
Towards Elastic Virtual Machine Placement in
Overbooked OpenStack Clouds under Uncertainty

Fabio López-Pires1, Benjamı́n Barán2, Carolina Pereira2, Marcelo Velázquez2, and Osvaldo
González2

1Itaipu Technological Park, Hernandarias, Paraguay
fabio.lopez@pti.org.py

2National University of the East, Ciudad del Este, Paraguay
{bbaran,cpereira,mvelazquez,ogonzalez}@fpune.edu.py

Abstract

Cloud computing datacenters currently provide mi-
llions of virtual machines in highly dynamic Infrastruc-
ture as a Service (IaaS) markets. As a first step on im-
plementing algorithms previously proposed by the au-
thors for Virtual Machine Placement (VMP) in a real-
world IaaS middleware, this work presents an experi-
mental comparison of these algorithms against current
algorithms considered for solving VMP problems in
OpenStack. Several experiments considering scenario-
based simulations for uncertainty modelling demon-
strate that the proposed algorithms present promising
results for its implementation towards real-world ope-
rations. Next research steps are also summarized.

Keywords: Virtual Machine Placement, OpenStack,
Multi-Objective Optimization, Cloud Datacenters.

1 Introduction

This work focuses on a well-known problem: the pro-
cess of selecting which requested virtual machines
(VMs) should be hosted at each available physical
machine (PM) of a cloud computing infrastructure, de-
noted in the specialized literature as Virtual Machine
Placement (VMP). A previously proposed complex In-
frastructure as a Service (IaaS) environment for VMP
problems is considered, taking into account service
elasticity and overbooking of physical resources [?].

In this context, this work also considers a previously
proposed two-phase optimization scheme, decompos-
ing the VMP problem into two different sub-problems,
combining advantages of online (incremental VMP or
iVMP) and offline (VMP reconfiguration or VMPr)
VMP formulations. This is mainly because online de-
cisions made along the operation of a dynamic cloud
computing infrastructure negatively affects the quality
of obtained solutions in VMP problems when com-
paring to offline decisions [?]. Unfortunately, offline
VMP formulations are not appropriate for highly dy-
namic real-world IaaS environments, where cloud ser-
vices are requested according to current demand.

When studying a two-phase optimization scheme for
VMP problems, additional considerations should be
analysed, e.g. methods to decide when or under what
circumstances to trigger placement reconfigurations
with migration of VMs between PMs (VMPr Trig-
gering) and what to do with cloud services requested
during placement recalculation (VMPr Recovering).

Due to the randomness of customer requests, VMP
problems should be formulated under uncertainty [?].
This work considers a scenario-based uncertainty ap-
proach for modeling relevant uncertain parameters.

Taking into account experimental results already
obtained in simulations against state-of-the-art alter-
native approaches for VMP problems considering 400
experimental scenarios, the implementation of the al-
ready proposed algorithms in a real-world IaaS mid-
dleware is a natural continuation of the work presented
in [?]. As a previous step of the mentioned imple-
mentation, this work considers a previously developed
Dynamic VMP Framework1 for extending simulations
including current VMP algorithms considered in Open-
Stack. The official OpenStack Filter Scheduler algo-
rithm was slightly adapted to fit into the considered
formulation, as described in the following sections.

The remainder of this paper is structured in the fo-
llowing way: Section ?? presents the considered un-
certain VMP problem formulation, while Section ??
presents details on the design and implementation of
evaluated alternatives to solve the formulation of the
VMP problem. Section ?? summarize experimental re-
sults. Conclusions and future work are left to Section
??.

2 Considered VMP Formulation

This section summarizes the considered VMP formu-
lation under uncertainty previously proposed by some
of the authors in [?]. This VMP formulation is based
on a two-phase scheme for the optimization of the fo-
llowing objective functions: (i) power consumption,

1http://github.com/DynamicV MP

(ii) economical revenue, (iii) resource utilization and
(iv) placement reconfiguration time.

According to the taxonomy presented in [?],
this work focuses on a provider-oriented VMP for
federated-cloud deployments, considering a combi-
nation of two types of formulations: (i) online (i.e.
iVMP) and (ii) offline (i.e. VMPr). Interested readers
may refer to [?] for more details on the motivation
of using a two-phase optimization scheme as well as
more details on the VMP formulation itself that are
not included in this work due to space limitations.

The following sub-sections summarize the most re-
levant details on the considered uncertain VMP formu-
lation previously proposed in [?].

2.1 Complex IaaS Environment

The considered formulation of the VMP problem mo-
dels a complex IaaS environment, composed by avai-
lable PMs and VMs requested at each discrete time
t, considering the following information as input data
for the proposed VMP problem:

• a set of n available PMs and specifications (??);
• a set of m(t) VMs requested, at each discrete time

t, and specifications (??);
• information about the utilization of resources of

each active VM at each discrete time t (??);
• current placement at each discrete time t (i.e.

x(t)) (??).

