
Extending MoWebA for MobileApps with
Functions in the Cloud?

Emanuel Sanchiz, Magaĺı González, Nathalie Aquino, and Luca Cernuzzi

Universidad Católica “Nuestra Señora d e la Asunción” - DEI, Asunción, Paraguay
{emanuel.sanchiz, mgonzalez, nathalie.aquino, lcernuzz}@uc.edu.py

Abstract. Currently, a growing interest is being caused by the mobile
applications and the cloud. In this work, we have focused on mobile appli-
cations with functions implemented in the cloud (MobileApps-FC). The
improvement related to the portability of these applications among differ-
ent platforms and different service providers is an interesting challenge.
Model Driven Development (MDD) constitutes one of the alternatives
to address portability issues. Indeed, in this work we propose MoWebA
Mobile, an extension of a MDD approach, called MoWebA, for the design
and generation of the MobileApps-FC. Specifically, in this work we have
focused on a specific aspect of the mentioned applications, which is the
network communication between the mobile applications and their func-
tions in the cloud. Furthermore, as a preliminary validation we present
a comparative study with MoWebA Mobile regarding to the traditional
development and WebRatio Mobile Platform.

Keywords: Mobile applications · Cloud · Network communication · MDD · Porta-
bility

1 Introduction

In recent years, the number of users of smartphones and tablets has been in-
creasing quickly, overcoming the number of users of computers and notebooks.1

Consequently, the interest for the development of mobile applications has also
increased,2 particularly for native applications.3 Moreover, it is important to
consider the current growing market of the cloud, specially the public cloud,4

and its role as enhancer of the restricted resources of mobile devices [1,2]. Taking
into account both perspectives, mobile devices and the cloud, it is worth noting

? This work has been funded by CONACYT through the PROCIENCIA program with
resources from “Fondo para la Excelencia de la Educación e Investigación - FEEI”
from FONACIDE. This work has been developed under the project “Mejorando el
proceso de desarrollo de software: propuesta basada en MDD” (14-INV-056).

1 Morgan Stanley, link: https://goo.gl/Ifznvz
2 Mobile is all about application, link: https://goo.gl/tCnZfN
3 Native vs hybrid application, link: https://goo.gl/JH1u7K
4 Growing of public clouds, link: https://goo.gl/WOVYJW

https://goo.gl/Ifznvz
https://goo.gl/tCnZfN
https://goo.gl/JH1u7K
https://goo.gl/WOVYJW


the growing convergence between them [3]. Hence, the interest of this study is fo-
cused on mobile applications which have at least one module or implementation
(e.g., procedure, service, database) running in the cloud. We refer to these ap-
plications as mobile applications with functions in the cloud (MobileApps-FC).

On one side, the mobile environment can be based on several different plat-
forms, being iOS and Android the most popular ones. These platforms, again,
consider different operating systems, programming languages, tools, etc. In most
cases, mobile applications must be developed for more than one mobile platform.
And due to differences among these platforms, specific application versions must
be built for each one of them. Therefore, more effort and time must be employed,
resulting in higher costs in the development process. Since the same implemen-
tation can hardly be used for different mobile platforms, there is a portability
challenge in the mobile environment [3,4,5].

On the other side, the cloud environment is constituted by several differ-
ent service providers. In a similar way than previously exposed, each of these
providers uses its own specific platform (operating systems, programming lan-
guages, libraries, etc.). This causes a portability problem, which in the cloud
context is known as vendor lock-in. Therefore, tasks such as building an appli-
cation that is able to run in clouds from different service providers or migrating
an application from the cloud of one service provider to another one consti-
tute interesting challenges, since the same implementation can hardly be used
in different cloud service providers [6,7].

Therefore, when considering applications that include, at the same time, the
mobile and the cloud environments, the portability problem is highlighted. In
this sense, Model Driven Development (MDD) emerges as a possible solution.
In fact, one of the main motivations of MDD is related to the improvement of
portability [8]. MDD focuses efforts on designing domain models that capture
the knowledge of the data and functionality that an application must provide
independently of the platform in which it will be run.

