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What is a smart building?

Automated and integrated
management system.

HCAV (heating, ventilation, and
air conditioning).
Lighting, access control,
security, etc.

Remote monitoring with sensors.
Decision-making support system.
Benefits:

Energy efficiency.
Security.
Usability.
Accessibility.
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Data

Training data

Date T (C) Humidity Energy demand (mw)

23 Feb 9.47 0.89 20820
24 Feb 8.28 0.83 19950
25 Feb 8.75 0.83 19825
26 Feb 16.02 0.67 15437
... ...
16 Apr 10.70 0.95 12375

Test data

Date T (C) Humidity Energy demand (mw)

17 Jun 9.87 0.75 ?
18 Jun 12.04 0.50 ?
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Model evaluation
Train-Test split: Walk Forward Validation

Walk Forward Validation

Validation for hyperparameter tuning
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From time series to a regression problem

Training data

Date Cons.
(mw)

23 Feb 20820
24 Feb 19950
25 Feb 19825
26 Feb 15437
27 Feb 19825
28 Feb 15437
... ...

Historical: 3, Horizon: 2

Historical data (w) Prediction horizon (h)

23 Feb 24 Feb 25 Feb 26 Feb 27 Feb
24 Feb 25 Feb 26 Feb 27 Feb 28 Feb
25 Feb 26 Feb 27 Feb 28 Feb 1 mar
... ...
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The Perceptron (Minsky-Papert, 1969)
The linear classifier

Inputs: feature values
Parameters: weights
Hypothesis: f (x) = wTx

y =

{
1 if wTx > 0
0 if wTx ≤ 0

Prediction: y = sign(f (x)) = sign(wTx)
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The Perceptron
The linear classifier
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The Perceptron
The nonlinear classifier

y = g(z)

z = w0 +
m∑

j=1

xjwj
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The Perceptron
Multi output

yi = g(zi)

zi = w0,i +

m∑
j=1

xjwj,i
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Single Layer Neural network
Multi output

Figure adapted from A. Amini, Introduction to Deep learning.

zi = w(1)
0,i +

m∑
j=1

xjw
(1)
j,i

ŷi = g(w(2)
0,i +

d1∑
j=1

g(zj)w
(2)
j,i )
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Deep Neural Network

xk,i = w(k)
0,i +

nk−1∑
j=1

g(zk−1,j)w
(k)
j,i
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Characteristics

Data provided by the Spanish Nominated Electricity Market
Operator (NEMO)
Spanish electricity consumption from January 1, 2007 to June
21, 2016.
497832 Mesurements recorded every 10 minutes without neither
missing values nor outliers.
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Experiment setup

Magnitud of Relative Error

MRE =
1
n

n∑
i=1

|Yi − Ŷi|
Yi

Machine Learning Algorithms: Random Forest (RF), Artificial
Neural Networks (ANN), Evolutionary Decision Trees (EV), the
Auto-Regressive Integrated Moving Average (ARIMA), the Gradient
Boost Method (GBM), Decision Tree (DT) and an hybrid approach
(ENSEMBLE).
Deep Learning Algorithms: Feed-Forward Neural Network (FFNN),
Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM).
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Experiment setup
Experiments

Exp#1: Analysis of the historical window (w) impact on models
quality.
Exp#2: Hyperparameter tuning using a Genetic Algorithm (GA).
Exp#3: Models comparison.
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Results
Exp#1: Analysis of the historical window (w)

The proposed strategy obtains similar results for w = 168, 144, 120 on
all the considered values of the prediction horizon h.
W = 168 was selected!
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Results
Exp#2: Hyperparameter tuning

Parameters selected by the GA for each h using a w of 168
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Results
Exp#3: Models comparison

Average results obtained by different methods for different
historical window values. Standard deviation between brackets.

PINV18-661 Short-Term Electric Energy Consumption Forecasting



23/ 23

introduction
Methodology

Results

Data
Experiments
Conclusions and future works

Conclusions and future works

The proposed methodology is efficient for short-term electric
energy forecasting (it achieved the best performance).
The best models performance is achieved for large values of w.
Apply the framework proposed to Paraguay data and other
datasets .
Improve the hyperparameter tuning stage (due to technical
limitations).
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