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Abstract—For a electrical application involving induction ma-
chines, such as the electrical propulsion drive of an electric
vehicle, the rotor current cannot be measured, so it must be
estimated. This paper describes the rotor current estimation
through reduced order estimator known as Kalman filter to apply
a sensorless speed control of dual three-phase induction machines
by using an inner loop of model-based predictive control. Finally,
simulation results are provided to show the efficiency of the
proposed sensorless speed control algorithm, thus concluding that
the system can work properly without the speed sensor.

Index Terms—Electric vehicle, multiphase machine, predictive
control, sensorless control, Kalman filter.

I. INTRODUCTION

In the last decade, the interest in multiphase machines
has risen due to intrinsic features such as lower torque
ripple, power splitting or better fault tolerance than three-
phase machines. Recent research works and developments
support the prospect of future more widespread applications of
multiphase machines. In recent times, some of the applications
of multiphase machines are being studied, such as electric
vehicles (EV) and railway traction, all-electric ships, more-
electric aircraft, and wind power generation systems [1].

EV is a road vehicle which involves an electric propulsion
system. With this broad definition in mind, EVs may include
battery electric vehicles, hybrid electric vehicles and fuelcell
electric vehicles. The propulsion drive of an EV basically
consists of a battery, an electronic converter, an electric motor,
and a speed and/or torque sensor. Considering multiphase
machines as the electrical motor has several advantages, i.e.
fault tolerance and higher reliability, and the higher power
splitting across the different phases [2]. Due to the benefits
of multiphase machines it can be applied in propulsion appli-
cations, like more electric aircraft [3], electrical and hybrid
vehicles [4].

For controlling the variables of dual three-phase induction
machines (DTPIM), the most used methods are the direct
torque control (DTC) and the vector control using an inner
loop current control [5]. However, DTC has some problems
such as: weakness in torque control at very low speed,
torque and flux pulsations due to the hysteresis bands in

comparators, and variable frequency behavior [6]. On the
other hand, field oriented control (FOC) or vector control
is known for its good current behavior, but it contains one
speed control loop, one flux control loop, four current control
loops and some transformation models for different coordinate
frames. Therefore, the cost and complexity of the system is
increased. Compared to FOC, model predictive control (MPC)
is very intuitive and easy to implement. Predictive current
control (PCC) is an important branch of Finite-State MPC.
Currents are controlled with a high precision, whereas the
system dynamic performance is also very well [7]. There are
very active research areas focused on the development of speed
sensorless control strategies due to their advantages compared
to the conventional control techniques such as elimination
of direct sensor wiring, better noise immunity, lower cost,
increased reliability and less maintenance requirement [5]–[7].

Although speed sensorless operation of a three-phase induc-
tion machines is already well developed, little work has been
conducted for multiphase induction machines [8]. Besides,
some of the control loops on the MPC have unmeasured
variables, such as rotor current, so a state observer is required
[9]. The observers are mainly classified into two groups:
deterministic observers such as Luenberger observer (LO) [5],
model reference adaptive system (MRAS) [10], sliding mode
observer (SMO) [11] and stochastic observer such as Kalman
filter (KF) [9], being the KF the best choice to obtain high-
accuracy estimates of dynamic system states [12].

This paper considers the sensorless speed control of DTPIM
for EVs by using an inner loop of MPC, to predict the
effects of future control actions on the state variables. In
order to achieve this goal, the proposed algorithm uses reduced
order estimators based on a KF to estimate the rotor current.
Thereafter the rotor current estimated is used to determine an
estimate of the speed of the machine. The performance of the
proposed control technique in a DTPIM drive is studied for
varying load operations and varying speeds.

This paper is organized as follows. Section II describes the
DTPIM drive, Section III presents the mathematical model
of the machine, Section IV details the predictive model with
the speed observer and the current control with rotor current



Fig. 1. A general scheme of a dual three-phase induction machine.

estimator based on KF and presents the proposed predictive
control method for the dual three-phase induction machine.
Simulation results are provided in Section V, showing the
efficiency obtained by speed estimator. The conclusions are
finally summarized in the last section.

II. THE DUAL THREE-PHASE INDUCTION MACHINE DRIVE

The system under study consists of an DTPIM fed by a dual
three-phase VSI and a dc link. A detailed scheme of the drive
is provided in Fig. 1.