Therefore, our goal is to propose a model driven approach for the modeling
and generation of the MobileApps-FC. In this case, the scope of the modeling and
the generation focuses on one aspect of the applications, which is the network
communication. We present our proposal as an alternative for addressing the
extra effort caused by the difficulty of platform portability.

The model driven approach adopted for this work is MoWebA [11]. Based on
MoWebA, we have identified three aspects that could have a positive impact in
the portability problem that is found in the MDD development of MobileApps-
FC. These aspects are: i) incorporation of an Architecture Specific Model (ASM)
as a new modeling layer, in order to keep the portability of the Platform Inde-
pendent Model (PIM) regarding the different architectures (e.g., RIA, SOA, Mo-
bile); ii) clear separation of the presentation layer with regard to the navigation
and behavior layers, would prevent additional complications to the presenta-
tion, since, it is the layer that presents more difficulties related to portability;
and iii) definition of the navigational structure according to a function-oriented
approach, which prevents the modification of the navigation design caused by



implementation changes. Such prevention means a saving of effort, which, fi-
nally, contribute to alleviate the effects introduced by the portability difficulty.
We have studied the adoption of such aspects in the state of the art, through a
Systematic Mapping Study (SMS) [9], which results are summarized in the next
section.

The rest of the document is structured as follows. Section 2 analyzes the
related works. Then, Section 3 presents the proposal, which is the extension
of MoWebA through an ASM for the modeling and generation of the network
communication aspect. Section 4, describes a comparative study as a preliminary
validation of our proposal. Finally, Section 5 presents the conclusions and future
works.

2 Related Works

In this section, due to the space limitation, we present a brief summary of the
results of a SMS of the state of the art we have done. More details about the
study can be found in Sanchiz et al. [9]. In such SMS, we have identified six
model driven proposals for the development of MobileApps-FC that address the
portability problem. Such proposals are: 1) WebRatio Mobile Platform [4], a
framework based on IFML;5 2) SIMON [10], a framework including runtime
models based on XML; 3) MD2 [11]; 4) MobiCloud [12] and 5) Steiner et al. [13],
which present a textual modeling language based on the Model-View-Controller
(MVC) schema; and, 6) Ruokonen et al. [14], which presents a modeling based on
business process models. In Table 1, we summarize the differences between the
identified proposals and MoWebA, based on the adoption of the three design
aspects: i) incorporation of an ASM; ii) clear separation of the presentation
layer with regard to the navigation and behavior layers; and iii) definition of the
navigational structure according to a function-oriented approach.

Table 1: Comparison based on the design aspects, more details in [9]
Aspects

Work
ASM

Clear Separation
of Presentation

Function Oriented
Navigation

WebRatio Mobile Yes No Yes

SIMON Partially No No

MD2 No Yes Yes

MobiCloud No No No

Steiner et al. No No Yes

Ruokonen et al. No No No

This review showed us that none of the proposals considered includes all
the three MoWebA’s design aspects, which could have a positive impact on the

5 IFML - OMG standard; link: http://www.omg.org/spec/IFML/

http://www.omg.org/spec/IFML/


design portability. Consequently, we were motivated to adopt MoWebA and to
extend it for the development of the MobileApps-FC. Specifically, in the present
study, we are focusing on the extension for the modeling and the generation of
the network communication of the MobileApps-FC.

Furthermore, from the mentioned proposals we also have learned some as-
pects like: i) the use of standard modeling languages. (WebRatio uses IFML
models while SIMON uses XML for textual models); ii) the adoption of the
MVC schema, (derived from MobiCloud, MD2 and Steiner et al.); iii) the adop-
tion of a unified modeling (derived from MD2, MobiCloud and Steiner et al.);
iv) the combination of MDD and the open source approach (derived from We-
bRatio); v) the use of REST as a uniform and portable communication interface,
(derived from WebRatio, MD2, SIMON, MobiCloud); vi) the generation of na-
tive mobile applications (generated by MobiCloud, MD2, SIMON and Steiner et
al.). MoWebA considers natively the aspects i) and ii). While the other ones, iii),
iv), v) and vi), we are including into MoWebA Mobile, which is the extended
version of MoWebA.

