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ABSTRACT In real-world multi-objective optimization, dealing with many objectives and a large number
of solutions is a common challenge that complicates data visualization and analysis. This study aims to
simplify decision-making by analyzing tools to better explore Pareto optimal solutions in many-objective
scenarios, integrating clustering, filtering, and ranking with existing graphics techniques. The dynamic
combination of these tools should reduce complexity and highlight significant patterns in the data set,
allowing decision-makers to tailor the visualization to their specific needs and preferences. Central to the
approach presented in this work is the innovative application of shape-based clustering to organize the
solution set and the use of this clustering to define distinct types of filters. Additionally, ranking methods
originally proposed to enhance search in many-objective evolutionary algorithms are used here to identify
the best solutions based on predefined criteria in combination with other techniques. The efficacy of the
proposed integrated approach was evaluated using an application developed with this aim and considering
a five-objective problem as a case study. The analysis suggests that using these combined strategies aids
interactive visual exploration, effectively reducing solution volume and improving data understanding,
potentially facilitating decision-making tasks.

INDEX TERMS Multi-objective optimization, many-objective optimization, data visualization, shape-based
clustering, decision-making, filtering methods, ranking methods, interactive visual exploration.

I. INTRODUCTION
Multi-objective optimization problems (MOPs) involve more
than one conflicting objective function, which should be
minimized or maximized, such that an improvement in one
criterion often comes at the expense of at least one another,
creating inherent trade-offs. Consequently, MOPs typically
yield a set of compromise solutions rather than a single
optimal solution known as the Pareto Optimal set. The
representation of these solutions in the objective space is
termed the Pareto Optimal Front.

When a set of viable solutions contains many alternatives,
decision-makers must analyze and evaluate them to identify
the one that best fits their needs. Visual analysis plays a
crucial role in this process, as the human brain is better
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at processing visual information and quickly identifying
patterns [1], [2], [3]. By visualizing the obtained solutions,
decision-makers can thoroughly explore alternative solutions.
This exploration allows them to estimate the range of
solutions for each objective, gain insights into the location
and shape of the Pareto front, assess the conflicts and
trade-offs between objectives, and select the most suitable
solutions from the available options [2].
Many-objective optimization problems (MaOPs) are

MOPs involving four or more objectives. Several visual-
ization methods are available for inspecting solution sets
in many-objective optimization problems. A survey by von
Lücken et al. [4] broadly categorized these methods into
three types: (i) those that display objectives in groups of
two or three at a time; (ii) those that show all objectives
simultaneously in a single graph; and (iii) those that apply
dimensional reduction techniques to the objective space
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before plotting, aiding in quantitative analysis. Additionally,
Filipič and Tučar [3] classify these methods into two groups:
one showing actual original or normalized values and another
transforming these values into alternative representations for
visualization. Popular methods in the first group include the
Scatter Plot Matrix, which displays objectives in groups,
and Parallel Coordinates [5], [6], which represents the
complete set of objectives in a single graph. In the category
of transformed values, Radial Coordinate Visualization or
RadViz [7] is notable for its ability to display the complete
set of objectives in a single graph.

As the number of problem objectives increases, so does
the complexity and the number of alternative solutions.
This escalation in complexity often leads to problems such
as data overlap, difficulty discerning clear patterns, and
other challenges individuals face when the data to visualize
increases [8]. To mitigate these challenges, researchers have
proposed refined visualization techniques. These enhance-
ments to simplify and clarify data presentation include adjust-
ing visualization axes [9], introducing three-dimensional
representations [10], reducing the number of objectives [11],
and mapping higher-dimensional variable spaces into lower
dimensions [12]. Designers of these strategies aim to help
users navigate and understand the intricate data landscapes
typical in many-objective optimization problems more effec-
tively [13].

Previous works have explored clustering techniques for
visual analysis in many-objective optimization [11], [13],
[14], and the use of filtering by value range to enhance
visualization [15], [16]. Several evolutionary algorithms have
incorporated various ranking methods to search for solutions,
which differ from the traditional non-dominance ranking.
These methods often reflect the decision-maker’s (DM)
preferences during the search process. However, integrating
these ranking methods with display techniques still needs
to be explored, highlighting potential research areas in
visualizing many-objective optimization solutions.