The iVMP and VMPr sub-problems consider dif-
ferent sub-sets of the above mentioned input data, as
presented later in Sections ?? and ??.

The set of PMs owned by the IaaS provider is repre-
sented as a matrix H ∈ Rn×(r+2), as presented in (??).
Each PM Hi is represented by r different physical re-
sources. This work considers r = 3 physical resources
(Pr1 to Pr3): CPU [EC2 Compute Unit (ECU)], RAM
[GB] and network capacity [Mbps]. The maximum
power consumption [W] is also considered. Finally,
considering that an IaaS provider could own more than
one cloud datacenter, PMs notation also includes a
datacenter identifier ci, i.e.

H =

 Pr1,1 . . . Prr,1 pmax1 c1
.

Pr1,n . . . Prr,n pmaxn cn

 (1)

where:

Prk,i: Physical resource k on Hi, where 1≤ k ≤ r;
pmaxi: Maximum power consumption of Hi in [W];
ci: Datacenter identifier of Hi, where

1≤ ci ≤ cmax;
n: Total number of PMs.

In this context, the IaaS provider dynamically re-
ceives requests of cloud services for placement (i.e. a

set of inter-related VMs) at each discrete time t. A
cloud service Sb is composed by a set of VMs.

The set of VMs requested by customers at each
discrete time t is represented as a matrix V (t) ∈
Rm(t)×(r+2), as presented in (??). In this work, each
VM Vj requires r = 3 different virtual resources
(V r1, j(t)-V r3, j(t)): CPU [ECU], RAM memory [GB]
and network capacity [Mbps]. Additionally, a cloud
service identifier b j is considered, as well as an eco-
nomical revenue R j [$] associated to each VM Vj.

V (t) =

 V r1,1(t) . . . V rr,1(t) b1 R1(t)
.

V r1,m(t)(t) . . .V rr,m(t)(t) bm(t) Rm(t)(t)

 (2)

where:

V rk, j(t): Virtual resource k on Vj, where 1≤ k ≤ r;
b j: Service identifier of Vj;
R j(t): Economical revenue for allocating Vj in [$]

at instant t;
m(t): Number of VMs at each discrete time t,

where 1≤ m(t)≤ mmax;
mmax: Maximum number of VMs.

To model a dynamic VMP environment taking into
account both vertical and horizontal elasticity of cloud
services, as previously presented in [?], the set of re-
quested VMs V (t) may include the following types of
requests for cloud service placement at each time t:

• cloud services creation: where new a cloud ser-
vice Sb, composed by one or more VMs Vj, is
created. Consequently, the number of VMs at
each discrete time t (i.e. m(t)) is a function of
time;
• scale-up / scale-down of VMs resources:

where one or more VMs Vj of a cloud service
Sb increases (scale-up) or decreases (scale-down)
its capacities of virtual resources with respect to
current demand (vertical elasticity). In order to
model these considerations, virtual resource ca-
pacities of a VM Vj (i.e. V r1, j(t)-V r3, j(t)) are a
function of time, as well as the associated eco-
nomical revenue (R j(t));
• cloud services scale-out / scale-in: where a

cloud service Sb increases (scale-out) or de-
creases (scale-in) the number of associated VMs
according to current demand (horizontal elastic-
ity). Consequently, the number of VMs Vj in a
cloud service Sb at each discrete time t, denoted
as mSb(t), is a function of time;
• cloud services destruction: where virtual re-

sources of cloud services Sb, composed by one or
more VMs Vj, are released.

Resource utilization of each VM Vj at each discrete
time t is represented as a matrix U(t) ∈ Rm(t)×r, as
presented in (??):

U(t) =

 Ur1,1(t) . . . Urr,1(t)
.

Ur1,m(t)(t) . . . Urr,m(t)(t)

 (3)

where:

Urk, j(t): Utilization ratio of V rk(t) in Vj at each
discrete time t.

The current placement of VMs into PMs (x(t)) re-
presents VMs requested in the previous discrete time
t−1 and assigned to PMs; consequently, the dimen-
sion of x(t) is based on the number of VMs m(t−1).
The placement at each discrete time t is represented as
a matrix x(t) ∈ {0,1}m(t−1)×n, as defined in (??):

x(t) =

 x1,1(t) x1,2(t) . . . x1,n(t)
.

xm(t−1),1(t) xm(t−1),2(t) . . . xm(t−1),n(t)

 (4)

where:

x j,i(t) ∈ {0,1}: indicates if Vj is allocated (x j,i(t) = 1)
or not (x j,i(t) = 0) for execution in a
PM Hi at time t (i.e. x j,i(t) : Vj→ Hi).

2.2 Incremental VMP (iVMP)

In online algorithms for solving the considered VMP
problem, placement decisions are performed at each
discrete time t. The formulation of the considered
iVMP (online) problem is based on [?] and could be
formally enunciated as:

Given a complex IaaS environment composed by a set
of PMs (H), a set of active VMs already requested
before time t (V (t)), and the current placement of
VMs into PMs (i.e. x(t)), it is sought an incremental
placement of V (t) into H for the discrete time t + 1
(x(t +1)) without migrations, satisfying the problem
constraints and optimizing the considered objective
functions.