3 Extending MoWebA for the Network Communication

In this section, we present the extension of MoWebA to model and to generate
the network communications functions for the MobileApps-FC. Furthermore, we
describe the extensions we have applied to one of the PIM models’ diagrams of
MoWebA, the logic one. From such extension we obtain the ASM which enables
the modeling of the network communication of the MobileApps-FC. Similarly,
we will present the transformation rules which map the ASM with the code to
be generated. Moreover, we will explain the modeling and generation process.
Finally, we present an example to show the use of our proposal.

3.1 Network Communication Functions

We have focused on the network communication aspect because its implementa-
tion necessarily implies working with different platforms and technologies (iOS,
Android and the cloud service providers’ platforms) of the MobileApps-FC. In
this sense, the platform abstraction which proposes a MDD approach is high-
lighted on the network communication aspect. Starting from the official docu-
mentations of Android6 and iOS7 (currently, the most popular platforms)8 we
focused on four types of network communication functions. There are more vari-
ants of such functions, but we have focused on such four ones to cover some of
the most common cases. Those communication functions set the scope of this
work for the design and the generation implementation. Following, we describe
the types of such functions: i) light-data, where the data exchange does not in-
clude files (e.g., images, documents, video or audio). In this sense, the data to

6 Android, https://goo.gl/LwMLXn
7 iOS, https://goo.gl/3FlZqW
8 Popularity of Android and iOS, https://goo.gl/ZAu8Ho

https://goo.gl/LwMLXn
https://goo.gl/3FlZqW
https://goo.gl/ZAu8Ho


exchange is light ; ii) load-image, to get and to load images in memory for dis-
playing them. Commonly, this function is used for image and video previews; iii)
download-files, to download files in background; and iv) upload-files, to upload
files in background.

The mentioned functions include implementations in both sides, the mobile
and the cloud, respectively. Such implementation are based on the REST archi-
tecture [15].

3.2 MoWebA Mobile: the Network Communication Proposal

The definition process for extending MoWebA for different architectures consists
in the following steps [16]: i) define the metamodel using MOF;9 ii) define the
corresponding UML10 Profile; iii) define transformation rules for elements that
can be obtained in an automatic way; iv) apply transformation rules in order to
obtain the first version of the ASM from the PIM; v) make necessary manual
adjustments to complete the ASM model; vi) generate the target code applying
transformation rules; and, vii) include manual adjustments, if necessary.

The scope of this work has focused, on one side, on the steps i) and ii) for
defining the ASM metamodel and profile and, on the other side, on the step iii)
and vi) for defining model to text transformation rules and to apply them to get
the target code from the ASM. It was not necessary the step vii). We have left
for future works the automatic transformation from the PIM to the ASM, which
includes the steps iv) and v). We illustrate the scope of the extension we have
made in Figure 1.

Fig. 1: The extension includes a metamodel, a profile and transformation rules

In this work, we have defined the metamodel and profile for obtaining the
network communication ASM. Such metamodel and profile extend the logic di-
agram of MoWebA. Such logic diagram enables the definition of logic processes.
In fact, we consider the network communication as a logic process. The logic dia-
gram contains TProcesses, which are the logic processes defined. Such processes
include Services, which are procedures doing a specific task. Also, the logic dia-
gram has ValueObjects, which group attributes of entities and enable the access
to the entities’ data.

9 MOF, link: http://www.omg.org/mof/
10 UML, link: http://www.uml.org/

http://www.omg.org/mof/
http://www.uml.org/


Following we describe the extensions we made on the logic diagram. The
extensions for obtaining the ASM are based on the REST architecture and on
the four types of network communication functions, presented in the previous
section. Such elements belong to the metamodel showed in Figure 2.