This work introduces a method that integrates clustering,
filtering, and ranking strategies with established visualization
techniques to enhance the analysis and representation of
solutions in many-objective optimization problems. The
approach employs Shape-based clustering [17] as the basis
for nuanced solution selection, enabling the definition of var-
ious filtering methods based on this clustering. Additionally,
it utilizes K-means [18] and provides the ability of manual
classification to complement and refine the selection process
based on defined criteria. The framework also includes
filtering methods to categorize solutions by group attributes
and specific value ranges. It employs two ranking approaches:
favour and ϵ-preferred, to aid decision-makers in evaluating
and prioritizing solutions effectively.

This study illustrates the enhancement proposal using
an application specifically developed with this aim, which
is available upon request. Considering the solutions of a
many-objective optimization problem named Water [19],
the developed application served to examine the possible

impact of using these strategies in various sequences,
reflecting the diverse approaches a decision-maker might
take during the visual exploration. Interestingly, the results
indicate that the strategic combination of these methods can
effectively reduce the volume of data presented, tailoring
it more precisely to the specific needs of the decision-
maker. This finding highlights the usefulness of our approach
in simplifying complex data sets, thereby aiding in more
efficient decision-making in the context of MOPs.

This article’s organization is as follows: Section II presents
some existing visualization methods related to this work,
providing an overview and evaluation of their relevance
and application in many-objective optimization problems.
Section III introduces and details the proposed enhancement
strategies: clustering, rankings, filters, and their integration
to improve the visual analysis and decision-making in
many-objective optimization. Section IV illustrates these
proposed strategies’ practical application and results through
a case study based on a specific many-objective problem,
demonstrating their effectiveness and utility. The last section
summarizes the conclusions drawn from this study and
outlines potential avenues for future work, suggesting ways
to extend and refine the methodologies presented.

II. RELATED VISUALIZATION METHODS
Scatter Plot is one of the most popular display methods
in multi-objective optimization due to its simplicity of
implementation and interpretation. This two-dimensional
graphic effectively represents solutions by using points
plotted along perpendicular axes. However, its effectiveness
diminishes when dealing with more than two dimensions,
as the Scatter Plot is inherently limited to two-dimensional
data representation. By varying the size and color of the
points, one can integrate additional dimensions into the
standard Scatter Plot, thus transforming it into a Bubble
Chart. This modification enables the representation of up to
five dimensions, providing a more comprehensive view of the
data [2]. The Bubble Chart, therefore, enhances the Scatter
Plot’s utility in visualizing complex, multi-dimensional data
sets typical in multi-objective optimization.

The Scatter Plot Matrix is a grid layout of individual
scatter plots, each showing objectives in pairs or with a
reduced set of them, ignoring all the vector dimensions
other than the ones considered in each subplot. This fast,
simple, and robust method makes it a valuable tool for initial
data analysis. However, its practicality decreases with an
increase in the number of dimensions as the matrix becomes
cluttered with numerous rows and columns. A significant
limitation of the Scatter PlotMatrix is its inability to provide a
complete view of all objective relationships simultaneously,
as it only plots pairs of objectives. In scenarios with many
objectives, dimensional reduction techniques are employed
to eliminate redundant objectives before plotting. While
this approach helps manage complexity, it runs the risk of
omitting potentially valuable information, as it simplifies the
objective set.
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Another notable display method is RadViz [7], which
employs a physics-based approach. In this method, objectives
are evenly spaced around the circumference of a unit
circle, and each objective is conceptually attached to the
solutions or vectors through ‘springs.’ The strength of these
springs is proportional to the solution’s performance in the
corresponding objective. A solution’s position within the
circle represents a balance point where all these spring
forces reach equilibrium. Consequently, solutions closer to
a particular objective on the circle’s perimeter indicate a
higher performance in that objective compared to others.
Solutions that perform uniformly across all objectives are
positioned near the circle’s center, effectively representing
their balanced nature. RadViz excels in preserving the
distribution of vectors, offering a unique perspective on their
relative performance. 3D RadViz [10] is a transformation
of RadViz that consists of adding a new dimension to the
method; this dimension is the distance from the individuals
to a hyperplane that passes through the extreme vectors of
the set.

The Parallel Coordinates method is a visualization tech-
nique that represents each vector in a multi-dimensional
space by connecting segments across parallel axes. Each
axis corresponds to one dimension, and the position of a
vertex on the i-th axis represents the vector’s i-th coordinate.
Unlike the Scatter Plot that uses orthogonal axes, the
Parallel Coordinates method employs parallel axes, making
it possible to represent sets of solutions with any number
of dimensions on a two-dimensional plane. This method is
advantageous because it can reveal conflicting or harmonious
relationships between pairs of adjacent objectives, as noted
in [5]. Various techniques were developed to enhance
this visualization to strategically order the axes, thereby
highlighting the relationships between different objectives
more clearly [9], [20].

