Hard and Easy Instances of L-Tromino Tilings ¹

Javier T. Akagi ¹, Carlos F. Gaona ¹, Fabricio Mendoza ¹, Manjil P. Saikia ², Marcos Villagra ¹

¹Universidad Nacional de Asunción NIDTEC, Campus Universitario, San Lorenzo C.P. 2619, Paraguay

> ²Fakultät für Mathematik, Universität Wien Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

> > 09/01/2019

¹To appear in Proceedings of the the 13th International Conference and Workshops on Algorithms and Computation (WALCOM), Guwahati, India, February 27 - March 02, 2019. arXiv:1710.04640.

Outline

- Introduction
 - Polyominoes
 - L-Tromino Tiling Problem
- 2 Tiling of the Aztec Rectangles
 - Aztec Rectangle
 - Aztec Rectangle with a single defect
 - Tiling Aztec Rectangle with unbounded number of defects
- 3 180-Tromino Tiling
 - A rotation constraint
 - Forbidden Polyominoes

Outline

- Introduction
 - Polyominoes
 - L-Tromino Tiling Problem
- 2 Tiling of the Aztec Rectangles
 - Aztec Rectangle
 - Aztec Rectangle with a single defect
 - Tiling Aztec Rectangle with unbounded number of defects
- 3 180-Tromino Tiling
 - A rotation constraint
 - Forbidden Polyominoes

Definition

A polyomino is a planar figure made from one or more equal-sized squares, each joined together along an edge [S. Golomb (1953)].

Definition

A polyomino is a planar figure made from one or more equal-sized squares, each joined together along an edge [S. Golomb (1953)].

Definition

A polyomino is a planar figure made from one or more equal-sized squares, each joined together along an edge [S. Golomb (1953)].

• Every cell (square) is fixed in a square lattice.

Definition

A polyomino is a planar figure made from one or more equal-sized squares, each joined together along an edge [S. Golomb (1953)].

- Every cell (square) is fixed in a square lattice.
- Two cell are adjacent if the Manhattan distance is 1.

Outline

- Introduction
 - Polyominoes
 - L-Tromino Tiling Problem
- 2 Tiling of the Aztec Rectangles
 - Aztec Rectangle
 - Aztec Rectangle with a single defect
 - Tiling Aztec Rectangle with unbounded number of defects
- 3 180-Tromino Tiling
 - A rotation constraint
 - Forbidden Polyominoes

Definition

Given:

Definition

Given:

- A set of L-trominoes Σ called a **tile set**, $\Sigma = \{$, , , , , ,
- and a polyomino R called **region**.

Definition

Given:

- A set of L-trominoes Σ called a **tile set**, $\Sigma = \{$ \Box , \Box , \Box , \Box ,
- and a polyomino R called **region**.

Goal: Place tiles from Σ to fill the region R covering every cell without overflowing the perimeter of R and without overlapping between the tiles.

Definition

Given:

- A set of L-trominoes Σ called a **tile set**, $\Sigma = \{$ \Box , \Box , \Box , \Box ,
- and a polyomino R called **region**.

Goal: Place tiles from Σ to fill the region R covering every cell without overflowing the perimeter of R and without overlapping between the tiles.

(b) A tiling of region R

L-Tromino Tiling Problem (cont'd)

L-Tromino Tiling Problem (cont'd)

 C. Moore and J. M. Robson (2000) proved that deciding the existence of a L-tromino tiling in a given region is
NP-complete with a reduction from Monotone 1-in-3 SAT.

L-Tromino Tiling Problem (cont'd)

 C. Moore and J. M. Robson (2000) proved that deciding the existence of a L-tromino tiling in a given region is
NP-complete with a reduction from Monotone 1-in-3 SAT.

• T. Horiyama, T. Ito, K. Nakatsuka, A. Suzuki and R. Uehara (2012) constructed a one-one reduction from 1-in-3 SAT.