2.2.1 Input Data for iVMP

As presented in [?], the considered formulation of the
iVMP problem receives the following information as
input data:

• a set of n available PMs and specifications (??);

• a dynamic set of m(t) requested VMs (already
allocated VMs plus new requests) and specifica-
tions (??);

• information about the utilization of resources of
each active VM at each discrete time t (??);

• current placement at each discrete time t (i.e.
x(t)) (??).

2.2.2 Output Data for iVMP

The result of the iVMP phase at each discrete time t
is an incremental placement ∆x(t) for the next time
instant in such a way that x(t + 1) = x(t) + ∆x(t).
Clearly, the placement at t +1 is represented as a ma-
trix x(t +1) ∈ {0,1}m(t)×n, as defined in (??):

x(t +1) = x1,1(t +1) x1,2(t +1) . . . x1,n(t +1)
.

xm(t),1(t +1) xm(t),2(t +1) . . . xm(t),n(t +1)


(5)

Formally, the placement for the next time instant
x(t +1) is a function of the current placement x(t) and
the active VMs at discrete time t, i.e.:

x(t +1) = f [x(t),V (t)] (6)

2.3 VMP Reconfiguration (VMPr)

As it was previously mentioned in [?] an offline al-
gorithm solves a VMP problem considering a static
environment where VM requests do not change over
time and considers migration of VMs between PMs.
The formulation of the proposed VMPr (offline) pro-
blem is based on [?, ?] and could be enunciated as:

Given a current placement of VMs into PMs (x(t)),
it is sought a placement reconfiguration through mi-
gration of VMs between PMs for the discrete time t
(i.e. x′(t)), satisfying the constraints and optimizing
the considered objective functions.

2.3.1 Input Data for VMPr

The proposed formulation of the VMPr problem re-
ceives the following information as input data:

• a set of n available PMs and specifications (??);
• information about the utilization of resources of

each active VM at discrete time t (??);
• current placement at discrete time t (i.e. x(t))

(??).

2.3.2 Output Data for VMPr

The result of the VMPr problem is a placement recon-
figuration through migration of VMs between PMs for
the discrete time t (i.e. x′(t)), represented by:

• a placement reconfiguration of x(t), i.e. x′(t)
(??);

Summarizing the considered constraints, a VM Vj
must be allocated to run on a single PM Hi or alter-
natively located in another federated IaaS provider. It
should be mentioned that from an IaaS provider per-
spective, elastic cloud services usually are considered
more important than non-elastic ones. Consequently,

resources of elastic cloud services most of the time are
allocated with higher priority over non-elastic ones,
what usually is reflected in the contracts between an
IaaS provider and each customer. Additionally, a PM
Hi must have sufficient available resources to meet
the dynamic requirements of all VMs Vj that are al-
located to run on Hi. It is important to remember
that resources of VMs are dynamically used, giving
space to re-utilization of idle resources that were al-
ready reserved. Re-utilization of idle resources could
represent higher risk of unsatisfied demand in case uti-
lization of resources increases in a short period of time.
Therefore, providers need to reserve a percentage of
idle resources as a protection (defined by a protection
factor λk) in case overbooking is used.

2.4 Objective Functions

More than 60 different objective functions for VMP
problems were already identified in [?, ?]. Conside-
ring the large number of existing objective functions,
identified objective functions with similar character-
istics and goals could be classified into 5 objective
function groups [?]: (G1) energy consumption, (G2)
network traffic, (G3) economical costs, (G4) resource
utilization and (G5) performance.

As previously considered in [?], the optimization
of four objective functions is taken into account. It is
important to consider that by no means, the authors
claim that the considered objective functions represent
the best way to model VMP problems. This formu-
lation only illustrates a reasonable formulation of a
VMP problem in order to be able to study the main
contributions of this work, considering the presented
experimental evaluation of VMP algorithms.

In general, objective functions can be minimized
while maximizing other objectives functions. In this
work each considered objective function is formulated
in a single optimization context (i.e. minimization).

2.4.1 Power Consumption Minimization

The power consumption minimization can be represen-
ted by the sum of the power consumption of each PM
Hi that composes the complex IaaS environment (see
Section ??), as defined in (??).

f1(x, t) =
n

∑
i=1

((pmaxi− pmini)×Ur1,i(t)+ pmini)×Yi(t)

(7)
where:
x: Evaluated solution of the problem;
f1(x, t): Total power consumption of PMs at

instant t;
pmaxi: Maximum power consumption of a PM Hi;
pmini: Minimum power consumption of a PM Hi;

As suggested in [?], pmini ≈ pmaxi ∗0.6;
Ur1,i(t): Utilization ratio of resource 1 (in this case

CPU) by Hi at instant t;
Yi(t) ∈ {0,1}: Indicates if Hi is turned on (Yi(t) = 1)

or not (Yi(t) = 0) at instant t.