Lastly, the Star Coordinates method [21] extends the
Scatter Plot to higher dimensions. It depicts objectives as
axes radiating from a central point in a circular arrangement.
Initially, these axes are of equal length and uniformly
spaced, ensuring that each attribute contributes equally to
the data representation. To enhance the analysis, users can
apply various transformations, such as scaling the axes to
adjust the prominence of specific attributes or altering the
angles between axes to modify the interrelationships among
attributes. These transformations allow for a dynamic and
customizable approach to understanding complex, multi-
dimensional datasets.

III. PROPOSED IMPROVEMENT STRATEGIES
Although various visualization methods exist, the challenge
of efficiently simplifying the visual exploration of solutions
in scenarios with more than three objectives persists. This
paper introduces a novel approach to address this gap,
combining Parallel Coordinates with clustering, ranking,
and filtering techniques. The objective is to organize infor-
mation effectively in high-dimensional spaces, facilitating

decision-makers’ exploration and visual analysis of solution
sets with numerous objectives. The following section details
these proposed techniques, illustrating how their integrated
application can significantly enhance the decision-making
process in complex many-objective optimization scenarios.

A. CLUSTERING
Clustering algorithms perform an unsupervised classification
of unlabeled data, aiming to categorize a dataset into distinct
groups or clusters. The primary objective of clustering is to
group elements with similar characteristics while ensuring
that elements from different clusters are as dissimilar as pos-
sible. In multi-objective optimization, this classification aids
decision-makers in exploring and understanding solutions at
a broader level, focusing on group characteristics rather than
individual data point attributes. This approach aligns with
the natural human inclination to comprehend new objects
or phenomena by identifying and comparing features based
on similarity or dissimilarity, a concept often referred to as
proximity [22]. Moreover, clustering is critical in identifying
unusual patterns within a dataset, such as notable disparities
in cluster sizes or the presence of outlier elements.

Several studies explored using clustering to visually depict
solutions in multi-objective optimization scenarios [15],
[23], [24], [25], [26], [27]. A prominent example is the
Self-organizing Map (SOM) [24], an unsupervised learning
algorithm that maps multi-dimensional input data to a
two-dimensional output space, preserving data’s topological
relationships. This attribute of SOM makes it particu-
larly effective for visualizing complex sets of solutions.
In [27], authors present an interpretable self-organizing map
(iSOM) method that produces a more simplistic mapping
of higher-dimensional variable spaces into two dimensions.
Additionally, some proposals integrate clustering with Rad-
Viz [10] and Parallel Coordinates [15], [25], [28]. These
integrative approaches foster a more structured and insightful
visual representation of solutions, equipping decision-makers
to identify underlying patterns and associations that might not
be immediately apparent within complex, high-dimensional
data sets.

Among the various clustering algorithms, this work
considers the K-means algorithm [29] for visual exploration
for its simplicity and effectiveness. The K-mean algorithm
aims to partition a set of m-dimensional vectors in Rm

into k distinct groups by finding optimal central points in
the space and minimizing the mean squared distance from
each point to its nearest center. This method’s simplicity
and low computational complexity has led to its widespread
application in various fields [30], such as machine learning,
computer vision, and market segmentation.

Besides the K-means, clustering solutions by the shape
of objective vectors [17], [25] is considered here both as a
practical method for grouping solutions as well as to define
filteringmethods indicating user preferences, as Section III-C
explains. To determine the shape of a real vector y = y1,
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TABLE 1. Example of obtaining the shape of objective vectors in a
solution set.

. . . , ym ∈ Rm, we define the pair (o(y), π(y)) where o(y) is the
ordered version of the elements yi, andπ (y) is the permutation
of the indices 1, . . . ,m achieving this ordering. A formal
definition of the shape of a vector in Rm is as follows.
Definition 1 (Shape of a Vector in Rm [17]): given a vector

y ∈ Rm, a permutation π (y) = π1, . . . , πm, πi ∈ 1, . . . ,m,
is the shape of y iff:

yπi ≤ yπj , ∀i < j (1)

To compare the values of the different objectives, these
must be on the same scale. Therefore, normalization of
objective values is carried out prior to determining the vector
shape. Table 1 shows a set of solutions and their shapes for a
minimization problem with m = 4 objectives.