This DTPIM is a continuous system which can be described
by a set of differential equations. The model of the system
can be simplified by means of the vector space decom-
position (VSD) introduced in [13]. Thus, the original six-
dimensional space of the machine is transformed into three
two-dimensional orthogonal subspaces in the stationary refer-
ence frame (α−β), (x−y) and (z1−z2). This transformation
is obtained through a 6 x 6 transformation matrix:
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where an amplitude invariant criterion was used.
For a machine with distributed windings, the (α − β)

components contributes to useful power conversion (i.e. flux
and torque production), while the (x − y) and (z1 − z2)
components only result in losses and are usually minimized,
except during post-fault operations. For two isolated neutrals
configuration, both (z1 − z2) currents cannot flow, so the
(z1 − z2) components can be ignored [14].

The VSI has a discrete nature, actually, it has a total
number of 26 = 64 different switching states defined by
six switching functions corresponding to the six inverter legs
[Sa, Sb, Sc, Sd, Se, Sf ], where Si ∈ {0, 1}. The different
switching states and the voltage of the DC link (Vdc) define
the phase voltages which can in turn be mapped to the
(α− β)− (x− y) space according to the VSD approach. For
this reason, the 64 different on/off combinations of the six
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Fig. 2. Voltage space vectors and switching states in the (α−β) and (x−y)
subspaces for a dual three-phase VSI.

VSI legs lead to 64 space vectors in the (α− β) and (x− y)
subspaces. Fig. 2 shows the active vectors in the (α − β)
and (x − y) subspaces, where each vector switching state is
identified using the switching function by two octal numbers
corresponding to the binary numbers [SaScSe] and [SbSdSf ],
respectively.

As it is shown in Fig. 2 the 64 possibilities lead to only 49
different vectors in the (α−β)−(x−y) subspace. On the other
hand, a transformation matrix must be used to represent the
stationary reference frame (α − β) in the dynamic reference
(d− q). This matrix is given by:

Tdq =

[
cos (δr) −sin (δr)
sin (δr) cos (δr)

]
(2)

where δr is the rotor angular position referred to the stator.

III. MACHINE MODEL

It is possible to model the machine by using an state-space
representation, based on the VSD approach and the dynamic
reference transformation. This model is given by:

d

dt
Xαβxy = AXαβxy + BUαβxy

Yαβxy = CXαβxy

(3)

where Uαβxy =
[
uαs uβs uxs uys 0 0

]T
represents the input vector of the system,
Xαβxy =

[
iαs iβs ixs iys iαr iβr

]T
denotes the

state vector, Yαβxy =
[
iαs iβs ixs iys 0 0

]T
indicates the output vector and A, B and C are matrices that
define the dynamics of the electrical drive.

The mechanical part of the electrical drive is given by the
following equations:

Te = 3P (ψαsiβs − ψβsiαs) (4)

Ji
d

dt
ωr +Biωr = P (Te − TL) (5)

where TL denotes the load torque, Te is the generated torque,
Ji the inertia coefficient, P the number of pairs of poles, ψαβs
the stator flux, Bi the friction coefficient and ωr is the rotor
angular speed.



IV. PREDICTIVE MODEL

Assuming the mathematical model expressed by (3) and
using the state variables defined by the vector Xαβxy , we can
define the following set of equations:

d

dt
(x1) = −Rsc2x1 + c4 (Lmωrx2 +Rrx5 + Lrωrx6)

+ c2u1
d

dt
(x2) = −Rsc2x2 + c4 (−Lmωrx1 − Lrωrx5 +Rrx6)

+ c2u2
d

dt
(x3) = −Rsc3x3 + c3u3

d

dt
(x4) = −Rsc3x4 + c3u4

d

dt
(x5) = −Rsc4x1 + c5 (−Lmωrx2 −Rrx5 − Lrωrx6)

− c4u1
d

dt
(x6) = −Rsc4x2 + c5 (Lmωrx1 + Lrωrx5 −Rrx6)

− c4u2
(6)

where Rs, Ls = Lls+Lm, Rr, Lr = Llr+Lm and Lm are the
electrical parameters of the machine and the coefficients ci for
i = 1, . . . , 5, are defined as c1 = LsLr − L2

m, c2 = Lr

c1
, c3 =

1
Lls

, c4 = Lm

c1
y c5 = Ls

c1
, while the input vector corresponds

to the voltages applied to the stator u1 = vαs, u2 = vβs,
u3 = vxs, u4 = vys and the state vector corresponds to the
DPTIM currents x1 = iαs, x2 = iβs, x3 = ixs, x4 = iys,
x5 = iαr and x6 = iβr.

