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Polyominoes

Definition

A polyomino is a planar figure made from one or more equal-sized
squares, each joined together along an edge [S. Golomb (1953)].

o Every cell (square) is fixed in a square lattice.

@ Two cell are adjacent if the Manhattan distance is 1.
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@ and a polyomino R called region.

Goal: Place tiles from X to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

6/31



L-Tromino Tiling Problem

Definition

Given:

@ A set of L-trominoes X called a tile set, X = { Ill Iﬂ I{|
[y
@ and a polyomino R called region.

Goal: Place tiles from X to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

I_I_

Hin

(a) A region R (b) A tiling of region R
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L-Tromino Tiling Problem (cont’d)

e C. Moore and J. M. Robson (2000) proved that deciding the
existence of a L-tromino tiling in a given region is
NP-complete with a reduction from Monotone 1-in-3 SAT.
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L-Tromino Tiling Problem (cont’d)

e C. Moore and J. M. Robson (2000) proved that deciding the
existence of a L-tromino tiling in a given region is
NP-complete with a reduction from Monotone 1-in-3 SAT.

e T. Horiyama, T. Ito, K. Nakatsuka, A. Suzuki and R. Uehara
(2012) constructed a one-one reduction from 1-in-3 SAT.
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contour |x| + |y| =n+1.
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Aztec Rectangle

The Aztec Diamond AD(n) is the union of all cell inside the
contour |x| + |y| =n+1.

(b) AD(2) (c) AD(3) (d) AD(4)

The Aztec Rectangle AR, j is a generalization of an Aztec Diamond.

Qi?@fi:]

a) AR1> b) AR13 c) ARz 3 d) AR3.4

(a) AD(1)
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Tiling Aztec Rectangle (cont'd)

Each piece of L-tromino covers 3 cells.

| ]
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Tiling Aztec Rectangle (cont'd)
Each piece of L-tromino covers 3 cells.
In any L-tromino tiling, the number of covered cells is always
multiple of 3.

The number of cells in an AR, } is given by

|AR,p| = a(b+1) + b(a+1).

10/31



Tiling Aztec Rectangle (cont'd)
Each piece of L-tromino covers 3 cells.
In any L-tromino tiling, the number of covered cells is always
multiple of 3.

The number of cells in an AR, } is given by

|AR,p| = a(b+1) + b(a+1).

An Aztec rectangle AR, has a tiling with L-trominoes
< |AR,p| =0 (mod 3)
<> (a,b) is equal to (3k,3k’) or (3k — 1,3k’ — 1) for some k, k' € N.
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Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.
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Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.
o If (a, b) equals (3,3k’), use pattern 3.
e If (a, b) equals (2,3k" — 1), use pattern 4.

AR3 b3

(a) Pattern 3 (b) Pattern 4
Base case: AR35 and AR3 3.

ARM%
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Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.
o If (a, b) equals (3,3k’), use pattern 3.
e If (a, b) equals (2,3k" — 1), use pattern 4.
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A defect cell is a cell in which no tromino can be placed on top.
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Tiling Aztec Rectangle with a single defect

A defect cell is a cell in which no tromino can be placed on top.

defect cell

An Aztec rectangle AR, with one defect has a tiling with L-trominoes
< |AR,p| =1 (mod 3)
<= aorb is equal to 3k — 2 for some k € N.
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Tiling Aztec Rectangle with a single defect (cont'd)
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Tiling Aztec Rectangle with a single defect (cont'd)

@ Place a fringe where it covers the defect.
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Tiling Aztec Rectangle with a single defect (cont'd)

@ Place a fringe where it covers the defect.

@ Place stairs to cover other cells.

T
fringe _—l_‘
1

stairs

stairs
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Given a region R’, we can embed R’ inside a sufficiently large
Aztec Rectangle AR p.
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Tiling Aztec Rectangle with an unbounded number of
defects

Given a region R’, we can embed R’ inside a sufficiently large
Aztec Rectangle AR p.

The problem of tiling Aztec Rectangle AR, with an unbounded
number of defects is NP-complete.
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180°L-Tromino Tiling

Definition
The 180-tromino tiling problem only allows 180° rotations of
L-trominoes, i.e., the tile set can be

Y = { right-oriented 180-trominoes } = { |£| l}l }
or

Y = { left-oriented 180-trominoes } = { D:' III }

With no loss of generality, we will only consider right-oriented
180-trominoes.
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180°L-Tromino Tiling (cont'd)

There is a one-one correspondence between 180-tromino tiling and
the triangular trihex tiling [Conway and Lagarias, (1990)].
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There is a one-one correspondence between 180-tromino tiling and
the triangular trihex tiling [Conway and Lagarias, (1990)].
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Two triangular trihex.
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180°L-Tromino Tiling (cont'd)

There is a one-one correspondence between 180-tromino tiling and
the triangular trihex tiling [Conway and Lagarias, (1990)].

P S

Two triangular trihex.

