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Abstract: In this work we show how to use a quantum adiabatic algorithm to solve multiobjective
optimization problems. For the first time, we demonstrate a theorem proving that the quantum
adiabatic algorithm can find Pareto-optimal solutions in finite-time, provided some restrictions
to the problem are met. A numerical example illustrates an application of the theorem to a
well-known problem in multiobjective optimization. This result opens the door to solve multiobjective
optimization problems using current technology based on quantum annealing.
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1. Introduction

Currently, quantum computation has many practical applications in engineering and computer
science like machine learning, bioinformatics and artificial intelligence [1]. At the core of all these
applications, there is an optimization procedure, and the quantum adiabatic computing paradigm of
Farhi et al. [2] is the best method known thus far for optimization problems.

In this work, we show how to use a quantum adiabatic algorithm in multiobjective combinatorial
optimization problems or MCO. An optimization problem is said to be “multiobjective” or
“multicriteria” if there are two or more objective functions involved [3]. When these objective functions
are required to be optimized at the same time, the optimality of solutions must be revised and, thus,
an MCO can have a set of so-called “Pareto-optimal solutions” where no solution is better than any
other. Here we show that the quantum adiabatic algorithm can find Pareto-optimal solutions in finite
time, provided certain restrictions are met. In Theorem 2 we identify two structural features that
a given MCO must satisfy in order to make an effective use of the quantum adiabatic algorithm
presented in this work.

Even though most known quantum adiabatic optimization algorithms consider single-objective
optimization problems (see [1,4]), only a few works discuss quantum algorithms for MCOs. Those few
algorithms make use of Grover’s search method [5,6] as a subrutine that is invoked inside a classical
algorithm. Alanis et al. [7] presented a quantum optimization algorithm in the context of routing
problems. In [8], a general algorithm for MCO was presented and experimentally compared against
a state-of-the-art metaheuristic. Both papers [7,8] use Grover’s search algorithm to solve an MCO;
however, Grover’s algorithm is not naturally constructed for optimization problems. Having Grover’s
algorithm as the main subrutine for optimization gives place to an “ad hoc” heuristic method whose
finite time convergence has not yet been proved. Hence, these previous works [7,8] relied on numerical
experiments instead of rigorous proofs.
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This work presents the first quantum algorithm for MCO that guarantees finite time converge
to a Pareto-optimal solution. Furthermore, since our method is constructed on the quantum
adiabatic paradigm, it can be implemented in current technologies based on quantum annealing [1,9].
An extended abstract of this work appeared in [10].

The outline of this paper is as follows. In Sections 2 and 3 we present the main concepts of MCO
and adiabatic quantum computing that are relevant for this paper. In Section 4 we formally state our
main result and present a full proof. In Section 5 we present a small numerical example of an MCO.
Finally, in Section 6 we conclude this paper.

2. Preliminaries on Multiobjective Combinatorial Optimization

We present here the notation used throughout this paper. We also briefly review the main concepts
of multiobjective optimization, which are standard definitions and can be found in several papers in
the literature, for example [3]. Definitions 3, 4, 5 and 9 and Lemmas 1 and 3 are originals of this work.

The set of natural numbers (including 0) is denoted N, the set of integers is Z, the set of real
numbers is denoted R and the set of positive real numbers is R+. For any i, j ∈ Z, with i < j, we let
[i, j]Z denote the discrete interval {i, i + 1, . . . , j− 1, j}. The set of binary words of length n is denoted
{0, 1}n. We also let poly(n) = O(nc) be a polynomial in n, i.e., c ∈ N.

A multiobjective combinatorial optimization problem (MCO) is an optimization problem
involving multiple objectives over a finite set of feasible solutions. These objectives typically present
trade-offs among solutions and in general, there is no single optimal solution but a set of compromise
solutions known as the Pareto set [3]. In this work, we follow the definition of Kung et al. [11].
Furthermore, with no loss of generality, all optimization problems considered in this work are
minimization problems.