Outline

- Introduction
 - Polyominoes
 - L-Tromino Tiling Problem
- 2 Tiling of the Aztec Rectangles
 - Aztec Rectangle
 - Aztec Rectangle with a single defect
 - Tiling Aztec Rectangle with unbounded number of defects
- 3 180-Tromino Tiling
 - A rotation constraint
 - Forbidden Polyominoes

The **Aztec Diamond** AD(n) is the union of all cell inside the contour |x| + |y| = n + 1.

The **Aztec Diamond** AD(n) is the union of all cell inside the contour |x| + |y| = n + 1.

The **Aztec Diamond** AD(n) is the union of all cell inside the contour |x| + |y| = n + 1.

The Aztec Rectangle $\mathcal{AR}_{a,b}$ is a generalization of an Aztec Diamond.

The **Aztec Diamond** AD(n) is the union of all cell inside the contour |x| + |y| = n + 1.

The Aztec Rectangle $AR_{a,b}$ is a generalization of an Aztec Diamond.

Each piece of L-tromino covers 3 cells.

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always multiple of 3.

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always $\mathbf{multiple}$ of $\mathbf{3}$.

The **number of cells** in an $\mathcal{AR}_{a,b}$ is given by

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always multiple of 3.

The **number of cells** in an $\mathcal{AR}_{a,b}$ is given by

$$|\mathcal{AR}_{a,b}| = a(b+1) + b(a+1).$$

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always multiple of 3.

The **number of cells** in an $AR_{a,b}$ is given by

$$|\mathcal{AR}_{a,b}| = a(b+1) + b(a+1).$$

Theorem

An Aztec rectangle $\mathcal{AR}_{a,b}$ has a tiling with L-trominoes

$$\iff |\mathcal{AR}_{a,b}| \equiv 0 \pmod{3}$$

$$\iff (a,b) \text{ is equal to } (3k,3k') \text{ or } (3k-1,3k'-1) \text{ for some } k,k' \in \mathbb{N}.$$

- If (a, b) equals (3k, 3k'), use pattern 1.
- If (a, b) equals (3k 1, 3k' 1), use pattern 2.

- If (a, b) equals (3k, 3k'), use pattern 1.
- If (a, b) equals (3k 1, 3k' 1), use pattern 2.

- If (a, b) equals (3k, 3k'), use pattern 1.
- If (a, b) equals (3k 1, 3k' 1), use pattern 2.

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals (3, 3k'), use pattern 3.
- If (a, b) equals (2, 3k' 1), use pattern 4.

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals (3, 3k'), use pattern 3.
- If (a, b) equals (2, 3k' 1), use pattern 4.

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals (3, 3k'), use pattern 3.
- If (a, b) equals (2, 3k' 1), use pattern 4.

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals (3, 3k'), use pattern 3.
- If (a, b) equals (2, 3k' 1), use pattern 4.

 $AR_{2,b+3}$ (b) Pattern 4

Base case: $AR_{2,2}$ and $AR_{3,3}$.

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals (3, 3k'), use pattern 3.
- If (a, b) equals (2, 3k' 1), use pattern 4.

Base case: $AR_{2,2}$ and $AR_{3,3}$.

Outline

- Introduction
 - Polyominoes
 - L-Tromino Tiling Problem
- Tiling of the Aztec Rectangles
 - Aztec Rectangle
 - Aztec Rectangle with a single defect
 - Tiling Aztec Rectangle with unbounded number of defects
- 3 180-Tromino Tiling
 - A rotation constraint
 - Forbidden Polyominoes

A defect cell is a cell in which no tromino can be placed on top.

A defect cell is a cell in which no tromino can be placed on top.

A **defect cell** is a cell in which no tromino can be placed on top.

Theorem

An Aztec rectangle $\mathcal{AR}_{a,b}$ with one defect has a tiling with L-trominoes

 $\iff |\mathcal{AR}_{a,b}| \equiv 1 \pmod{3}$

 \iff a or b is equal to 3k-2 for some $k \in \mathbb{N}$.

