
Evaluation of Two-Phase Virtual Machine
Placement Algorithms for Green Cloud

Datacenters
Fabio López-Pires1*, Benjamı́n Barán2,3, Carolina Pereira2, Marcelo Velázquez2 and Osvaldo González2

1Itaipu Technological Park, Hernandarias, Paraguay
2National University of the East, Ciudad del Este, Paraguay

3National University of Asuncion, San Lorenzo, Paraguay

Abstract—Cloud Computing Datacenters represent a
power-intensive industry with well-known economical and
ecological challenges. This work focusses on Virtual Machine
Placement (VMP) problems as a valid alternative to address
mentioned challenges. An experimental evaluation of 36 VMP
optimization algorithms for power consumption minimization
is presented. Algorithms were evaluated under uncertainty of
4 different dynamic parameters, considering 400 experimen-
tal scenarios and taking into account an average objective
function cost as evaluation criterion. Experimental results
indicate that two-phase algorithms considering prediction-
based VMPr Triggering and update-based VMPr Recovering
methods are best suited for power consumption minimization.

Index Terms—Virtual Machine Placement, Green Cloud
Computing, Power Consumption, Infrastructure-as-a-Service

I. INTRODUCTION

Selecting which requested virtual machines (VMs)
should be hosted at each available physical machine (PM)
of a cloud computing infrastructure is commonly known
as Virtual Machine Placement (VMP). This work focusses
on the evaluation of different VMP algorithms for Green
Cloud Datacenters in a two-phase optimization scheme,
based on a previously proposed formulation under uncer-
tainty [1]. In this context, an experimental evaluation of 36
VMP algorithms was performed, considering 80 workloads
with 5 datacenters providing Infrastructure-as-a-Service
(IaaS), totalizing 400 different experimental scenarios [1].

It is worth mentioning that 4 of the 36 VMP algorithms
were evaluated in [1]. This work extends the mentioned
evaluation in order to include a complete combination of
identified resolution alternatives and methods associated to
VMP two-phase optimization schemes (see Table I).

The remainder of this work is structured as follows:
a simplified VMP formulation is introduced in Section
II, while evaluated VMP algorithms are briefly presented
in Section III. Section IV summarizes the experimental
evaluation as well as the main results. Finally, conclusions
and future directions are left to Section V.

*Email address: fabio.lopez@pti.org.py (Fabio López-Pires)

II. UNCERTAIN VMP FORMULATION

The VMP problem could be formulated as both online
and offline optimization problems [2]. In order to im-
prove the quality of solutions given by online algorithms,
the VMP problem could also be formulated as a two-
phase optimization scheme, which combines advantages
of online and offline formulations for IaaS environments,
as previously demonstrated in [1]. As a result, VMP
problems are decomposed into two different sub-problems:
(i) incremental VMP (iVMP) and (ii) VMP reconfiguration
(VMPr), as shown in Figure 1.

A. Incremental VMP (iVMP)

In this work decisions are performed at each discrete
time t, and the iVMP problem could be enunciated as:

Given a complex IaaS environment composed by a set of
PMs (H), a set of active VMs which has been already
requested before time t (V (t)), and the current placement
of VMs into PMs (i.e. x(t)), it is sought an incremental
placement ∆V (t+ 1) of V (t) into H for the discrete time
t+ 1 (x(t+ 1)) without migrations, satisfying constraints
and optimizing a given objective function. Clearly, in this
iVMP problem, V (t+ 1) = V (t) + ∆V (t+ 1).

1) Input Data for iVMP: The considered formulation
[1] receives as input the following information: (i) a set
of n available PMs with their specifications; (ii) a set
of m(t) requested VMs (already allocated VMs in V (t)
plus new requests ∆V (t + 1)) and their specifications;
(iii) information about the utilization of resources of each
active VM at each discrete time t; as well as (iv) current
placement at each discrete time t (i.e. x(t)).