Let S1, . . . , Sd be totally ordered sets and let ≤i be an order on set Si for each i ∈ [1, d]Z. We also
let ni be the cardinality of Si. Define the natural partial order relation ≺ over the cartesian product
S1 × · · · × Sd in the following way. For any u = (u1, . . . , ud) and v = (v1, . . . , vd) in S1 × · · · × Sd,
we write u ≺ v if and only if for any i ∈ [1, d]Z it holds that ui ≤i vi; otherwise we write u ⊀ v.
An element u ∈ S is a minimal element if there is no v ∈ S such that v ≺ u and v 6= u. Moreover,
we say that u is non-comparable with v if u ⊀ v and v ⊀ u and succinctly write u ∼ v. In the context
of multiobjective optimization, the relation ≺ as defined here is often referred to as the Pareto-order
relation [11].

Definition 1. An MCO is defined as a tuple Π = (D, R, d,F ,≺) where D is a finite set called domain,
R ⊆ R+ ∪ {0} is a set of real values, d is a positive integer, F is a finite collection of functions { fi}i∈[1,d]Z
where each fi maps from D to R, and≺ is the Pareto-order relation on Rd (here Rd is the d-fold cartesian product
on R). We also define a function f that maps D to Rd as f (x) = ( f1(x), . . . , fd(x)) referred to as the objective
vector of Π. If f (x) is a minimal element of Rd, we say that x is a Pareto-optimal solution of Π. The set of all
Pareto-optimal solutions of Π is denoted P(Π).

Definition 2. For any two elements x, y ∈ D, if f (x) ≺ f (y) we write x ≺ y; similarly, if f (x) ∼ f (y)
we write x ∼ y. For any x, y ∈ D, if x ≺ y and y ≺ x we say that x and y are equivalent and it is denoted
as x ≡ y.

A typical example of a multiobjective optimization problem is the two-parabolas problem of
Figure 1. In this problem we have two continuous objective functions defined by two parabolas that
intersect in a single point.
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Figure 1. The two-parabolas Problem. The first objective function f1(x) = (x− 7)2 is represented by
the bold line and the second objective function f2(x) = (x− 15)2 by the dashed line. Note that there
are no equivalent elements in the domain. In this particular example, all the solutions between seven
and 15 are Pareto-optimal.

The set of Pareto-optimal solutions can be very large, and therefore, most methods for MCOs are
concerned with finding a subset of the Pareto-optimal solutions, or an approximation. Optimal query
algorithms were discovered by Kung et al. [11] where all Pareto-optimal solutions can be found for
d = 2, 3 and proved almost tight upper and lower bounds for any d ≥ 4 up to polylogarithmic factors.
Papadimitriou and Yannakakis [12] initiated the field of approximation algorithms for MCOs where
an approximation to all Pareto-optimal solutions can be found in polynomial time.

For the remainder of this work, ≺ will always be the Pareto-order relation and will be omitted
from the definition of any MCO. Furthermore, for convenience, we will often write Πd = (D, R,F )
as a short-hand for Π = (D, R, d,F ). In addition, we will assume that each function fi ∈ F is
polynomial-time computable and each fi(x) is bounded by a polynomial in the number of bits of x.
This is a typical assumption in the theory of optimization algorithms in order to have the computational
complexity of any optimization algorithm to depend only on the number of “black-box” accesses to
the objective function.

Definition 3. Given any MCO Πd we say that Πd is well-formed if and only if for each fi ∈ F there is a
unique x ∈ D such that fi(x) = 0.

Definition 4. An MCO Πd is normal if and only if Πd is well-formed and fi(x) = 0 and f j(y) = 0, for i 6= j,
implies x 6= y.

In a normal MCO, the value of an optimal solution in each fi is 0, and all optimal solutions are
different. In Figure 1, solutions x = 7 and x = 15 are optimal solutions of f1 and f2 with value 0,
respectively; hence, the two-parabolas problem of Figure 1 is normal.

Definition 5. An MCO Πd is collision-free if given λ = (λ1, . . . , λd), with each λi ∈ R+, for any i ∈ [1, d]Z
and any pair x, y ∈ D, with x 6= y, it holds that | fi(x)− fi(y)| ≥ λi. If Πd is collision-free we write succinctly
as Πλ

d .