Algorithm 1 outlines the shape-based clustering approach
to categorize solutions into distinct groups. The algorithm
starts by accepting an input set of solutions, denoted as S. This
set contains multiple solutions, each with a set of objective
values. Then, the objective values for each solution Si are
normalized. Normalization ensures consistency when dealing
with values across different scales, preventing any objective
from dominating others due to its range or scale. Following
normalization, the algorithm identifies the shape of each
vector Si, leading to the recognition of γ distinct shapes.

Once these shapes are determined, the algorithm estab-
lishes γ empty clusters, denoted as G1,G2, . . . ,Gγ corre-
sponding to each unique shape. These clusters are to group
solutions based on their shapes. For each unique shape shj
in Sh, the algorithm goes through the solutions and assigns
each solution Si ∈ S to a cluster Gj if the shape of Si matches
the current shape shj. This process ensures that the algorithm
assigns every vector to a cluster corresponding to its shape.

Algorithm 1 Shape-Based Clustering Algorithm
1: Receive the set of solutions S
2: Normalize objective values of each solution Si in S
3: For each Si in S obtain its shape πSi = π(Si)
4: Determine the set Sh = sh1, sh2, . . . , shγ composed

with the γ available shapes
5: Initialize G1,G2, . . . ,Gγ groups as empty
6: for each shj do
7: Gj = {Si|πSi = shj; Si ∈ S}

8: end for

A distinctive feature of this method is the construction
of an m-dimensional shape-preserving representative vector
for each cluster by averaging the values of each dimension

TABLE 2. Example of clustering solutions using the shape-based
clustering.

FIGURE 1. Parallel coordinates plot representing the shape-based
clustering corresponding to the solutions in Table 2. The colors of the
lines represent the shapes of the vectors.

across all vectors in the cluster. This dual representation
ensures that the representative vector reflects the average
values of the objectives and mirrors the shape of all
vectors in the cluster. Such a comprehensive representation
allows decision-makers to quickly understand each cluster’s
quantitative and qualitative characteristics, facilitating more
nuanced and efficient decision-making processes.

Table 2 provides an example of clustering based on the
shapes of solutions from the previous example. Figure 1
illustrates this clustering using a Parallel coordinates plot,
where each line represents a vector. The lines’ colors
correspond to the shapes of the vectors, meaning that vectors
with the same shape share the same color. This visual
representation facilitates the comparison ofmultiple variables
and highlights patterns and similarities among vectors with
identical shapes, corresponding to the solutions in Table 2.

B. RANKINGS
Besides clustering, this work applies ranking techniques
commonly used in many-objective optimization algorithms
to improve the visual exploration and analysis process. The
goal is to help decision-makers efficiently evaluate, compare,
and prioritize solutions based on specific criteria. With this
aim, this work examines the ranking method proposed by
Drechsler et al. [31] based on the Satisfiability Class Ordering
(SCO) and the favour relation, as well as a similar ranking
method based on SCO and the ϵ-preferred relation [32].
Besides providing a relevant ranking of solutions, as noted
in [31], these ranking methods achieve very low run times
due to their efficient graph-based representation.We consider
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TABLE 3. Example of favour relationships between pairs of solutions.
In this table, ’1’ at row si , column sj indicates si ≺favour sj .

these characteristics to make them particularly suitable for
interactive and iterative analysis.

The SCO method offers a framework for classifying solu-
tions at different levels according to a defined relationship.
The algorithm entails constructing a directed graph of the
solutions, with each node representing a solution and a
directed edge between two nodes indicating that one solution
dominates the other. In the event of cycles, the method groups
nodes into a single node. Then, the resulting graph determines
a partial order of the solutions.
Favour and ϵ-preference relations are helpful in

many-objective problems to consider an additional layer
of information beyond non-dominance, facilitating the
identification of subtle differences in their performance. For
instance, the favour relation assesses which of two solutions
performs better across a greater number of objectives, even
if both are non-dominated. Similarly, the epsilon-preference
[32] relation introduces a threshold to consider performance
differences between solutions as significant. What follows
are formal definitions and examples of these relations.
Definition 2 (Favour Relation [31]): Given two solutions

s, s′ ∈ S with their respective returns y = F(s), y′ = F(s′),
it is said that s dominates with the relation favour to s′,
denoted as s ≺favour s′, if and only if:

nb(y, y′) > nb(y′, y) (2)

where

nb(y, y′) = |{yi|yi < y′i, ∀i ∈ [1,m]}| (3)