2.4.2 Economical Revenue Maximization

Equation (??) represents leasing costs, defined as the
sum of the total costs of leasing each VM Vj that is
effectively allocated for execution on any PM of an al-
ternative datacenter of the cloud federation. A provider
must offer its idle resources to the cloud federation at
lower prices than offered to customers in the actual
cloud market for the federation to make sense. The
pricing scheme may depend on the particular agree-
ment between providers of the cloud federation [?].
For simplicity, this formulations considers that the
main provider may lease requested resources (that are
not able to provide) from the cloud federation at 70%
(X̂ j = 0.7) of its market price (R j(t)). These Leasing
Costs (LC(t)) may be formulated as:

LC(t) =
m(t)

∑
j=1

(R j(t)×X j(t)× X̂ j) (8)

where:

LC(t): Total leasing costs at instant t;
R j(t): Economical revenue for attending Vj in [$]

at instant t;
X j(t) ∈ {0,1}: Indicates if Vj is allocated for

execution on a PM (X j(t) = 1) or not
(X j(t) = 0) at instant t;

X̂ j: Indicates if Vj is allocated on the main
provider (X̂ j = 0) or on an alternative
datacenter of the cloud federation
(X̂ j = 0.7);

m(t): Number of VMs at each discrete time t,
where 1≤ m(t)≤ mmax.

It is important to note that X̂ j is not necessarily a
function of time. The decision of locating a VM Vj on
a federated provider is considered only in the place-
ment process, with no possible migrations between
different IaaS providers.

Additionally, overbooked resources may incur in
unsatisfied demand of resources at some periods of
time, causing Quality of Service (QoS) degradation,
and consequently Service Level Agreement (SLA) vi-
olations with economical penalties. These economical
penalties should be minimized for an economical rev-
enue maximization. Based on the workload indepen-
dent QoS metric presented in [?], formalized in SLAs,
Equation (??) represents total economical penalties
for SLA violations, defined as the sum of the total
penalties costs for unsatisfied demand of resources.

EP(t) =
m(t)

∑
j=1

(r

∑
k=1

Rrk, j(t)×∆rk, j(t)×X j(t)×φk

)
(9)

where:

EP(t): Total economical penalties at instant t;
r: Number of considered resources. In this

paper 3: CPU, RAM memory and network
capacity;

Rrk, j(t): Economical revenue for attending V rk, j(t);
∆rk, j(t): Ratio of unsatisfied resource k at instant t

where ∆rk, j(t) = 1 means no unsatisfied
resource, while ∆rk, j(t) = 0 means
resource k is unsatisfied in 100%;

X j(t) ∈ {0,1}: Indicates if Vj is allocated for
execution on a PM (X j(t) = 1) or not
(X j(t) = 0) at instant t;

φk: Penalty factor for resource k, where
φk ≥ 1;

m(t): Number of VMs at each discrete time t,
where 1≤ m(t)≤ mmax.

In this work, the maximization of the total economi-
cal revenue that an IaaS provider receives is achieved
by minimizing the total costs of leasing resources from
alternative datacenters of the cloud federation as well
as the total economical penalties for SLA violations,
as presented in (??), i.e.

f2(x, t) = LC(t)+EP(t) (10)

where:

f2(x, t): Total economical expediture of the main
IaaS provider at instant t.

2.4.3 Resources Utilization Maximization

This work considers a maximization of the resource
utilization by minimizing the average ratio of wasted
resources on each PM Hi (i.e. resources that are not
allocated to any VM Vj).

f3(x, t) =
∑

n
i=1

[
1−
(

∑
r
k=1 Urk,i(t)

r

)]
×Yi(t)

∑
n
i=1 Yi(t)

(11)

where:

f3(x, t): Average ratio of wasted resources at
instant t;

Urk,i(t): Utilization ratio of resource k of PM Hi at
instant t;

r: Number of considered resources. In this
paper r = 3: CPU, RAM memory and
network capacity.

2.4.4 Reconfiguration Time Minimization

Inspired in [?], once a placement reconfiguration is
accepted in the VMPr phase, all VM migrations are
assumed to be performed in parallel through a manage-
ment network exclusively used for these actions, in-
creasing 10% CPU utilization in VMs being migrated.
Consequently, the minimization of the (maximum) re-
configuration time could be achieved by minimizing
the maximum amount of memory to be migrated from
one PM Hi to another Hi′ (i 6= i′).

Equation (??) was proposed in [?] to minimize
the maximum amount of RAM memory that must be
moved between PMs at instant t.

f4(x, t) = max(MTi,i′) ∀i, i′ ∈ {1, . . . ,n} (12)

where:

f4(x, t): Network traffic overhead for VM
migrations at instant t;

MTi,i′ : Total amount of RAM memory to be
migrated from PM Hi to Hi′ .

The following sub-section summarizes the main con-
siderations taken into account to combine the four
presented objective functions into a single objective
function to be minimized with the aim of having a
single figure of merit (or optimization metric).