Fig. 2: Metamodel for the network communication ASM

Firstly, it is defined a CloudServer, which is accessed through a Domain.
The Domain is provided by a service Provider, which enables the recognition
of the particular configurations required by each cloud service provider. Then,
each CloudServer contains a set of logic processes, where each one of them is
called RestProcess. Such processes modularize the network communication de-
sign. Subsequently, each RestProcess includes a set of resource interfaces, where
each ResourceInterface is associated with a Resource, one at a time. A Resource
can be a MoWebA’s ValueObject called CloudValueObject because it is residing
in the cloud, a File stored or to be store in the cloud or a MoWebA’s Service
called CloudRequestHandler, which is executed in the cloud.

Each ResourceInterface is associated to a set of methods, where each Method
defines the operation to be performed on a Resource. At the same time, each
Method is associated to the object Request and, in some cases, to the object
Response. On one side, each Request can be associated to a set of parameters,
which contains each Parameter of the request. On the other side, each Response
is associated to a set of data expected to receive from a light-data Request,
operated by the Method get.

Following, we will explain the attributes of representative elements described
so far. The RestProcess has a relative Path, which makes the process accessible,
and a boolean flag which establish if the Path is used as additional data in each
Request. For instance, the Path could be a user identification. The same case is
for the attributes of the ResourceInterface. About File, its attributes specify the



name, extension and the file type. The Name of Method defines the type of HTTP
method (get, post, put, delete). The four HTTP methods considered are the most
common ones. The Request type (lightdata, download, upload, loadImage) defines
the call to be done. In case of lightdata, the associated Method can be any of
the mentioned HTTP methods. Nevertheless, download (get), upload (post) and
loadImage (get) have, each one, a predefined Method. The name and the value
of the Parameter describe the different parameters of the Request. Finally, the
name of Data specify the data to be received from the Request lightdata and the
Method get. Such name specifies an attribute of the CloudValue Object associated
to the respective resource interface.

The described elements of the ASM are represented concretely in the respec-
tive profile.11 The profile contains the definition of the elements (stereotypes,
tag values and enumerations), which enable the modeling.

3.3 Transformation Rules

We have defined model to text (M2T) transformation rules in order to gener-
ate the target code from the ASM. In order to built the transformation rules,
we have followed an approach based on templates. We have used the Model
transformation language (MTL) of Acceleo12 for defining the templates. Simi-
larly, we have used OCL for doing queries to the model. Furthermore, we have
built a service in Java to extend the functions of the MTL. We have built the
transformation rules based on the classes, properties and operations character-
ized by the respective stereotypes, tag values and enumerations defined in the
ASM’s profile. In this sense, such rules perform a mapping between the model
elements defined and the target code to be generated. Basically, the generation
for both side, mobile and cloud, depends on each combination of a CloudServer,
a RestProcess, ResourceInterface and CloudRequestHandler.

The target code generated consists, on one side, in native mobile code written
in Java13 for Android, in Swift14 for iOS, and on the other side, in open source
code written in Javascript15 with Node.js for the Openshift and Amazon Web
Services platforms. Additionally, our cloud implementation is based on Docker,16

which is a container where an application runs. Moreover, Docker is an emerging
method developed by the open source community for easing the portability of
cloud applications.