2) Output Data for iVMP: The result of the iVMP
phase at each discrete time t is an incremental placement
∆x(t + 1) for the next time instant in such a way that
x(t + 1) = x(t) + ∆x(t + 1). The placement at t + 1 is
represented as a matrix x(t+ 1) ∈ {0, 1}m(t)×n:

x(t+ 1) =

 x1,1(t+ 1) . . . x1,n(t+ 1)
.

xm(t),1(t+ 1) . . . xm(t),n(t+ 1)

 (1)

mailto:fabio.lopez@pti.org.py

Fig. 1. Two-phase optimization scheme for VMP problems considered in this work, presenting a basic example with a placement recalculation time
of β = 2 (from t = 2 to t = 4) and a placement reconfiguration time of γ = 1 (from t = 4 to t = 5). Authorized by the authors [1].

Formally, the placement for the next time instant x(t+1)
is a function of the current placement x(t) and the variation
on active VMs at discrete time t+ 1, i.e.:

x(t+ 1) = f [x(t),∆V (t+ 1)] (2)

B. VMP Reconfiguration (VMPr)

An offline algorithm solves a VMP problem considering
a static environment where VM requests do not change
over time and considers migration of VMs between PMs
[1]. The formulation of the considered VMPr problem
could be enunciated as:

Given a placement of VMs into PMs (x(t)), it is sought
a placement reconfiguration through migration of VMs
among PMs for a discrete time t (i.e. x′(t)), satisfying
constraints and optimizing an objective function.

A VMPr Triggering method defines under which circum-
stances the VMPr phase should be triggered in the consid-
ered two-phase optimization scheme for VMP problems.

1) Input Data for VMPr: It receives the following
information as input data: (i) a set of n available PMs with
their specifications; (ii) information about the utilization of
resources of each active VM at discrete time t; as well as
(iii) current placement at discrete time t (i.e. x(t)).

2) Output Data for VMPr: The result of the VMPr
problem is a placement reconfiguration through migration
of VMs among different PMs for the discrete time t,
represented by a new placement reconfiguration of x(t),
i.e. x′(t).

Given the offline nature of the VMPr phase, x′(t)
could be obsolete at the end of a placement recalculation.
Here, a VMPr Recovering method defines what should be
done with cloud service requests arriving during the VMP
recalculation time β (see Figure 1).

3) Constraints: Summarizing, during the iVMP process
a VM Vj must be allocated to run on a single PM Hi

or alternatively located in another federated IaaS provider.
Additionally, a PM Hi must have sufficient available
resources (CPU, RAM and network resources in this work)
to meet the dynamic requirements of all VMs Vj that are
allocated to run on Hi.

It is worth remembering that resources of VMs are
dynamically used, giving space to re-utilization of idle
resources that were already reserved in case of over-
booking. Re-utilization of idle resources could represent
a higher risk of unsatisfied demand in case utilization of
resources increases in a short period of time. Therefore,
providers need to reserve a percentage of idle resources
as a protection (defined by a protection factor λk) in case
overbooking is used. Interested readers could refer to a
previous work for details [1].

C. Power Consumption Minimization
According to a previous research work [3], the power

consumption can be represented by the sum of the power
consumption of each PM Hi at each discrete time t:
f(x, t) =

n∑
i=1

((pmaxi − pmini)× Ur1,i(t) + pmini)× Yi(t) (3)

where:
x: evaluated solution of the problem;
f(x, t): total power consumption of PMs at instant t;
pmaxi: maximum power consumption of a PM Hi;
pmini: minimum power consumption of a PM Hi; As suggested

in [3], pmini ≈ pmaxi ∗ 0.6;
Ur1,i(t): utilization ratio of resource 1 (in this case CPU) by Hi

at instant t;
Yi(t) ∈ {0, 1}: indicates if Hi is turned on (Yi(t) = 1) or not

(Yi(t) = 0) at instant t.