2.5 Normalization and Scalarization

Each considered objective function must be formu-
lated in a single optimization context (in this case,
minimization) and each objective function cost must
be normalized to be comparable and combinable as
a single objective. This work normalizes each objec-
tive function cost by calculating f̂i(x, t) ∈ R, where
0≤ f̂i(x, t)≤ 1 for each objective function fi(x, t).

f̂i(x, t) =
fi(x, t)− fi(x, t)min

fi(x, t)max− fi(x, t)min
(13)

where:

f̂i(x, t): Normalized cost of objective function
fi(x, t) at instant t;

fi(x, t): Cost of original objective function fi(x, t);
fi(x, t)min: Minimum possible cost for fi(x, t);
fi(x, t)max: Maximum possible cost for fi(x, t).

The presented normalized objective functions are
combined into a single objective considering a mini-
mum Euclidean distance to the origin, expressed as:

F(x, t) =

√
q

∑
i=1

f̂i(x, t)2 (14)

where:

F(x, t): Single objective function combining each
f̂i(x, t) at instant t;

f̂i(x, t): Normalized cost of objective function
fi(x, t) at instant t;

q: Number of objective functions.

2.6 Scenario-based Uncertainty Modeling

In this work, uncertainty is modeled through a finite
set of well-defined scenarios S [?], where the follo-
wing uncertain parameters are considered: (i) virtual
resources capacities (vertical elasticity), (ii) number of
VMs that compose cloud services (horizontal elastic-
ity), (iii) utilization of CPU and RAM memory virtual
resources and (iv) utilization of networking virtual
resources (both relevant for overbooking).

For each scenario s ∈ S, a temporal average value
of the objective function F(x, t) presented in (??) is
calculated as:

fs(x, t) =
∑

tmax
t=1 F(x, t)

tmax
(15)

where:

fs(x, t): Temporal average of combined objective
function for all discrete time instants t in
scenario s ∈ S;

tmax: Duration of a scenario in discrete time
instants.

As previously described, when parameters are un-
certain, it is important to find solutions that are accep-
table for any (or most) considered scenario s ∈ S. This
work considers minimization of the average objective
function costs criteria [?] to select among solutions:

F1 = F(x, t) =
∑
|S|
s=1 fs(x, t)
|S|

(16)

where:

F1: Average fs(x, t) for all scenarios s ∈ S [?].

3 Evaluated Algorithms

Considering a previous research work of some of the
authors [?], promising results of the proposed algo-
rithm were found in order to implement it in real-
world IaaS middlewares. The mentioned proposed
algorithm considers a two-phase optimization scheme
using First-Fit Decreasing (FFD) for the iVMP phase,
a Memetic Algorithm (MA) for the VMPr phase, a
prediction-based method for VMPr Triggering and an
update-based method for VMPr Recovering. This al-
gorithm was denoted as Algorithm 3 (A3) in [?] and
is considered in this work as Algorithm 1 (A1) for the
presented experimental evaluation.

Additionally, and as a first step on implementing A1
in a real-world IaaS middleware, official OpenStack
algorithms for VMP were studied [?]. In this context,
two alternatives are available for configuring VMP
processes in OpenStack: (i) Filter Scheduler and (ii)
Random Scheduler. Taking into account that the Ran-
dom Scheduler uses a trivial logic for solving the VMP,
this work considers the Filter Scheduler as Algorithm
2 (A2) for the presented experimental evaluation.
It is important to note that A2 considers only the iVMP
phase for its operation, without taking into account
migration of VMs between PMs.

The following sub-sections briefly present some re-
levant aspects on evaluated algorithms A1 and A2.

3.1 Algorithm 1: Two-Phase Optimization

This section presents details on algorithm A1 [?] as
considered iVMP and VMPr algorithms as well as
considered VMPr Triggering and Recovering methods.

3.1.1 Incremental VMP (iVMP) for A1
In experimental results previously obtained by some
of the authors in [?], the First-Fit Decreasing (FFD)
heuristic outperformed other evaluated heuristics in
average; consequently, the mentioned heuristic was
considered in A1 for the iVMP phase (see Table ??).
In the First-Fit (FF) heuristic, requested VMs Vj(t) are
allocated on the first PM Hi with available resources.
The considered FFD heuristic operates similarly to FF
heuristic, with the main difference that FFD heuristic
sorts the list of requested VMs Vj(t) in decreasing
order by revenue R j(t) (see details in Algorithm ??).