11 More details about the profile, link: https://goo.gl/DZY2yk
12 Acceleo, link: https://goo.gl/jgCZhu
13 Java, link: https://goo.gl/hGBggw
14 Swift, link: https://developer.apple.com/swift/
15 Javascript, link: https://www.javascript.com/
16 Docker, https://www.docker.com/what-docker

https://goo.gl/DZY2yk
https://goo.gl/jgCZhu
https://goo.gl/hGBggw
https://developer.apple.com/swift/
https://www.javascript.com/
https://www.docker.com/what-docker


3.4 Modeling and Code Generation with MoWebA Mobile

For modeling we have used MagicDraw,17 which is a modeling tool of general
purpose. Once the model is done, it has to be exported as XMI files. Such files are
imported from Acceleo, which is a tool for defining and executing transformation
rules. Therefore, in Acceleo, the transformation rules are executed on the im-
ported model. Consequently, the implementation of the network communication
is obtained in for every platform considered. See the modeling and generation
process in Figure 3.

Fig. 3: Modeling and generation process of MoWebA Mobile

The generated code is a running implementation of the network communica-
tion. In other words, the generated code is ready to be executed for both mobile
platforms, Android and iOS and for both cloud service providers, Openshift and
Amazon Web Services.

With the aim of improving the understanding of the design process, we show
an example of modeling an application. To see the complete explanation of the
example, go to MoWebA Mobile Book.18

We have considered a application similar to one presented in Brambilla et
al. [4]. The application is a virtual shop for selling products. It is going to be
deployed on tablets and cell phones for field agents, i.e., salesman that go to
customers for selling the products. This application requires the implementation
in mobile and cloud platforms. In this case, the task is focused on the functions
of network communication for the data exchange. Basically, the data to be ex-
changed is about the products (e.g., images, technical sheets, providers). Part of
the modeling is shown in Figure 4.

In order to explain the modeling and generation example, we focus on one
of the modeled functions, see Figure 5. We consider the load-image function for
loading provider logos on the screen. As can be seen in Figure 5, from one model,
we can obtain the implementation for every considered platform. The function
implies the request on the URL formed from the attributes of the cloudServer
(the domain server), the relative paths of the restProcess and the resourceIn-
terface, respectively, and the name of the resource, in this case an image. The
function is triggered by a button, when it is touched the image is obtained from

17 MagicDraw, link: https://goo.gl/mLPvur
18 MoWebA Mobile Book, https://goo.gl/Qr9367

https://goo.gl/mLPvur
https://goo.gl/Qr9367


Fig. 4: Example of an application for offering products

the server, then it is loaded in memory and, afterwards, on the screen. The
remote function, which handles the requests on the URL is specified in the re-
sourceInterface, where it is specified as well, the type of the communication, in
this case load-image. The implementation of such request handler function is
generated for both cloud service providers’ platforms. Similarly, we generate the
implementation for every network communication function modeled.

4 Comparative Study with MoWebA Mobile

In this work, we have proposed an alternative to address the portability chal-
lenge, which consists in the extra effort introduced in the development of the
MobileApps-FC. Specifically, we have focused on the modeling and generation
of the network communication aspect. As a preliminary validation of our pro-
posal, we have done a comparative study. In such study, we have measured the
effort related to the development of the MobileApps-FC’s network communica-
tion functions. In order to do the study, basically, we have proceeded as follows:
i) we have selected an application as an example to develop its network commu-
nication; ii) we have used MoWebA Mobile, WebRatio Mobile Platform (another
MDD approach [4]) and the traditional approach to develop independently the
network communication; iii) we have measured and registered the development



Fig. 5: Example of an application for offering products. Load-image function

times taken by each alternative; iv) in case of the MDD approaches, we have
registered and analyzed the modeling and generation differences which could
affect the development effort. Following, we describe the study in more details.

We have considered the same application presented in Section 3.4 to develop
the network communication functions using the three alternatives. The develop-
ment have been done in an academic environment. The developer was a computer
science student in his last year at the university. In this case, we have had only
one developer, which is a limitation of the study. Moreover, the resources used
to guide and support the development were those available on-line.

As we have mentioned, we have compared MoWebA Mobile against the tra-
ditional approach and WebRatio Mobile Platform. In this case, we have assumed
the following research question:

RQ1- How much time of development do the traditional approach,
WebRatio Mobile Platform and MoWebA Mobile require to obtain
the network communication implementation?