- Place a *fringe* where it covers the defect.
- Place stairs to cover other cells.

- Place a *fringe* where it covers the defect.
- Place stairs to cover other cells.

- Place a *fringe* where it covers the defect.
- Place stairs to cover other cells.

- Place a *fringe* where it covers the defect.
- Place stairs to cover other cells.

- Place a *fringe* where it covers the defect.
- Place stairs to cover other cells.

- Place a *fringe* where it covers the defect.
- Place stairs to cover other cells.

- Place a *fringe* where it covers the defect.
- Place stairs to cover other cells.

- Place a *fringe* where it covers the defect.
- Place stairs to cover other cells.

Outline

- Introduction
 - Polyominoes
 - L-Tromino Tiling Problem
- Tiling of the Aztec Rectangles
 - Aztec Rectangle
 - Aztec Rectangle with a single defect
 - Tiling Aztec Rectangle with unbounded number of defects
- 3 180-Tromino Tiling
 - A rotation constraint
 - Forbidden Polyominoes

Given a region R', we can embed R' inside a sufficiently large Aztec Rectangle $\mathcal{AR}_{a,b}$.

Given a region R', we can embed R' inside a sufficiently large Aztec Rectangle $\mathcal{AR}_{a,b}$.

Given a region R', we can embed R' inside a sufficiently large Aztec Rectangle $\mathcal{AR}_{a,b}$.

Theorem

The problem of tiling Aztec Rectangle $AR_{a,b}$ with an unbounded number of defects is **NP-complete**.

Outline

- Introduction
 - Polyominoes
 - L-Tromino Tiling Problem
- 2 Tiling of the Aztec Rectangles
 - Aztec Rectangle
 - Aztec Rectangle with a single defect
 - Tiling Aztec Rectangle with unbounded number of defects
- 3 180-Tromino Tiling
 - A rotation constraint
 - Forbidden Polyominoes

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be

$$\Sigma = \{ \text{ right-oriented } 180 \text{-trominoes } \} = \{ \bot, \bot \}$$

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be

$$\Sigma = \{ \text{ right-oriented } 180 \text{-trominoes } \} = \{ \bot, \bot \}$$

or

180°L-Tromino Tiling

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be

$$\Sigma = \{ \text{ right-oriented } 180 \text{-trominoes } \} = \{ \Box, \Box \}$$

or

$$\Sigma = \{ \text{ left-oriented } 180 \text{-trominoes } \} = \{ \Box, \Box \}.$$

180°L-Tromino Tiling

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be

$$\Sigma = \{ \text{ right-oriented } 180 \text{-trominoes } \} = \{ \Box, \Box \}$$

$$\Sigma = \{ \text{ left-oriented } 180 \text{-trominoes } \} = \{ \Box, \Box \}.$$

With no loss of generality, we will only consider **right-oriented 180-trominoes**.

Theorem

There is a one-one correspondence between 180-tromino tiling and the triangular trihex tiling [Conway and Lagarias, (1990)].

Theorem

There is a one-one correspondence between 180-tromino tiling and the triangular trihex tiling [Conway and Lagarias, (1990)].

Two triangular trihex.

Theorem

There is a one-one correspondence between 180-tromino tiling and the triangular trihex tiling [Conway and Lagarias, (1990)].

Two triangular trihex.

Transformation from triangular trihex to 180-tromino

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

Definition

A **tetrasected polyomino** P^{\boxplus} is obtained by tetrasecting each cell of a poylomino P.

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

Definition

A **tetrasected polyomino** P^{\oplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a l-tromino tiling for some R, then there is also a 180-tromino tiling for R^{\boxplus} .

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

Definition

A **tetrasected polyomino** P^{\oplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a l-tromino tiling for some R, then there is also a 180-tromino tiling for R^{\boxplus} .

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

Definition

A **tetrasected polyomino** P^{\boxplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a l-tromino tiling for some R, then there is also a 180-tromino tiling for R^{\oplus} .