D. Normalization
This work normalizes the objective function cost f(x, t)

by calculating f̂(x, t) ∈ R, where 0 ≤ f̂(x, t) ≤ 1 as:

f̂(x, t) =
f(x, t)− f(x, t)min

f(x, t)max − f(x, t)min
(4)

where:
f̂(x, t): objective function normalized cost f(x, t) at instant t;
f(x, t): cost of original objective function f(x, t);
f(x, t)min: minimum possible cost for f(x, t);
f(x, t)max: maximum possible cost for f(x, t).

E. Scenario-based Uncertainty Modeling

In this work, uncertainty is modeled through a finite
set of well-defined scenarios S [4], where the following
uncertain parameters are considered: (i) virtual resources
capacities (vertical elasticity), (ii) number of VMs that
compose cloud services (horizontal elasticity), (iii) utiliza-
tion of CPU and RAM memory of virtual resources and
(iv) utilization of networking virtual resources.

For each scenario s ∈ S, a temporal average value of
the objective function f̂(x, t) is calculated as:

fs(x, t) =

∑tmax
t=1 f̂(x, t)

tmax

(5)

where:

fs(x, t): temporal average of objective function for all discrete
time instants t in scenario s ∈ S;

tmax: duration of a scenario in discrete time instants.

This work considers the minimization of the average
objective function costs for each scenario [4] to select
among solutions:

F1 =

∑|S|
s=1 fs(x, t)

|S|
(6)

where:

F1: average fs(x, t) for all scenarios s ∈ S;
|S|: cardinality of set S of scenarios.

III. EVALUATED ALGORITHMS

An experimental evaluation of 36 different VMP algo-
rithms (A1 to A36) is presented in a two-phase optimiza-
tion scheme. Each considered VMP algorithm is composed
by: (i) a iVMP resolution alternative, (ii) a VMPr resolu-
tion alternative, (iii) a VMPr Triggering method and (iv) a
VMPr Recovering method (see Table I).

The following sub-sections briefly present the consid-
ered iVMP and VMPr resolution alternatives as well as
the VMPr Triggering and VMPr Recovering methods.

A. Incremental VMP (iVMP) Algorithms

In this work, the following iVMP heuristic resolution
alternatives were evaluated (see Column 3 of Table I): (i)
First-Fit (FF), (ii) Best-Fit (BF), (iii) Worst-Fit, (iv) First-
Fit-Decreasing, (v) Best-Fit-Decreasing (BFD) and (vi) a
Filter Scheduler implemented in OpenStack1 (OS).

Experimental results obtained by some of the authors
already demonstrated that the FFD heuristic outperformed

1//docs.openstack.org/mitaka/config-reference/compute/scheduler

TABLE I
SUMMARY OF EVALUATED VMP ALGORITHMS. N/A INDICATES A

NOT APPLICABLE CRITERION.

Alg. Decision
Approach iVMP VMPr VMPr

Triggering
VMPr

Recovering
A1 N/A FF N/A N/A N/A
A2 N/A BF N/A N/A N/A
A3 N/A WF N/A N/A N/A
A4 N/A FFD N/A N/A N/A
A5 N/A BFD N/A N/A N/A
A6 N/A OS N/A N/A N/A
A7 D FF MMT T-B -
A8 D BF MMT T-B -
A9 D WF MMT T-B -

A10 D FFD MMT T-B -
A11 D BFD MMT T-B -
A12 D OS MMT T-B -

A13 C FF MA P �C
A14 C BF MA P �C
A15 C WF MA P �C
A16 C FFD MA P �C
A17 C BFD MA P �C
A18 C OS MA P �C
A19 C FF MA P U-B
A20 C BF MA P U-B
A21 C WF MA P U-B
A22 C FFD MA P U-B
A23 C BFD MA P U-B
A24 C OS MA P U-B