Similarly, we have compared exclusively both MDD approaches, MoWebA
Mobile (A) and WebRatio Mobile Platform (B). In this case, we have focused
on comparing modeling and generation aspects related to the effort, according
to the next research questions:

RQ2- What differences in the modeling process between A and B
could affect the effort required to develop MobileApps-FC?

RQ3- Respectively, how many platforms do A and B generate code
for (mobile and cloud)?

Following, we present the results by each research question defined.

RQ1: We have compared MoWebA Mobile against the traditional approach
and a consolidated MDD tool to analyze the required effort differences. Obvi-
ously, a MDD tool will improve the effort needed following a traditional approach
(i.e., the manual development). However, in this case, the aim was to understand
how big the difference is. WebRatio Mobile Platform, is used in the industry and
it is the most representative MDD tool for the development of the MobileApps-



FC [9]. Therefore, we have compared it with MoWebA Mobile to see how much
difference of effort exists with such kind of tool.

The development effort, measured through the development time, is pre-
sented in Figure 6.

Traditional Dev. WebRatio Mobile MoWebA Mobile

0

100

200
160

0.93 1.33T
im

e
(h

o
u
rs

)

Fig. 6: Comparison of development times

It is worth noting that there exists a substantial difference of effort among
the development times of the MDD approaches against the traditional one.
For obtaining the same implementation, using WebRatio Mobile Platform and
MoWebA Mobile have been necessary 0.93 hours (55 minutes) and 1.33 hours (1
hour 20 minutes), respectively. The traditional approach has taken 160 hours.

On one side, since, the network communication development implies, neces-
sarily, working with several platforms and cloud service providers. In this sense,
the developer had to face difficulties like the transition between different de-
velopment environments (mobile, cloud), the use of different frameworks and
programming languages. Such difficulties slowed down the development using
the traditional approach.

On the other side, about the MDD approaches, they have several properties
which support such difference of time. Firstly, the abstraction of specific details of
the different platforms through the models. We highlight two advantages of such
abstraction. On one side, it prevents dealing with the difficulty of working with
different technologies. On the other side, it allows developers without specific
platform and communication knowledge to get specific platform implementation
of the network communication of the MobileApps-FC. Secondly, the automatic
generation of platform specific code from the built model, which save most of the
development time. Third, the generated code is already tested, so the probability
to spend time in fixing bugs decreases.

Therefore, we could say that there is a considerable improvement in saving
effort using a MDD approach for the development of the network communication
of MobileApps-FC.

Comparing the MDD approaches, there is a difference that favors to one of
them. First of all, we have to say that WebRatio Mobile Platform has a specific
development environment, which eases, makes simple and faster the modeling
comparing with MoWebA Mobile. Furthermore, WebRatio Mobile Platform is
a robust and mature platform used in the industry. In contrast, in MoWebA



Mobile the modeling and the generation are made with tools of general purpose
which slowed down the development process. Therefore, we suppose that if we
build a MoWebA Mobile’s specific tool, it will help to make more simple and
faster the process of modeling and generation. Such eventual reduction could
imply equalizing, or even improving, the network communication development
time of WebRatio Mobile Platform. Following, we present further differences
which reinforce the possible improvement of development time using MoWebA
Mobile through a more specific tool. We refer to MoWebA Mobile as A and to
WebRatio Mobile Platform as B.

RQ2: On one side, A prescribe all the modeling and configurations in a uni-
fied model, while B works with two models and projects. One project for mobile,
another project for back-end. In case of A, the purpose of working with the same
project and model for designing the communication is to abstract the developer
from individuals settings and modelings by each side (mobile and cloud). In other
words, since the communication implies two sides (mobile and cloud), from a uni-
fied model, at the moment of generation, the design and settings are replicated
in both sides. Therefore, the developer “works once” instead of twice or more,
which is the case of B. For instance, if a url is modified, then, the developer does
not modify it for the cloud side and for the mobile side, the url modification is
made only once in the model. Afterwards, thanks to the transformation rules,
the change is replicated in both sides, the mobile and cloud ones. In this sense,
A saves effort in the modeling process and consequently, in the overall process
of developing MobileApps-FC.