— —

&~ o =
PP~ T

Transformation from triangular trihex to 180-tromino

Q-
P
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180°L-Tromino Tiling (cont'd)

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

[ =~
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180°L-Tromino Tiling (cont'd)

A cell tetrasection is a division of a cell into 4 equal size cells.
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A tetrasected polyomino P® is obtained by tetrasecting each cell
of a poylomino P.

v
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180°L-Tromino Tiling (cont'd)

A cell tetrasection is a division of a cell into 4 equal size cells.

[ =~

Definition

| \

A tetrasected polyomino P® is obtained by tetrasecting each cell
of a poylomino P.

v

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R%.
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180°L-Tromino Tiling (cont'd)

A cell tetrasection is a division of a cell into 4 equal size cells.

[ =~

Definition

| \

A tetrasected polyomino P® is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R®.

However, it is not know if the converse statement is true or false.
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180°L-Tromino Tiling (cont'd)

Horiyama et al. also proved that the |-tromino tiling problem is
NP-Complete.
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180°L-Tromino Tiling (cont'd)

Horiyama et al. also proved that the |-tromino tiling problem is

NP-Complete.

Theorem [Horiyama, Ito, Nakatsuka, Suzuki and Uehara (2012)]

1-in-3 SAT <p I|-tromino Tiling

— o i

- ]
]
[E—
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G®.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

y=i |

(a) Original gadget G.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

L L
Tl J gL

] ]

T 5

(a) Original gadget G. (b) Tetrasected gadget G®.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

' I: s teeer:
i ||
B 1

(a) Original gadget G. (b) Tetrasected gadget G®.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

B [
1]
B b
] - F earr s e
i L i [ v o = e rea v e S A
] | | N B [/
— 1 1] -
— I H ol =
— L -
e B Sirzari I i =i |
L B cl T
—11 [ = ITH|  [F
i b 5 3
L = —
1 [ M 5
1 | EATI I
= oTH =]
] T T
L
]
(a) Original gadget G. (b) Tetrasected gadget G®.
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180°L-Tromino Tiling (cont'd)

In each gadget G, |-tromino tiling for G can be simulated with
180-tromino tiling for G&.

=REST SRS |

iy

)

4
Iy
Iy

EE

h|
H
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[y
T4y

I

CTETo oY
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]
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I

YA Rt RSN AS AW A A

S ALY EYASY AU RSN

h|

T

Y
[y [UoTE

EAE

|

 ry

(a) Original gadget G. (b) Tetrasected gadget G®.

180-tromino tiling is NP-complete.
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The 180-tromino tiling can also be reduced to the Maximum
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o
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@ Transformation from R to Gg:

o Transform every cell of R to vertices of Gg.
e Add horizontal, vertical and northeast-diagonal edges.
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Forbidden Polyominoes

The 180-tromino tiling can also be reduced to the Maximum
Independent Set problem.

Gr Ir

R
B
||

@ Transformation from R to Gg:

o Transform every cell of R to vertices of Gg.
e Add horizontal, vertical and northeast-diagonal edges.

@ Transformation from Gg to Ig:

e Transform every 3-cycle of Gg to vertices of Ig.
o Add an edge where 3-cycles intersects.
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Forbidden Polyominoes (cont’d)
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Forbidden Polyominoes (cont’d)

R Ggr Ir
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Forbidden Polyominoes (cont’d)
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Forbidden Polyominoes (cont’d)
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Forbidden Polyominoes (cont’d)
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Forbidden Polyominoes (cont’d)

R Gr
-— |/ -
»j/’

Maximum Independent Set of Ir is equal to @

<= R has a 180-tromino tiling .

where |R| the number of cells in a region R.

26/31



Forbidden Polyominoes (cont’d)
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Forbidden Polyominoes (cont’d)

If I is , i.e., does not contain a as induced graph,
then computing Maximum Independent Set can be computed in
polynomial time.
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Forbidden Polyominoes (cont’d)

If I is , i.e., does not contain a as induced graph,
then computing Maximum Independent Set can be computed in
polynomial time.
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Forbidden Polyominoes (cont’d)

If I is , i.e., does not contain a as induced graph,
then computing Maximum Independent Set can be computed in
polynomial time.

The following five polyominoes generates a distinct /¢ with a
in it.
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Forbidden Polyominoes (cont’d)

If I is , i.e., does not contain a as induced graph,
then computing Maximum Independent Set can be computed in
polynomial time.

The following five polyominoes generates a distinct /¢ with a
in it.

o [ G

g \l/éﬁ ﬁpﬁ
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Forbidden Polyominoes (cont’d)
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Forbidden Polyominoes (cont’d)

Theorem

If a region R doesn’t contains a rotated, reflected or sheared
forbidden polyomino, then 180-tromino tiling can be computed in
a polynomial time.

]
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Thank you!
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You can try the tetrasected cell tiling program in your phone

browser: http://bit.ly/TetrasectedTiling
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