Taking into account the particularities of the pro-
posed complex IaaS environment, the FFD heuristic
presents some modifications when comparing to the
one presented in [?], mainly considering the cloud
service request types previously described in Section
??. In fact, Algorithm ?? shows that cloud service
destruction, scale-down of VM resources and cloud
services scale-in are processed first, in order to release
resources for immediate re-utilization (steps 1-3 of Al-
gorithm ??). At step 4, requests from V (t) are sorted
by a given criterion as revenue (R j(t)) in decreasing
order (of course, other criterion may be considered, as
CPU [?]), where scale-up of VM resources and cloud
services scale-out are firstly processed (steps 5-6), in
order to consider elastic cloud services more impor-
tant than non-elastic ones. Next, unprocessed requests
from Vj(t) include only cloud service creations that
are allocated in decreasing order (steps 7-18). Here, a
Vj is allocated in the first Hi with available resources
after considering previously sorted V (t). If no Hi has
sufficient resources to host Vj, it is allocated in another
federated provider. Finally, the placement x(t +1) is
updated and returned (steps 19-20).

3.1.2 VMP Reconfiguration (VMPr) for A1
Previous research work by the authors focused on de-
veloping VMPr algorithms considering centralized de-
cisions such as the offline MAs presented in [?, ?, ?].
In this work, the considered VMPr algorithm for A1 is
based on the one presented in [?] and it works in the
following way (see details in Algorithm ??):

At step 1, a set Pop0 of candidate solutions is ran-
domly generated. These candidate solutions are re-
paired at step 2 to ensure that Pop0 contains only fea-
sible solutions, satisfying defined constraints.

Then, the algorithm tries to improve candidate so-
lutions at step 3 using local search. With the obtained
solutions, elitism is applied and the first best solution
x′(t) is selected from Pop′′0 ∪x(t) at step 4 using objec-
tive function defined in (??). After an initialization in
step 5, evolution begins (steps 6-12). The evolutionary
process basically follows a similar behavior: solutions
are selected from the union of the evolutionary set of
solutions (or population), also known as Popu, and
the best known solution x′(t) (step 7), crossover and
mutation operators are applied as usual (step 8), and

Algorithm 1: First-Fit Decreasing (FFD) for
iVMP phase in Algorithm A1.

Data: H, V (t), U(t), x(t) (see notation in Section ??)
Result: Incremental Placement x(t +1)
process cloud services destruction from V (t);
process scale-down of VMs resources from V (t);
process cloud services scale-in from V (t);
sort VMs by revenue (R j(t)) in decreasing order;
process scale-up of VMs resources from V (t);
process cloud services scale-out from V (t);
foreach unprocessed V j in V (t) do

while V j is not allocated do
foreach Hi in H do

if Hi has enough resources to host V j then
allocate V j into Hi and break loop;

end if
end foreach
if V j is still not allocated then

allocate V j in another federated provider;
end if

end while
end foreach
update x(t +1) with processed requests;
return x(t +1)

Algorithm 2: Memetic Algorithm (MA) for VMPr
phase in Algorithm A1.

Data: H, U(t), x(t) (see notation in Section ??)
Result: Recalculated Placement x′(t)
initialize set of candidate solutions Pop0;
Pop′0 = repair infeasible solutions of Pop0;
Pop′′0 = apply local search to solutions of Pop′0;
x′(t) = select best solution from Pop′′0 ∪ x(t)

considering (??);
u = 0;Popu = Pop′′0 ;
while stopping criterion is not satisfied do

Popu = selection of solutions from Popu∪ x′(t);
Pop′u = crossover and mutation on solutions of

Popu;
Pop′′u = repair infeasible solutions of Pop′u;
Pop′′′u = apply local search to solutions of Pop′′u ;
x′(t) = select best solution from Pop′′′u considering

(??);
increment number of generations u;

end while
return x′(t)

eventually solutions are repaired, as there may be in-
feasible solutions (step 9). Improvements of solutions
of the evolutionary population Popu may be generated
at step 10 using local search (local optimization). At
step 11, the best known solution x′(t) is updated (if
applicable), while at step 12 the generation (or itera-
tion) counter is updated. The evolutionary process is
repeated until the algorithm meets a stopping criterion,
returning the best known solution x′(t) for a placement
reconfiguration. More details may be found in [?].

Algorithm 3: Update-based VMPr Recovering in
Algorithm A1.

Data: x(t), x′(t−β) (see notation in Section ??)
Result: Recovered Placement x′(t)
remove VMs V j from x′(t−β) that are no longer

running in x(t)
adjust resources from x′(t−β) that changed in x(t)
add VMs V j from x(t) that were not considered in

x′(t−β)
if x′(t−β) is better than x(t) then ;

return x′(t−β);
else return x(t) ;

3.1.3 Prediction-based Triggering for A1

In this work, A1 considers a prediction-based method
that analyses objective function (see (??)), in a way
that it is possible to detect situations where a placement
might be required for reconfiguration purposes.

The presented prediction-based VMPr Triggering
method considers Double Exponential Smoothing
(DES) [?] as a statistical technique for predicting val-
ues of the objective function F(x, t), as formulated
next in (??) to (??):

St = α×Zt +(1− τ)(St−1 +bt−1) (17)

bt = τ(St −St−1)+(1− τ)(bt−1) (18)

Zt+1 = St +bt (19)

where:
α: Smoothing factor, where 0≤ α ≤ 1;
τ: Trend factor, where 0≤ τ ≤ 1;
Zt : Known value of F(x, t) at discrete time t;
St : Expected value of F(x, t) at discrete time t;
bt : Trend of F(x, t) at discrete time t;
Zt+1: Value of F(x, t +1) predicted at discrete time t.