A25 C FF MA P-B �C
A26 C BF MA P-B �C
A27 C WF MA P-B �C
A28 C FFD MA P-B �C
A29 C BFD MA P-B �C
A30 C OS MA P-B �C
A31 C FF MA P-B U-B
A32 C BF MA P-B U-B
A33 C WF MA P-B U-B
A34 C FFD MA P-B U-B
A35 C BFD MA P-B U-B
A36 C OS MA P-B U-B

other evaluated algorithms in average [5]. In the FF
heuristic, requested VMs are allocated on the first PM
with available resource [6]. In FFD and BFD, the list of
requested VMs are decreasingly ordered [1]. Considering
previous research work [7], a technique inspired in the
operation of the real-world IaaS middleware OpenStack
(OS) is also considered. The OS resolution technique
applies filtering and weighting for selecting a PM Hi to
host a VM Vj .

B. VMP Reconfiguration (VMPr) Algorithms

As presented in Column 2 of Table I, the VMPr phase
may be considered with centralized (C) or distributed (D)
approaches when considering a two-phase optimization
scheme for VMP problems. In a centralized decision
approach (C), the optimization is globally performed,
evaluating the placement of all allocated VMs, while a dis-

tributed approach (D) partially reconfigures VMs allocated
in one isolated PM [2].

In the presented experimental evaluation, algorithms A1
to A6 do not consider any VMPr resolution alternative
(that is why Table Iindicates N/A, i.e. not applicable), in
order to evaluate two-phase optimization schemes against
iVMP alternatives. Additionally, algorithms A7 to A12
consider a distributed optimization approach, inspired in
the Minimum Migration Time (MMT) resolution alternative
[3]. On the other hand, a centralized optimization approach
(C) is considered for algorithms A13 to A36 based on a
Memetic Algorithm (MA) (see Column 4 of Table I).

C. Evaluated VMPr Triggering Methods
This work evaluates three VMPr Triggering methods

(see Column 5 of Table I): (i) threshold-based, (ii) peri-
odical and (iii) prediction-based. These considered VMPr
Triggering methods are briefly introduced next.

1) Threshold-based Triggering (T-B): In this VMPr
triggering method, VMPr phases are triggered when de-
fined thresholds are reached. Thresholds are typically de-
fined in terms of utilization of PM resources (e.g. CPU).
For this experimental evaluation, a PM Vi is considered to
be underloaded (when 10% of CPU utilization) or over-
loaded (90%). Consequently, a VMPr should be triggered
[3].

2) Periodical Triggering (P): A periodical VMPr trig-
gering method consists in triggering VMPr phases in fixed
periods of time (e.g. every 10 time instants) [8]. Period-
ically triggering the VMPr phase could present disadvan-
tages. For example, a reconfiguration could be required be-
fore the established time or these triggered reconfiguration
phases could be unnecessary. Consequently, optimization
opportunities could be wasted or even economical penalties
could impact cloud datacenter operation.

3) Prediction-based Triggering (P-B): The considered
prediction-based VMPr triggering method uses a Double
Exponential Smoothing (DES) as a statistical technique
for predicting values of the objective functions f̂(x, t),
mathematically formulated in Equations (7) to (9):

St = α× Zt + (1− τ)(St−1 + bt−1) (7)
bt = τ(St − St−1) + (1− τ)(bt−1) (8)

Zt+1 = St + bt (9)

where:
α: smoothing factor, where 0 ≤ α ≤ 1;
τ : trend factor, where 0 ≤ τ ≤ 1;
Zt: known value of f̂(x, t) at discrete time t;
St: expected value of f̂(x, t) at discrete time t;
bt: trend of f̂(x, t) at discrete time t;
Zt+1: value of F (x, t+ 1) predicted at discrete time t.

At each discrete time t, the prediction-based VMPr
triggering method predicts the next M values of f̂(x, t)
and triggers the VMPr phase if the objective function
consistently deteriorates.

D. Evaluated VMPr Recovering Methods
The following VMPr recovering methods are consid-

ered: (see column 6 of Table I): (i) cancellation and (ii)
update-based.

1) Canceling Reconfiguration (�C): Calcavecchia et al.
proposed to cancel the VMPr phase whenever a new
request is received [8]. This trivial case considers that
VMPr phases should only be performed in periods of time
with no request.

