load type 100 (average) for k = 2, the algorithm without ordering obtained better 

results, with k = 3, our algorithm with order 30/70, has better results before the 

algorithm without ordering, for k = 4, our 30/70 sorting algorithm improves the results 

before the algorithm without ordering. For k = 5, we obtained very good results with 

respect to the algorithm without ordination. For the hyper-volume and coverage metric 

for load type 150 (high) with k = 2, our sort algorithm 30/70 obtained better results 

compared to the algorithm without ordering. In k = 3, the algorithm without ordination 

obtained good results. Our 30/70 sorting algorithm got better results when k = 4 

compared to the unordered algorithm. The unordered algorithm had better results when 

k = 5, compared to our 30/70 sorting algorithm. 

 

 

Figure 2: Comparison of algorithms, hyper-volume metric and Coverage metric. 

8  CONCLUSIONS AND FUTURE WORK 

According to the exposed results, we can conclude that our algorithm with ordering 

obtains better Pareto Fronts, with respect to the algorithm without ordination. Likewise 

we conclude that if we give a treatment to the table of requests, ordering them from 

highest to lowest, defined by the highest possible cost of said request, and we divide 

the table of requests into two groups, one group of seniors and another group of random 

attendance we get better Pareto Fronts. As future work to develop we can mention 

several opportunities: study the performance of other spectrum assignment algorithms, 

consider other strategies of sorting the request to be served, extend this approaches 

considering other issues as modulation level assignment or coded assignment. 
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