At each discrete time t, the VMPr Triggering
method predicts next N values of F(x, t) and triggers
the VMPr phase in case F(x, t) is predicted to consis-
tently increase, considering that F(x, t) is minimized.

3.1.4 Update-based Recovering for A1

When considering a two-phase optimization scheme
for the VMP problem in cloud computing environ-
ments, the placement reconfiguration obtained in the
VMPr phase is regarded as obsolete as time progresses
during the algorithm running time due to its offline
nature. That is why a new way of improving the place-
ment taking into account the new requests is needed.
The iVMP phase performs the recalculation of the
improved placement. Consequently, the calculated
new placement must be recovered according to the
considered VMPr Recovering method before the re-
configuration is performed in operations.

The considered update-based VMPr Recovering
method receives the placement reconfiguration calcu-
lated in the VMPr phase (corresponding to the discrete

time t − β) and the current placement x(t) as input
data, as summarized in Algorithm ??.

Considering that any VM Vj could be destroyed,
or a cloud service could be scaled-in (horizontal elas-
ticity) during the β discrete times where the calcula-
tion of the placement reconfiguration was performed,
these destroyed VMs are removed from x′(t−β) (step
1). Next, any resource from a VM Vj could be ad-
justed due to a scale-up or scale-down (vertical elas-
ticity). Consequently, these resource adjustments are
performed in x′(t−β) (see step 2). Additionally, new
VMs Vj could be created, or a cloud service could be
scaled-out (horizontal elasticity), during the calcula-
tion of x′(t−β). Finally, if the partially recalculated
placement x′(t − β) is better than the current place-
ment x(t), x′(t−β) is accepted (step 5) and the cor-
responding management actions are performed (i.e.
mainly migration of VMs between PMs). In case
x′(t−β) is not better than the current placement x(t),
no change is performed and the VMPr phase finishes
without any further consequence.

3.2 Algorithm 2: Filter Scheduler

This work also evaluates the current default OpenStack
Scheduler [?] for allocating VMs into PMs, identified
as A2. This OpenStack VMP algorithm (A2) considers
filtering and weighting for selecting a PM Hi to host a
requested VM Vj for the considered iVMP phase.

For each requested VM Vj, the following set of
filters are firstly applied to determine which PMs are
eligible for allocating each requested VM:
• RetryFilter: if the PM Hi is available to host

VMs. This is considered in the uncertain formu-
lation with the binary variable Yi(t) that indicates
if Hi is turned on (Yi(t) = 1) or not (Yi(t) = 0).
• AvailabilityZoneFilter: if the PM Hi is in the

requested availability zone. The availability zone
is mapped as a datacenter identifier ci to fit in the
considered uncertain formulation.
• ComputeFilter, RamFilter, DiskFilter: if the

PM Hi has sufficient computational resources for
allocating requested VM, as input data on V (t).
• ComputeCapabilitiesFilter: to ensure satisfac-

tion of additional specifications associated with
the requested VM image. This is not considered
in the uncertain formulation.
• ImagePropertiesFilter: to ensure that PM Hi has

properties specified on the VM image. This is not
considered in the uncertain formulation.
• ServerGroupAntiA f f inityFilter: (if requested)

to ensure that the requested VM will be allocated
in a different PM than other VMs that compose
the cloud service Sb.

Next, pre-selected PMs considering applied filters
are then processed and weights are assigned to each
PM, based on VM request specifications. Finally, PMs
with the highest weight is selected and an incremental

Algorithm 4: Filter Scheduler in Algorithm A2.
Data: H, V (t), U(t), x(t) (see notation in Section ??)
Result: Incremental Placement x(t +1)
foreach V j in V (t) do

f iltered−PMs = list of suitable PMs by applying
filtering criteria

end foreach
foreach V j in V (t) do

weighted−PMs = weight PMs from
f iltered−PMs

select PM with the highest weight
end foreach
return Incremental Placement x(t +1)

placement for the next time instant is returned. Table
?? summarize evaluated algorithms and methods.

4 Experimental Evaluation

The following sub-sections summarize the experimen-
tal environment as well as the main findings identified
in the experiments performed as part of this work to
validate the Algorithm (A1) proposed in [?] against
the OpenStack Filter Scheduler, Algorithm A2 (see Ta-
ble ??), considering scenario-based simulations with
400 different scenarios, taking into account average
objective functions costs (see (??)).

4.1 Experimental Environment

The evaluated algorithms were implemented using
Java programming language and considering the Dy-
namic VMP Framework available online2. Experi-
ments were performed on a Windows 10 Operating
System with an AMD A8-7410 APU with AMD Ra-
dium Graphics at 2.2 GHz CPU and 8 GB of RAM.