Table 3 shows the result of applying the favour relationship
between each pair of solutions in the set we used in the
example in Table 1. In Table 3, a one in the row corresponding
to si and the column of sj represents that there is a relationship
of the type si ≺favour sj. Utilizing the data from this
table, applying the SCO process facilitates the ordering of
solutions. As a result of this ordering, the consequent ranking
is illustrated in Figure 2.
Based on the favour, the epsilon-preference relation [32]

compares two solutions taking into account the number of
objectives in which a solution has better performance than
the other giving a threshold. When solutions tie, the favour
relationship determines which solution is better.
Definition 3 (Relationship ϵ-Exceed [4], [32]): Let s y s′ ∈

S, y = F(s), y′betwosolutions = F(s′), a specified vector
of limit values ϵ = (ϵ1, . . . , ϵm), s is said to dominate with

FIGURE 2. Ranking using SCO and the favour relationship between each
pair of solutions.

TABLE 4. Example of the relationship s ≺ϵ−exceed s′ between pairs of
solutions, a ‘‘1’’ in a cell at row si and column sj , represents
si ≺ϵ−exceed s′

j .

TABLE 5. Example of the relationship ϵ − preferred between pairs of
solutions. The relationship si ≺ϵ−pref sj is represented by ‘‘1’’ at row si
and column sj .

relation ϵ-exceed to s′, denoted as s ≺ϵ−exceed s′ iff:

|{i|yi < y′i ∧ |yi − y′i| > ϵi, ∀i ∈ [1,m]}| >

|{i|y′i < yi ∧ |y′i − yi| > ϵi, ∀i ∈ [1,m]}| (4)

The definitions 2 and 3 are combined to form the
relationship ϵ-preferred as follows:
Definition 4 (ϵ-Preferred Relation [4]): Given two solu-

tions s and s′ ∈ S, it is said that s dominates with relation
ϵ-preferred to s′, denoted as s ≺ϵ−pref s′ ssi:

s ≺ϵ−exceed s′ ∨ (s′ ⊀ϵ−exceed s ∧ s ≺favour s′) (5)

Consider again solutions from Table 1 and ϵi = 0.2
∀i ∈ [1, 4]. To determine the ϵ-preferred between each pair
of solutions, the solutions are first compared considering
≺

′
ϵ−exceed as Table 4 shows where a 1 in a cell in row i and

column j indicates a relationship of the type si ≺ϵ−exceed sj.
Finally, using the information in Tables 4 and 3

in conjunction with Equation 5, the relationship ϵ −

preferred can be obtained between each pair of solutions in
Table 5.
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FIGURE 3. S ranking using SCO and ϵ-preferred with ϵi = 0.2∀i ∈ [1, 4].

TABLE 6. Example of filtering solutions with objective 2 within the range
[ 0.3, 0.5 ].

Figure 3 shows the classification of solutions considered in
the examples, using SCO and relation ϵ-preferred. Note that
applying the relation ϵ - preferred with ϵi = 0 ∀i ∈ [1,m] is
equivalent to applying SCO with the relation favour.

C. FILTERS
Filtering data for visualization simplifies the analysis by
reducing the volume of information. A commonly used filter
is based on the range of values that can be defined as follows.
Definition 4 (Filter by a Range of Values):

FR = {si|α ≤ S ji ≤ β, ∀si ∈ S}

1 ≤ j ≤ m

α ≤ β (6)

where S ji is the value at position j of the performance vector
Si, α and β are the value constraints of the filter.
Table 6 illustrates the application of a filter based on a

specific range of values, targeting solutions whose value
in the second objective (j = 2 ) falls within the interval
[α = 0.3; β = 0.5]. All the values of Si are normalizedwithin
the range [0, 1].

Although range-based filters are helpful and easy to
use, this study advocates using filters based on previously
described clustering strategies. Since clustering categorizes
solutions into distinct groups, filter by groups is defined as
follows.
Definition 5 (Filter by Groups):

FG = {si|si ∈ G} (7)

TABLE 7. Representation of the result of applying the filter by priority
based on the way where it is specified that objective 2 has priority over
objective 3.