On the other side, the main difference of MoWebA regarding other MDD
approaches is the inclusion of three design aspects which could help to address
the portability challenge. Since, in this work, where we have focused on the net-
work communication aspect, we consider one of such aspects, which is the ASM.
The relevance of the ASM is to improve the portability of the PIM regarding
the different architectures. Even though, WebRatio considers as well the ASM,
MoWebA considers, additionally, model to model (M2M) transformation rules,
which enable the semi-automatic transition from the PIM to ASM. In fact, there
exist such rules for other architectures.19 Regarding the network communication
aspect, we do not have yet such M2M rules. Nevertheless, once available (such
rules) we consider that we could accelerate the modeling of MoWebA Mobile,
and, consequently, save more time in the modeling process. Such saving of time
implies as well a saving of effort in the process of developing MobileApps-FC.

RQ3: On the mobile side, both, A and B, generate code for iOS and An-
droid, the most popular platforms. While A generates native mobile code, B
generates code for hybrid applications. On the cloud side, A generates code for
two providers (Openshift and Amazon). B generates a Java application just for
one provider, that is its own cloud service platform.20 With B, thanks to its de-
velopment tools, the application can be automatically deployed in the cloud. In
case of A, it generates an implementation to run in two different clouds service

19 M2M transformation rules for RIA, https://goo.gl/8Lsy6n
20 WebRatio Cloud Plans, link: https://goo.gl/ByQgMp

https://goo.gl/8Lsy6n
https://goo.gl/ByQgMp


provider’s (Openshift and Amazon). Even though, we highlight that the code
generated using A, is based on Docker,21 which is a method developed by the
open source community. Precisely, one of the main goals of Docker is to ease the
cloud application portability. Therefore, the code generated could be ported,
more easily, to other providers which include Docker in their services.

A brief summary of the comparative study is shown in Table 2.

Table 2: Brief summary of the comparative study
Approaches

Aspects
MoWebA M. (A) WebRatio M. (B) Traditional

Comments

Dev. time 1 h 20 min 55 min 160 hs A’s time can be improved using a specific tool

Unified model
One model for mobile,
another one for cloud

————–
————–
————–

In A, the network communication is designed
in only one model which saves design effort

Modeling
diff.

It considers M2M
semi-automatic rules
from PIM to ASM

It does not consider
such M2M rules

————–
————–
————–

The semi-automatic M2M rules could help to
save effort in the modeling process

Number of
Gen. Platf.

2 mobile platforms,
2 cloud platforms

2 mobile platforms,
1 cloud platform

————–
————–
————–

The cloud code generated by A is based on
Docker, which eases the code portability

5 Conclusions and Future Works

In summary, we have proposed the adoption of MoWebA for the modeling and
generation of MobileApps-FC, based on three design aspects which could im-
prove the portability of such applications. Furthermore, we have focused on
extending MoWebA to model and generate the network communication aspect,
through an ASM. A as preliminary validation of our work, we have presented
a comparative study of MoWebA Mobile versus the traditional approach and
the consolidated MDD platform WebRatio Mobile. As expected, we have found
a considerable saving of effort in the development of the network communica-
tion functions of the MobileApps-FC, using the MDD approaches. Among the
MDD approaches, the development time using WebRatio is slightly better than
MoWebA Mobile’s time. Nevertheless, considering that MoWebA Mobile is im-
plemented through generic tools, we believe that having a MoWebA Mobile’s
specific and more friendly modeling and generation tool its development time
will be improved, which will lead to an additional saving of effort and, conse-
quently, to a better alleviation of the portability challenge effects.