For more details on the considered experimental
environment, as well as the 400 designed experimental
workloads, interested readers may refer to [?].

4.2 Experimental Results

The main goal of the presented experimental evalua-
tion is to validate that the previously proposed Algo-
rithm A1 [?] may result in a competitive implementa-
tion on an IaaS middleware such as OpenStack.

Table ?? presents values of the considered evalu-
ation criteria, i.e. F1 costs (see (??)), summarizing
results obtained in performed simulations. The men-
tioned evaluation criteria are presented separately for
each of the five considered IaaS cloud datacenter. It
is worth noting that the considered IaaS cloud dat-
acenters represent datacenters of different sizes and
consequently, the considered workload traces repre-
sent different load of requested CPU resources (e.g.
Low (≤ 30%), Medium (≤ 60%), High (≤ 90%), Full
(≤ 98%) and Saturate (≤ 120%)) workloads.

2http://github.com/DynamicVMP/dynamic-vmp-
framework/releases

Table 1: Summary of evaluated algorithms as well as their corresponding VMPr Triggering and Recovering methods.
N/A indicates a Not Applicable criterion.

Algorithm

Characteristics Decision iVMP VMPr VMPr Triggering VMPr Recovering

A1 - inspired in [?] Centralized FFD MA Prediction-based Update-based
A2 - inspired in [?] N/A Filter Scheduler N/A N/A N/A

Table 2: Summary of evaluation criteria in experimental results for evaluated algorithms.

Criterion Algorithm Datacenter
DC1 DC2 DC3 DC4 DC5 Ranking

F1
A1 0.752 0.838 0.926 0.934 0.983 1st

A2 0.794 0.932 0.986 1.003 1.019 2nd

Based on the information presented in Table ??, it
can be seen that Algorithm A1 outperformed Algo-
rithm A2 in every experiment, taking into account the
considered evaluation criterion (F1). In summary, Al-
gorithm A1 obtained better results (minimum cost) for
considered evaluation criterion. When considering
average objective function costs (F1) as evaluation cri-
terion, Algorithm A1 obtained between 4% and 11%
better results than Algorithm A2.

5 Conclusions and Future Work

This work performed a first experimental evaluation
of a previously proposed [?] two-phase optimization
scheme for VMP problems in complex cloud com-
puting environments, towards its implementation in
a real-world IaaS middleware. For this, an industry
de-facto standard as OpenStack was chosen and the
Filter Scheduler was slightly adapted for simulations
taking into account the considered VMP formulation.

The experimental evaluation presented in this work
was mainly guided by previous work by some of the
authors, considering that main contributions firstly pro-
posed in [?] were taken into account to compare most
promising studied algorithms (A1 in this case) against
algorithms inspired in real-world ones (i.e. A2).

Experimental results demonstrate that the proposed
algorithm A1 outperformed A2 in all considered experi-
ments and may be considered as a promising algorithm
for its implementation. Even do, several challenges
still need to be faced in order address a good proposed
tools for cloud computing datacenter management.

As a first step, IaaS middlewares such as OpenNeb-
ula, vSphere Cloud and other alternative tools with
VMP algorithms should still be evaluated against Al-
gorithm A1. This is proposed as future work.

Additionally, several assumptions should still be
adapted to real-world situations or at least be evaluated
under more scenarios, such as the recalculation time
β that until now has been assumed to be a constant of
discrete time instants. In real-world operations, this
should be considered as a function of time t.

Several future works were also identified, mainly
considering the novelty of the considered formulation.
First, a formulation of a VMP problem considering
a dynamic set of PMs H(t), to consider PM crashes,
maintenance or even deployment of new generation
hardware is proposed as a future work.

Although modeling power consumption conside-
ring a linear relationship with CPU utilization is a very
accepted approach in the specialized literature, consi-
dering the impact of other resources such as RAM and
networking is proposed as future work.

Considering VMP formulations with more sophis-
ticated cloud federation approaches is also left as a
future work, taking into account the basic cloud feder-
ation approach considered in this work. Additionally,
an experimental evaluation of alternative algorithms
for both iVMP and VMPr phase is proposed as a future
work, in order to explore performance issues with the
proposed VMPr Triggering and Recovering methods.

Novel VMPr Triggering and VMPr Recovering
methods could still be proposed to improve the con-
sidered two-phase optimization scheme in A1. The
authors of this work also recognized the importance
of jointly considering auto-scaling algorithms with the
proposed two-phase optimization scheme for VMP
problems, mainly for elastic cloud services as the con-
sidered in this work.

Experimenting with geo-distributed datacenters is
also left as a future work, taking into account that
simulations presented in this work considered only
one cloud computing datacenter. Finally, fixed pric-
ing is still very popular in cloud computing markets
but emerging pricing schemes such as Spot Prices [?]
should also be considered in real-world cloud comput-
ing datacenter operations.

6 Acknowledgements

This research is currently supported by CONACYT,
in the context of the PINV15-781 ”Software-defined
Datacenters” research project grant.