2) Update-based Recovering (U-B): This VMPr Recov-
ering method is based on updating the placement recon-
figuration calculated in the VMPr phase, according to the
changes that happened during the placement recalculation
time, applying operations to update the potentially obsolete
placement when it is useful [1].

IV. EXPERIMENTAL EVALUATION

This section summarizes the experimental environment
and the main findings identified in the performed experi-
ments as part of the simulations to evaluate performance
of the 36 considered algorithms (A1 to A36, presented
in Table I). The quality of obtained solutions is evaluated
in a scenario-based uncertainty model with 400 different
experimental scenarios taking into account the average
performance metric F1 defined in Equation (6).

A. Experimental Environment
The 36 evaluated VMP algorithms (see Table I) were

implemented using Java programming language. It is worth
noting that the presented experimental evaluation is based
on simulations, considering the simulation framework pre-
sented in [1]. The source code is available online2.

Taking into account that the VMP formulation consid-
ered in this work focusses exclusively in power consump-
tion, adaptions on the existing framework were included.
Additionally, code improvements for easily combine all
possible iVMP and VMPr resolution alternatives as well
as VMPr Triggering and VMPr Recovering methods.

Simulations were performed on a GNU Linux Operating
System with an Intel Xeon E3-12000 v6 processor and 32
GB of RAM memory.

The following parameters of the proposed uncertain
VMP formulation were considered for the experimental
evaluation presented in this work:
• Number of considered resources: r = 3;
• Recalculation time for A13 to A36: β = 2;
• Recalculation time for A7 to A12: β = 1;
Considering previous research by some of the authors,

best suitable values for protection factors according to the
CPU load scenarios are: (i) λk,1 = 0 for low CPU loads
and (ii) λk,2 = 0.75 for high CPU loads [5]. Therefore,
this work considers those values respectively.

2https://github.com/SDDCVMP/framework/tree/power-consumption

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.35

0.27

0.46

0.39

0.27 0.27

0.42

0.26

0.51

0.42

0.26
0.28

0.36

0.27

0.47

0.38

0.27 0.27

0.36

0.27

0.46

0.38

0.27 0.27

0.42

0.27

0.51

0.42

0.27 0.27
0.26

0.2

0.33

0.27

0.2
0.22

Algorithm Number

A
ve

ra
ge

C
os

t
(F

1
)

No VMPr Distributed approach
with MMT (VMPr)

Centralized approach with MA (VMPr)

Fig. 2. Average Cost (F1): Average values of F1 for each algorithm of Table I. For details on references of this figure, see Table II.

Additionally, 80 different workload traces of requested
cloud services (V (t)) and their specifications were consid-
ered as input data as well as their utilization of resources
U(t) at each discrete time t. Workload traces of cloud
service requests were generated using a Cloud Workload
Trace Generator (CWTG)3 based on [9] for provider-
oriented VMP problems in cloud computing environments.
The considered IaaS cloud infrastructure represents dat-
acenters of different sizes. Consequently, the considered
workload traces represent different loads of requested
CPU resources (e.g. Low (≤ 30%), Medium (≤ 60%),
High (≤ 90%), Full (≤ 98%) and Saturated (≤ 120%))
workloads. Each evaluated scenario s ∈ S is composed
by an IaaS datacenter and a workload trace of requested
cloud services, totalizing 400 different evaluated scenarios
(i.e. 80 workload traces x 5 IaaS datacenters [1]).

Considering the probabilistic nature of the MA resolu-
tion alternative, five runs of algorithms A13 to A36 were
performed. Experimental results obtained in this work are
summarized in the following sub-sections.

B. Experimental Results

The main goal of the presented experimental evaluation
is to explore different alternatives to answer the following
research questions (RQ):
• RQ1: Which algorithm presents the best average

solution for power consumption minimization with the
considered scenarios?.

• RQ2: Under what circumstances should be triggered
a VMPr phase? (VMPr Triggering).