TABLE 8. Example that demonstrates the result of applying the combined
use of the filter by value FR2

and the filter by priority based on the form
FP1

.

where G represents the group to be filtered.
A filter proposed in this work based on the shape of the

solutions is the priority filter.
Definition 6 (Filter by Priority Based on Shape): can be

defined as:

FP = {Si|τ (Si, oi) > τ (Si, oj), ∀si ∈ S}

1 ≤ i, j ≤ m

i ̸= j (8)

where τ (Si, oi) and τ (Si, oj) are the positions of the shape
π (Si) for objectives oi y oj, respectively.
Table 7 shows an example of applying a priority filter based

on the shape, having as priority objective two over objective
number 3.

Because filters result in sets of solutions, these can
be combined using basic set operations such as union or
intersection.

Table 8 shows an example of considering filters FR2
and FP1 simultaneously, i.e., the intersection, thus providing
solutions whose value in the fourth objective is within the
range [α = 0.0; β = 0.5] with objective number 2 as priority
before number 3.

Taking into account the shape of the solutions, this work
introduces the concept of a ‘‘position-based filter.’’ This
filter allows for the selection of solutions where a specific
objective occupies a particular position or falls within a range
of positions. For example, using this position-based filter, one
could isolate all solutions in which objective 3 occupies the
first or second position based on the shape.

IV. IMPLEMENTATION AND RESULTS
To illustrate the advantages of the proposed enhancement
strategies, a visualization tool has been developed in Java.
Available upon request, this tool features Parallel Coordinates
and RadViz as its primary visualization techniques. Rather
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FIGURE 4. Representation of the original set of the problem Water using the parallel coordinates method.

FIGURE 5. Application interface showing the clusters based on the shape of the solution set of the problem Water using the parallel coordinates method.

than detailing the application specifics, this section offers a
comprehensive overview of how the discussed methods can
support visual analysis. The primary focus is showcasing
results through the parallel coordinates method and on the
utility of integrating shape-based clustering with filters and
ranking to uncover deeper insights.

As a case study, this work considers the solution set of the
Water problem [19] available in [33]. It is a many-objective
problem considering the simultaneous optimization of the
following objectives within a river drainage system:

• f1: cost of the drainage network.
• f2: cost of storage infrastructure.

• f3: cost of treatment infrastructure.
• f4: expected cost of flood damage.
• f5: expected economic loss due to floods.

Additionally, the referenced problem mandates adherence
to constraints, detailed in [19].

The developed application produced Figure 4, which
shows the solution set using the Parallel Coordinates method
before applying the proposed improvement strategies. Due
to the varied scales across the problem’s objectives, the
application normalizes the data for comparability. The large
volume of data, encompassing 2429 solutions, results in
significant overlap among the lines, hindering practical
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FIGURE 6. Visualization of 36 representative vectors for each cluster, derived from shape-based clustering. The interactive feature of the tool
allows users to explore individual vector characteristics, as demonstrated by the cursor placed over the vector (1.0, 1.0, 1.0, 0.0, 0.0), with details
shown in the yellow box.

FIGURE 7. Visualization using Parallel Coordinates of 1409 solutions filtered by position-based criteria, showing solutions where objectives f4 (expected
cost of flood damage) and f5 (expected economic loss due to floods) are prioritized.

data interpretation. This issue is visible in the figure,
where the dense aggregation of solutions prevents the clear
identification of distinct patterns or trends.

To address the data set visualization challenges, we ini-
tially employed clustering based on the shape of the objective
vectors over the set of solutions. Figure 5 showcases the
application’s interface, displaying the solutions via a Parallel
Coordinates graph where those vectors with the same shape
have identical colors. Below the figure is a panel with
multiple tabs where it is possible to configure clustering and
filter alternatives. The menu provides options for editing the

figure and solution ranking. Among other alternatives, the
edit menu offers to display only some objectives, reorder
and rename the objectives, and maintain the original set of
solutions in the background.

In the clusters tab, it is possible to select between k-means,
shape-based, or no clustering options. In this case, as shape-
based clustering is used, a scrollable window lists the
shapes, showing the number of solutions for each group,
their assigned color, and checkboxes. Figure 5 indicates
that the solutions are categorized into 36 distinct groups
out of a potential 120, with group sizes ranging from 1 to
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FIGURE 8. Further refinement of the filtered solutions from Figure 7 using k-means clustering, resulting in four distinct groups. This demonstrates the
depth of analysis possible by combining position-based filtering with k-means clustering to uncover patterns and trade-off characteristics within the
solution space.