Stator voltages are related to the input control signals
through the inverter model. In this case, the simplest model,
used for isolated neutral configuration, has been consid-
ered for the sake of speeding up the optimization process.
Then if the gating signals are arranged in the vector S =
[Sa, Sb, Sc, Sd, Se, Sf ], where the stator voltages can be
obtained from:

M =
1

3


2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2

 · S
T (7)

An ideal inverter converts gating signals into stator voltages
that can be projected to (α − β) and (x − y) subspaces and
gathered in a row vector Uαβxy computed as:

Uαβxy = [uαs uβs uxs uys 0 0]
T
= V dc ·T ·M (8)

being V dc the dc link voltage and the superscript (T ) indicates
the transposed matrix. Applying the rotational transformation
(2) to the (α− β) components, we can obtain:

Udq = [uds uqs]
T
= Tdq ·

[
uαs
uβs

]
(9)

By combining the equations (6)-(9) a nonlinear set of
equations arises that can be written in state space form:

Ẋ(t) = f
(
X(t), U(t)

)
Y(t) = CX(t)

(10)

with state vector X(t) = [x1, x2, x3, x4, x5, x6]
T , input

vector U(t) = [u1, u2, u3, u4], and Y(t) = [x1, x2, x3, x4]
T

as the output vector. The components of the vectorial function
f and the matrix C are obtained in a straightforward manner
from (6) and the definitions of state and output vector. Model
(10) must be discretized in order to be of used for the
predictive controller. A forward Euler method is used to keep
a low computational cost. Due to this fact, the resulting
equations will have the required digital control form, with
predicted variables depending just on past values and not on
present values of the variables. Thus, a prediction of the future
next-sample state X̂[k+1|k] is expressed as:

X̂[k+1|k] = X[k] + Tmf
(
X[k], U[k], ωr[k]

)
(11)

where [k] is the current sample and Tm the sampling time.

A. Reduced order estimators

In the state space description (10) only stator currents,
voltages and mechanical speed are measured. Stator voltages
are easily predicted from the gating commands issued to the
VSI, rotor current, however, cannot be directly measured. This
difficulty can be overcome by means of estimating the rotor
current using the concept of reduced order estimators.

The reduced order estimators provide an estimate for only
the unmeasured part of the state vector, then, the evolution of
states can be written as:

 X̂a[k+1|k]
X̂b[k+1|k]
X̂c[k+1|k]


︸ ︷︷ ︸

[X̂[k+1|k]]

=

 A11 A12 A13

A21 A22 A23

A31 A32 A33


︸ ︷︷ ︸

[A]

 Xa[k]

Xb[k]

Xc[k]


︸ ︷︷ ︸

[X[k]]

(12)

+

 B1

B2

B3

T
︸ ︷︷ ︸

[B]

 Uαβs

Uxys

Uαβs


︸ ︷︷ ︸

[Uk]

Y[k] =
[
I I 0

]︸ ︷︷ ︸
[C]

 Xa[k]

Xb[k]

Xc[k]


︸ ︷︷ ︸

[X[k]]

(13)

where Xa = [iαsiβs]
T , Xb = [ixsiys]

T , Xc = [iαriβr]
T ,

Uαβs = [UαsUβs]
T , Uxys = [UxsUys]

T , A and B are matri-
ces that depend on the electrical parameters of the machine and
the sampling time Tm. Matrix [A] also depends on the actual
value of ωr[k], which is calculated every sampling time [9].



B. Rotor state estimation based on Kalman filters

The KF design considers uncorrelated process and zero-
mean Gaussian measurement noises, thus the systems equa-
tions can be written as:

X̂[k+1] = AX[k] + BU[k] + H$[k] (14)

Y[k+1] = CX[k+1] + ν[k+1] (15)

where $[k] is the process noise, H is the noise weight matrix
and ν[k+1] is the measurement noise. The dynamics of the KF
can be written as follows:

X̂c[k+1|k] = (A33 −K[k]A13)X̂c[k] + K[k]Y[k+1] +

(A31 −K[k]A11)Y[k] + (B3 −K[k]B1)Uαβs[k] (16)

being K[k] the KF gain matrix calculated from the covariance
of the noises at each sampling time in a recursive manner as:

K[k] = Γ[k] ·CT R̂−1ν (17)

being Γ[k] the covariance of the new estimation, which it is
defined like a function of the old covariance estimation (ϕ[k]):

Γ[k] = ϕ[k]−ϕ[k] ·CT (C ·ϕ[k] ·CT + R̂ν)
−1 ·C ·ϕ[k] (18)

From the state equation, it’s possible to obtain a correction
of the covariance of the estimated state as:

ϕ[k+1] = AΓ[k] ·AT + HQ̂$ ·HT (19)

This completes the required relations for the optimal state
estimation using KF with PCC. Thus, K[k] provides the
minimum estimation errors, given a knowledge of the process
noise magnitude (Q̂$), the measurement noise magnitude
(R̂ν), and the covariance initial condition (ϕ[0]).