• RQ3: What should be done with all the cloud services
requested during VMPr recalculation times? (VMPr
Recovering).

3https://github.com/DynamicVMP/workload-trace-generator

TABLE II
REFERENCES OF FIGURE 2.

iVMP alternative Color
First-Fit (FF) red
Best-Fit (BF) blue

Worst-Fit (WF) black
First-Fit-Decreasing (FFD) orange
Best-Fit-Decreasing (BFD) cyan

OpenStack (OS) green
VMPr Triggering method Pattern

Not Applicable (N/A)
Threshold-based

Periodical
Prediction-based

VMPr Recovering method Shape
Not Applicable (N/A)

Cancellation
Update-based

Based on the summarized experimental results presented
in Figure 2, the Main Findings (MFs) of our evaluation are
briefly presented next:

MF1: In average, A32 presents the best quality of
solutions, taking into account the F1 performance metric
as evaluation criterion.

It is worth remembering that A32 is based on a central-
ized decision approach (C) with: (i) BF as iVMP resolution
alternative, (ii) MA as VMPr resolution alternative, (iii) a
prediction-based (P-B) VMPr Triggering method and (iv)
an update-based (U-B) VMPr Recovering method.

For the presented evaluation, the total power consump-
tion of all PMs in the 400 considered experimental scenar-
ios of 1000 time instants is 105,23 [KW], what is 47.34%
better than the worst algorithm (A27). Clearly, it is worth
choosing the right algorithm (savings up to 47.34% were
found).

TABLE III
TOP-5 BEST ALGORITHMS CONSIDERING F1 EVALUATION METRIC

FOR SERVER POWER CONSUMPTION. NO OTHER POWER
CONSUMPTION, AS TEMPERATURE SUBSYSTEM, IS CONSIDERED.

Ranking Algorithm F1 Power Consumption [KW]
1st A32 0.200 105.2
2nd A35 0.202 107.5
3th A36 0.217 107.6
4th A31 0.257 108.7
5th A11 0.263 143.1

MF2: The Top-5 best evaluated algorithms (see Ta-
ble III) consider prediction-based VMPr Triggering and
update-based VMPr Recovering methods.

Clearly, using a VMPr phase is very useful when mini-
mizing energy consumption. To do it, a relevant decision is
to choose the right VMPr Triggering and VMPr Recover-
ing methods. Therefore, as a future work we are currently
working on including a VMPr phase into commercial
implementations of real-world cloud middlewares (e.g.
OpenStack), taking into account prediction-based VMPr
Triggering and update-based VMPr Recovering methods
as well as other novel alternatives.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This work evaluated 36 different VMP algorithms in
a previously proposed two-phase optimization scheme in
order to identify which one presents the best solutions for
power consumption minimization (Research Question 1,
answered with Main Finding 1, i.e. the A32 algorithm).
Additionally, a main goal of the experimental evaluation is
to identify under what circumstances to trigger a placement
reconfiguration or a VMPr phase (Research Question 2,
answered with Main Finding 2, i.e. prediction-based Trig-
gering) as well as what to do with VMs requested during
VMPr recalculation times (Research Question 3, answered
with Main Finding 2, i.e. update-based Recovering).

It is worth mentioning that power consumption man-
agement has become a crucial study issue in the provider-
oriented VMP literature [2]. In this context, A32 algorithm
shows a promising future for green cloud datacenters
efficiently managing VMP decisions. A sensibility analysis
is proposed as future work, in order to be able to analyze
the variability of each algorithm behavior.

Considering that the prediction-based VMPr Trigger-
ing method outperformed other evaluated alternatives, fu-
ture work may include the following Research Questions
(RQs):

• RQ4: which other techniques could be considered
more appropriate for VMPr Triggering methods?.

• RQ5: how important is to accurately predict when to
trigger a VMPr phase in VMP problems?.

• RQ6: rather than predicting future objective function
values, what other parameters could be evaluated for
VMPr Triggering methods?.