Thus, as future works, we consider: 1) to build a specific tool for making
simpler and faster the modeling; 2) to build the transformation rules for the
automatic transition from the PIM to the ASM, which includes the steps iv) and
v) of the MoWebA extension definition [16]; and, 3) to improve the validation
of the proposal with additional rigorous experiments.

21 Docker, link: https://www.docker.com/what-docker

https://www.docker.com/what-docker


References

1. March, V., Gu, Y., Leonardi, E., Goh, G., Kirchberg, M., Lee, B.S.: Mcloud:
Towards a new paradigm of rich mobile applications. Procedia CS 5 (2011) 618–
624

2. Sahu, D., Sharma, S., Dubey, V., Tripathi, A.: Cloud computing in mobile appli-
cations. International Journal of Scientific and Research Publications 2(8) (2012)
1–9

3. Abolfazli, S., Sanaei, Z., Gani, A., Xia, F., Yang, L.T.: Rich mobile applications:
genesis, taxonomy, and open issues. Journal of Network and Computer Applica-
tions 40 (2014) 345–362

4. Brambilla, M., Mauri, A., Umuhoza, E.: Extending the interaction flow modeling
language (IFML) for model driven development of mobile applications front end.
In: Mobile Web Information Systems - 11th International Conference, MobiWIS
2014, Barcelona, Spain, August 27-29, 2014. Proceedings, Springer International
Publishing (2014) 176–191

5. Sanaei, Z., Abolfazli, S., Gani, A., Khokhar, R.H.: Tripod of requirements in
horizontal heterogeneous mobile cloud computing. CoRR abs/1205.3247 (2012)

6. Gupta, P., Gupta, S.: Mobile cloud computing: The future of cloud. International
Journal of Advanced Research in Electrical, Electronics and Instrumentation En-
gineering 1(3) (2012) 134–145

7. da Silva, E.A.N., Fortes, R.P., Lucrédio, D.: A model-driven approach for promot-
ing cloud paas portability. In: CASCON. (2013) 92–105

8. Pons, C., Giandini, R., Pérez, G.: Desarrollo de Software Dirigido por Modelos. Ed-
itorial de la Universidad Nacional de La Plata (EDULP)/McGraw-Hill Educación
(2010)

9. Sanchiz, E., González, M., Aquino, N., Cernuzzi, L.: Development of mobile ap-
plications with functions in the cloud through the model driven approach: A sys-
tematic mapping study. CLEI electronic journal 20(3) (December 2017)

10. Chondamrongkul, N., Chondamrongkul, N.: Model-driven framework to support
evolution of mobile applications in multi-cloud environments. International Journal
of Pervasive Computing and Communications 12(3) (2016) 332–351

11. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven devel-
opment of mobile applications with md 2. In: Proceedings of the 28th Annual
ACM Symposium on Applied Computing, ACM (2013) 526–533

12. Ranabahu, A.H., Maximilien, E.M., Sheth, A.P., Thirunarayan, K.: A domain
specific language for enterprise grade cloud-mobile hybrid applications. In: Pro-
ceedings of the compilation of the co-located workshops on DSM’11, TMC’11,
AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, ACM (2011) 77–84

13. Steiner, D., Turlea, C., Culea, C., Selinger, S.: Model-driven development of cloud-
connected mobile applications using dsls with xtext. In: EUROCAST (2). Volume
8112 of Lecture Notes in Computer Science., Springer (2013) 409–416

14. Ruokonen, A., Pajunen, L., Systä, T.: On model-driven development of mobile
business processes. In: SERA, IEEE Computer Society (2008) 59–66

15. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. “O’Reilly Media,
Inc.” (2013)

16. González, M., Cernuzzi, L., Aquino, N., Pastor, O.: Developing web applications
for different architectures: The moweba approach. In: Tenth IEEE International
Conference on Research Challenges in Information Science, RCIS 2016, Grenoble,
France, June 1-3, 2016. (2016) 1–11


	Extending MoWebA for MobileApps with Functions in the Cloud