C. Speed observer

The speed can be estimated from the dynamic equation that
models the mechanical part of the electrical drive (4) and
(5) using the Euler discretization method. Thus, the discrete
equation which estimates the speed can be written as:

ω̂r[k+1] = (1− TmBi
Ji

)ω̂r[k] +
TmP

Ji
(Te[k] − TL[k]) (20)

where it is assumed ωr[0] = 0, TL[0] = 0 and iαβr[0] = 0.

D. Load torque observer

The load torque measurement is practically inapplicable, so
it must be observed. Hence, it’s used the observer based on
Gopinanth’s method proposed in [15], in its discrete version:[

ε1[k+1]

ε2[k+1]

]
=

[
1 −k1Tm
Tm (1− k2Tm)

] [
ε1[k]
ε2[k]

]
+

Tm

[
k1bJi

(k22 − k1)Ji

]
ω̂r[k] + Tm

[
k1
k2

]
Te[k]

(21)

T̂L[k+1] = ε2[k+1] − k2Jiω̂r[k+1] (22)

where k1, k2 and b are observer coefficients, ε1 and ε2 are
internal state variables, Te is the calculated motor electromag-
netic torque and T̂L is the calculated motor load torque.

E. Cost function

The cost function should include all terms to be optimized.
In current control the most important figure is the tracking
error in the predicted stator currents for the next sample. To
minimize its magnitude for each sample k it suffices to use:

J[k+2|k] =êiαs[k+2] + êiβs[k+2] + λxy
(
êixs[k+2] + êiys[k+2]

)
êiαs[k+2] =‖ i∗αs[k+2] − îαs[k+2] ‖2

êiβs[k+2] =‖ i∗βs[k+2] − îβs[k+2] ‖2

êixs[k+2] =‖ i∗xs[k+2] − îxs[k+2] ‖2

êiys[k+2] =‖ i∗ys[k+2] − îys[k+2] ‖2
(23)

where ‖ . ‖ denotes vector magnitude, i∗s[k+2] is a vector
containing the reference for the stator currents and îs[k+2] is
a vector containing the predictions based on the next state
(including the delay compensation) and control effort.

F. Optimizer

The predictive model should be used 64 run to consider all
possible voltage vectors. Fig. 2 shows the redundancy of the
switching state results in only 49 different vectors (48 active
and 1 null). This consideration is commonly known as the
optimal solution. For a generic multiphase machine, where g
is the number of phase and ε the search space (49 vectors for
the DTPIM), the optimization algorithm produces the optimum
gating signal combination Sopt as follows:

Algorithm 1 Proposed algorithm

1. comment: Optimization algorithm.
2. Jo :=∞, i := 1
3. while i ≤ ε do
4. Si ← Si,j ∀ j = 1, ..., g
5. comment: Compute stator voltages. Eqn. 8.
6. Uαβxys = [uαs uβs uxs uys 0 0]

T
= V dc ·T ·M

7. comment: Compute the prediction of the measurement
state, considering Xb[0] = 0.
8. Xa[k+1] = A11Xa[k] + B1Uαβs + A12Xb[k]

9. comment: Compute the cost function. Eqn. 23.
10. J[k+2|k] = êiαs[k+2] + êiβs[k+2] +
λxy

(
êixs[k+2] + êiys[k+2]

)
11. if J < Jo then
12. Jo ← J , Sopt ← Si
13. end if
14. i := i+ 1
15. end while
16. comment: Compute the prediction of the unmeasurable
state. Eqn. 16.
17. X̂b[k+1|k] = (A22 − K[k]A12)X̂b[k] + K[k]Y[k+1] +
(A21 −K[k]A11)Y[k] + (B2 −K[k]B1)Uαβs[k]
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Fig. 3. Proposed speed sensorless control technique for the DTPIM.