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

Definition

A **tetrasected polyomino** P^{\oplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a l-tromino tiling for some R, then there is also a 180-tromino tiling for R^{\boxplus} .

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

Definition

A **tetrasected polyomino** P^{\boxplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a l-tromino tiling for some R, then there is also a 180-tromino tiling for R^{\boxplus} .

However, it is not know if the converse statement is true or false.

Horiyama et al. also proved that the l-tromino tiling problem is **NP-Complete**.

Horiyama et al. also proved that the I-tromino tiling problem is **NP-Complete**.

Theorem [Horiyama, Ito, Nakatsuka, Suzuki and Uehara (2012)]

1-in-3 SAT \leq_P I-tromino Tiling

Horiyama et al. also proved that the l-tromino tiling problem is **NP-Complete**.

(a) Original gadget G.

(a) Original gadget G.

(b) Tetrasected gadget G^{\boxplus} .

(a) Original gadget G.

(b) Tetrasected gadget G^{\boxplus} .

(a) Original gadget G.

(b) Tetrasected gadget G^{\boxplus} .

In each gadget G, I-tromino tiling for G can be simulated with 180-tromino tiling for G^{\boxplus} .

(a) Original gadget G.

(b) Tetrasected gadget G^{\boxplus} .

Theorem

180-tromino tiling is NP-complete.

Outline

- Introduction
 - Polyominoes
 - L-Tromino Tiling Problem
- Tiling of the Aztec Rectangles
 - Aztec Rectangle
 - Aztec Rectangle with a single defect
 - Tiling Aztec Rectangle with unbounded number of defects
- 3 180-Tromino Tiling
 - A rotation constraint
 - Forbidden Polyominoes

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_R to I_R :
 - Transform every 3-cycle of G_R to vertices of I_R .
 - Add an edge where 3-cycles intersects.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_R to I_R :
 - Transform every 3-cycle of G_R to vertices of I_R .
 - Add an edge where 3-cycles intersects.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_R to I_R :
 - Transform every 3-cycle of G_R to vertices of I_R .
 - Add an edge where 3-cycles intersects.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_R to I_R :
 - Transform every 3-cycle of G_R to vertices of I_R .
 - Add an edge where 3-cycles intersects.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_R to I_R :
 - Transform every 3-cycle of G_R to vertices of I_R .
 - Add an edge where 3-cycles intersects.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_R to I_R :
 - Transform every 3-cycle of G_R to vertices of I_R .
 - Add an edge where 3-cycles intersects.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_R to I_R :
 - Transform every 3-cycle of G_R to vertices of I_R .
 - Add an edge where 3-cycles intersects.

- Transformation from R to G_R :
 - Transform every cell of R to vertices of G_R .
 - Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_R to I_R :
 - Transform every 3-cycle of G_R to vertices of I_R .
 - Add an edge where 3-cycles intersects.

Theorem

Maximum Independent Set of I_R is equal to $\frac{|R|}{3}$ \iff R has a 180-tromino tiling .

where |R| the number of cells in a region R.

If I_G is claw-free, i.e., does not contain a claw as induced graph, then computing Maximum Independent Set can be computed in polynomial time.

If I_G is claw-free, i.e., does not contain a claw as induced graph, then computing Maximum Independent Set can be computed in polynomial time.

If I_G is claw-free, i.e., does not contain a claw as induced graph, then computing Maximum Independent Set can be computed in polynomial time.

The following five polyominoes generates a distinct I_G with a claw in it.

If I_G is claw-free, i.e., does not contain a claw as induced graph, then computing Maximum Independent Set can be computed in polynomial time.

The following five polyominoes generates a distinct I_G with a claw in it.

Theorem

If a region R **doesn't** contains a rotated, reflected or sheared **forbidden polyomino**, then 180-tromino tiling can be computed in a polynomial time.

Thank you!

Thank you!

Thank you!

You can try the tetrasected cell tiling program in your phone browser: http://bit.ly/TetrasectedTiling