FIGURE 9. Visualization of the solution set after applying filters for the normalized performance cost of the drainage network (f1) is less than 0.5,
and the cost of storage infrastructure (f2) is less than 0.6.

313 elements. Checkboxes serve to implement the filter by
grouping the solutions to visualize; this feature simplifies
the exploration of large datasets and enhances analytical
efficiency by allowing users to focus on specific clusters.

As outlined earlier, the shape-based clustering method
ensures that the average vector representing the elements
within each cluster maintains a consistent shape. Figure 6
displays 36 representative vectors corresponding to each clus-
ter. This visualization provides insight into the relationships

between the proposed solutions’ objectives, such as iden-
tifying groups with significantly divergent objective values
and sets where the objectives seem more balanced. For
example, in Figure 6, by visual inspection, it is possible
to note that f1 and f3 appear to be correlated, whereas
these objectives contradict f4. An interactive feature of the
developed tool allows indicate the shape and value of each
vector by positioning the cursor over it. In Figure 6, for
example, the cursor is over vector (1.0, 1.0, 1.00.0, 0.0), and
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FIGURE 10. Further analysis of the filtered solutions from Figure 9, applying a priority filter based on shape focusing on those where the cost of the
drainage network (f1) has better normalized value over the cost of storage infrastructure (f2).

FIGURE 11. Solutions belonging to the best level of the ranking favour
applied to the filtered set.

the characteristics of the vector are displayed as the yellow
box notes.

When assessing solutions trade-offs, focusing on those
that exhibit optimal values for specific objectives becomes
relevant. In the context of the problem considered in this
study, one example of the many potential areas to explore
through detailed visualization analysis is to examine solutions
that emphasize the minimization of the expected cost of flood
damage and the expected economic loss due to floods—
identified as objectives f4 and f5, respectively. To this aim,
the application supports the use of various types of position-
based filters, enabling to isolate solutions where objectives f4
and f5 occupy the first two positions, represented by solutions
with shapes [5, 4, ∗, ∗, ∗] and [4, 5, ∗, ∗, ∗]. The result of
this filter is in Figure 7, which draws a reduced set with
1409 solutions that fit in 7 groups corresponding to different
shapes.

Additionally, it is possible to refine the analysis of the
solutions displayed in Figure 7. For example, in Figure 8,

k-means is used to classify the filtered solutions into four
groups since the elbow method indicated that this value
might be optimal. Clustering filtered solutions by k-means
aids in highlighting patterns and trends that might not
be immediately apparent and facilitates a more granular
analysis, identifying clusters of solutions sharing similar
trade-off characteristics. This approach provides insights
into how different solutions compare in achieving these
objectives. The flexibility to apply k-means clustering to
solutions already filtered by position-based criteria (as shown
in Figure 7) demonstrates the dynamic nature of the analysis.
This layered approach to filtering and clustering enables users
to refine their exploration of the solution space iteratively,
adapting the analysis to evolving objectives or insights.

Additional filters can be added to produce a detailed
analysis of solutions in Figure 7. As an example in Figure 9,
the solution set is filtered to consider those solutions with
normalized performance cost of the drainage network (f1)
and the cost of storage infrastructure (f2) below 0.5 and 0.6,
respectively. The result of applying both filters is in Figure 9.
The figure displays 160 solutions that meet these criteria,
highlighting the effectiveness of using multi-dimensional
filters to narrow the solution space.

Then, from the filtered solutions Figure 9, it may be
interesting to study those solutions having a shape such that f1
is before f2, i.e., a filter by priority where we specify that the
first objective is prior to the second objective. After adding
this filter, Figure 10 shows the resulting graph. The filtered
subset consists of 90 solutions that conform to the specified
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FIGURE 12. Result after applying ranking favour on the filtered set where the solutions belonging to the best level are highlighted with red color
using the Parallel Coordinates graph.

FIGURE 13. Resulting set where the three best solutions found after the visual exploration process are graphed using Parallel Coordinates. In the
background, the original set is represented with a lighter color.

shape criteria, demonstrating the impact of prioritization
filters on the solution set, which represents approximately 4%
of the original set.