G. Proposed predictive control method

From the point of view of the inner loop of the cur-
rent control, conventional predictive control avoids the use
of proportional-integer (PI) controllers and modulation tech-
niques since a single switching vector is applied during the
whole switching period. This procedure is somewhat similar
to original DTC schemes and leads to variable switching
frequency. The proposed control technique selects the control
actions by solving an optimization problem for each sampling
period. A model of the real system, which is the DTPIM,
is used to predict its output. This prediction is carried out
for each possible output, or switching vector, of the six-
phase inverter to determine which one minimizes a defined
cost function, and therefore, the model of the real system,
also called predictive model, must be used considering all
possible voltage vectors in the six-phase inverter. As the rotor
current can not be measured directly, it should be estimated
using a KF. The absolute current error, in stationary reference
frame (α− β) for the next sampling instant is normally used
for computational simplicity. In this case, the cost function
is defined as (23), where i∗αβ[k+1] is the stator reference
current and iαβ[k+2] is the predicted stator current which is
computationally obtained using the predictive model. Propor-
tional integral (PI) controller with saturator is used in the
speed sensorless control loop, based on the indirect vector
control scheme because of its simplicity. In the indirect vector
control scheme, PI speed controller is used to generate the
reference current i∗qs in dynamic reference frame. The current
reference used by the predictive model are obtained from the
calculation of the electric angle used to convert the current
reference, originally in dynamic reference frame (d − q), to
static reference frame (α− β). The process of calculation of
the slip frequency (ωsl) is performed in the same manner
as the Indirect Field Orientation methods, from the reference
currents in dynamic reference frame (i∗ds, i

∗
qs) and the electrical

parameters of the machine (Rr, Lr). Finally, using the rotor
current estimated, the stator current measured and the load
torque measured from the induction machine we can estimate

TABLE I
PARAMETERS OF THE DTPIM

Dual three-phase induction machine
PARAMETER SYMBOL VALUE UNIT

Stator resistance Rs 12.8 Ω
Rotor resistance Rr 4.79 Ω
Stator leakage inductance Lls 77.92 mH
Stator inductance Ls 897.97 mH
Rotor inductance Lr 897.97 mH
Magnetizing inductance Lm 818.05 mH
System inertia Ji 0.02 kg.m2

Pairs of poles P 3 −
Friction coefficient Bi 0.036 kg.m2/s
Nominal frequency fa 50 Hz
Electrical power Pw 15 kW

the speed of the machine. A detailed block diagram of the
proposed sensorless speed control technique for the DTPIM
drive is provided in Fig. 3.

V. SIMULATION RESULTS

A MATLAB/Simulink simulation environment has been
designed for the VSI-fed DTPIM, and simulations have been
performed to show the efficiency of the proposed predictive
speed control technique. Numerical integration using first
order Euler’s method algorithm has been applied to com-
pute the evolution of the state variables step by step in the
time domain. Table I shows the electrical and mechanical
parameters for the DTPIM. The efficiency of the proposed
speed sensorless control algorithm for the DTPIM has been
evaluated, under load conditions. In all cases is considered a
sampling frequency of 10 kHz. Fig. 4 shows the simulation
results for a multi-step speed references [180, 220, -220, -
180] rpm, if we consider a fixed reference current (i∗ds = 1 A).
The subscripts (α − β) represent quantities in the stationary
frame reference of the stator currents. The estimated speed is
fedback into the closed loop for speed regulation and a PI
controller is used in the speed regulation loop as shown in
Fig. 3. Furthermore, it can be seen from this graph (as zoom),
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Fig. 4. Simulation results for a multi-step speed references application.

the change in the phases of the stator currents in the (α− β)
subspace, caused by the reversal of the direction of rotation
of the machine. Under these test conditions, the mean squared
error (MSE) in the speed and current tracking are 0.53 rpm,
9 mA and 11.6 mA, respectively.

Fig. 5 shows a multi-step load torque application response
[15, 30, -30, -15] N·m, and the rotor current evolution (mea-
sured and observed) in a stationary reference frame. It can be
seen in this graph the amplitude variation of the rotor current
in function to the load torque applied to the machine. The
estimated rotor current converges to real values for these test
conditions as shown in figures, considering that the MSE is
98 mA and 99 mA for iαr and iβr, respectively.

VI. CONCLUSION

In this paper, the propulsion drive of EVs based in a
sensorless speed control scheme of a DTPIM using an inner
loop based on the MPC control is proposed. The MPC is
designed through a state-space representation, where the rotor
and stator current are the state variables. The rotor current
is estimated using a KF. The theoretical development of the
controller has been validated through simulation results. The
method avoids the use of a speed sensor and has proven to be
efficient even when considering that the machine is operating
under varying speeds and load regimes.
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