• RQ7: which machine learning (ML) techniques could
be paired with the existing VMPr methods for predic-
tion purposes?.

• RQ8: which other algorithms could be implemented
to trigger the VMPr phase paired with the exiting
Triggering and Recovering methods?.

• RQ9: is it worth bringing back to the datacenter a
VM request that has already been sent to another
federated datacenter?. If this is the case, when and
how is it worth doing this migration?.

Finally, alternative VMPr Recovering methods could
also be proposed, as well as novel VMPr techniques and
formulation parameters, just to cite a few alternatives,
towards a practical and efficient management tool for
Green Cloud Computing Datacenters.

ACKNOWLEDGMENT

This research work was supported by CONACYT
(Paraguay), in the context of the PINV15-781 Software-
defined Datacenters research project grant.

REFERENCES

[1] F. López-Pires, B. Barán, L. Benı́tez, S. Zalimben, and A. Amarilla,
“Virtual machine placement for elastic infrastructures in overbooked
cloud computing datacenters under uncertainty,” Future Generation
Computer Systems, vol. 79, pp. 830–848, 2018.

[2] F. López-Pires and B. Barán, “Cloud computing resource allocation
taxonomies.” IJCC, vol. 6, no. 3, pp. 238–264, 2017.

[3] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Generation Computer Systems, vol. 28,
no. 5, pp. 755–768, 2012.

[4] M. A. Aloulou and F. Della Croce, “Complexity of single machine
scheduling problems under scenario-based uncertainty,” Operations
Research Letters, vol. 36, no. 3, pp. 338–342, 2008.

[5] A. Amarilla, S. Zalimben, L. Benı́tez, F. López-Pires, and B. Barán,
“Evaluating a two-phase virtual machine placement optimization
scheme for cloud computing datacenters,” in 2017 Metaheuristics
International Conference (MIC), 2017, pp. 99–108.

[6] S. Fang, R. Kanagavelu, B.-S. Lee, C. H. Foh, and K. M. M. Aung,
“Power-efficient virtual machine placement and migration in data
centers,” in Green Computing and Communications (GreenCom),
2013 IEEE and Internet of Things (iThings/CPSCom), IEEE In-
ternational Conference on and IEEE Cyber, Physical and Social
Computing. IEEE, 2013, pp. 1408–1413.

[7] F. López-Pires, B. Barán, C. Pereira, M. Velázquez, and O. González,
“Towards elastic virtual machine placement in overbooked openstack
clouds under uncertainty,” in VI Jornadas de Cloud Computing & Big
Data (JCC&BD)(La Plata, 2018), 2018.

[8] N. M. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti, “Vm place-
ment strategies for cloud scenarios,” in Cloud Computing (CLOUD),
2012 IEEE 5th International Conference on. IEEE, 2012, pp. 852–
859.

[9] J. Ortigoza, F. López-Pires, and B. Barán, “Workload generation
for virtual machine placement in cloud computing environments,”
in 2016 XLII Latin American Computing Conference (CLEI), Oct
2016, pp. 1–9.

	Introduction
	Uncertain VMP Formulation
	Incremental VMP (iVMP)
	Input Data for iVMP
	Output Data for iVMP

	VMP Reconfiguration (VMPr)
	Input Data for VMPr
	Output Data for VMPr
	Constraints

	Power Consumption Minimization
	Normalization
	Scenario-based Uncertainty Modeling

	Evaluated Algorithms
	Incremental VMP (iVMP) Algorithms
	VMP Reconfiguration (VMPr) Algorithms
	Evaluated VMPr Triggering Methods
	Threshold-based Triggering (T-B)
	Periodical Triggering (P)
	Prediction-based Triggering (P-B)

	Evaluated VMPr Recovering Methods
	Canceling Reconfiguration ()
	Update-based Recovering (U-B)

	Experimental Evaluation
	Experimental Environment
	Experimental Results

	Conclusions and Future Directions
	References