Examples in Figure 7, Figure 9, and Figure 10 underscore
the capability that using distinct types of filters may help
tailor the analysis towards specific optimization goals,
thereby providing a focused exploration of solution sets
that align with preferred objectives. They mainly show how
valuable filters such as group, position, and priority-based
filters can be implemented based on the shape idea.

After narrowing down the area of interest, the ranking
procedures proposed in Section III-B can be applied to

speed up identifying the best-ranked solutions, according to a
selected criterion, in the refined set. For example, considering
the solutions in Figure 10, using the application interface for
ranking, the solutions that are in the first place according
to the favour ranking can be determined as indicated in
Figure 11. These solutions are shown in Figure 12 highlighted
in red for clear differentiation along with the filtered subset.

Finally, these three solutions can be added to a group
using the tool’s functionality to create and assign solutions
to custom groups. Subsequently, the filter by groups serves
to graph only these solutions. Figure 13 displays the result
of filtering such solutions with the original set in the

142416 VOLUME 12, 2024



C. Lücken et al.: Improvement Strategies for Visualizing Solution Sets in MaOPs

background. The interactive use of the strategies proposed in
this work reduced the solution set from 2429 solutions to 3,
belonging to only one of the 36 shapes in the original set.
decision-makers can adopt other ways of applying the filters
and rankings according to their interests.

V. CONCLUSION AND FUTURE WORK
In this paper, we explored the integration of visualization
methods with filtering, clustering, and ranking techniques
to address the challenges of many-objective optimization,
particularly in high-dimensional scenarios. Implementing
these strategies within a specially developed visualization
tool demonstrates their practicality and effectiveness. The
case study based on the Water problem illustrates how the
proposed strategies facilitate the exploration and analysis of
solutions, highlighting the benefits of integrating shape-based
clustering with filters and ranking to uncover deeper insights
and guide strategic decision-making.

The developed application displays solutions using Parallel
Coordinates and RadViz. In this work, however, only results
with parallel coordinates are shown. Regarding display
methods, it is important to note that they must meet
certain characteristics to implement the proposed operations
effectively:

• Display methods should ideally balance computational
efficiency with the ability to assist decision-makers
in selecting their preferred solution based on specific
criteria and needs. Rapid visualization is necessary due
to the task’s iterative nature, which requires frequent
updates to the visual display. However, there are times
when compromising speed is acceptable to better assist
decision-makers in selecting the solutions that best fit
the problem at hand.

• The decision-maker should be able to observe the
changes produced in the group of solutions through the
applied operations and the visualization method. There-
fore, the visual results obtained by the visualization
techniquemust reflect themagnitude of changes induced
in the solution group by these operations. This pro-
portional representation ensures that the decision-maker
receives an accurate and intuitive understanding of the
impact of each operation on the solution set.

Clustering through the novel use of shape-based clustering
has shown to be instrumental in breaking down the solution
set into manageable subsets, each representing unique
solution characteristics. This method, augmented by the
traditional K-means algorithm, provides a dual approach to
categorize solutions effectively, enabling decision-makers to
focus on specific areas of interest within the solution space.
Also, shape-based clustering serves to define position and
priority-based filters. The systematic application of filters and
clustering allows us to uncover deeper insights and guide
strategic decision-making.

Ranking methods such as favour and epsilon-preferred
can obtain improved insight into solution quality since they
help identify solutions that offer a balanced trade-off across

multiple objectives. An additional advantage of the epsilon-
preferred relation is that adjusting threshold parameters
allows the integration of decision-maker preferences directly
into the solution classification process in an iterative visual-
ization analysis. Finally, based on the defined mathematical
relations, a ranking-based approach provides an objective and
systematic way to compare and rank solutions, ensuring that
the selection process is transparent and justifiable.

As in the example considered in this paper, rankings can
be applied after reducing the solution set to an area that
fits the user’s interest. This prioritization accelerates the
decision-making process by focusing on the most promising
solutions. Moreover, with large sets of solutions, these
methods can be applied to reduce the dataset to a more
manageable size before visual analysis, making it easier for
decision-makers to navigate the solution set. This possibility
may be essential for handling complex, high-dimensional
optimization problems without overwhelming the decision-
maker.

In future works, exploring other types of operations that
can reduce the set according to the decision-maker’s needs
may be worth exploring. Additionally, it may be beneficial
to analyze the outcome of implementing the proposed
operations with other visualization methods. This could
involve creating new visualization techniques that consider
the operations proposed in this study and the characteristics
that should be fulfilled to support them [2].
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