The two-parabolas problem of Figure 1 is not collision-free; for example, for solutions x = 5 and
x = 9 we have that f1(5) = f1(9).

Definition 6. A Pareto-optimal solution x is trivial if x is an optimal solution of some fi ∈ F .

In Figure 1, solutions x = 7 and x = 15 are trivial Pareto-optimal solutions, whereas any x
between seven and 15 is non-trivial.
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Lemma 1. For any normal MCO Πd, if x and y are trivial Pareto-optimal solutions of Πd, then x and y are
not equivalent.

Proof. Let x, y be two trivial Pareto-optimal solutions of Πd. There exists i, j such that fi(x) = 0 and
f j(y) = 0. Since Πd is normal we have that x 6= y and fi(y) > 0 and f j(x) > 0, hence, x ∼ y and they
are not equivalent.

Let Wd be a set of of normalized vectors in [0, 1)d, the continuous interval between zero and less
than one, defined as

Wd =

{
w = (w1, . . . , wd) ∈ [0, 1)d

∣∣∣∣∣ d

∑
i=1

wi = 1

}
. (1)

For any w ∈ Wd, define 〈 f (x), w〉 = 〈 f (x), w〉 = w1 f1(x) + · · ·+ wd fd(x). In the literature of
multiobjective optimization, if each fi is an objective function of an MCO Πd, it is said that 〈 f (x), w〉 is
a linearization or scalarization of Πd [13].

The following fact is a well-known property of MCOs.

Lemma 2. Let Πd = (D, R,F ). For any w ∈ Wd there exists x ∈ D such that if 〈 f (x), w〉 =

miny∈D{〈 f (y), w〉}, then x is a Pareto-optimal solution of Πd.

Proof. Fix w ∈ Wd and let x ∈ D be such that 〈 f (x), w〉 is minimum among all elements of
D. For any y ∈ D, with y 6= x, we need to consider two cases: (1) 〈 f (y), w〉 = 〈 f (x), w〉 and
(2) 〈 f (y), w〉 > 〈 f (x), w〉.

Case (1). Here we have another two subcases, either fi(y) = fi(x) for all i or there exists at
least one pair i, j ∈ {1, . . . , d} such that wi fi(x) < wi fi(y) and wj f j(y) < wj f j(x). When fi(x) = fi(y)
for each i = 1, . . . , d we have that x and y are equivalent. On the contrary, if wi fi(x) < wi fi(y) and
wj f j(y) < wj f j(x), we have that fi(x) < fi(y) and f j(y) < f j(x), and hence, x ∼ y.

Case (2). In this case, there exists i ∈ {1, . . . , d} such that wi fi(x) < wi fi(y), and hence,
fi(x) < fi(y). Thus, f (y) 6≺ f (x) and y 6≺ x for any y 6= x.

We conclude from Case (1) that x ≡ y or x ∼ y, and from Case (2) that y ⊀ x. Therefore, x is
Pareto-optimal.

Given any linearization of an MCO, by Lemma 2, an optimal solution of a linearized MCO
corresponds to a Pareto-optimal solution; however, it does not hold in general that each Pareto-optimal
solution has a corresponding linearization, i.e., no all Pareto-optimal solutions can always be found
using linearizations.

Lemma 3. Given Πd = (D, R,F ), any two elements x, y ∈ D are equivalent if and only if for all w ∈Wd it
holds that 〈 f (x), w〉 = 〈 f (y), w〉.

Proof. Assume that x ≡ y. Hence f (x) = f (y). If we pick any w ∈Wd we have that

〈 f (x), w〉 = w1 f1(x) + · · ·+ wd fd(x) = w1 f1(y) + · · ·+ wd fd(y) = 〈 f (y), w〉.

Now suppose that for all w ∈ Wd it holds 〈 f (x), w〉 = 〈 f (y), w〉. By contradiction, assume that
x 6≡ y. With no loss of generality, assume further that there is exactly one i ∈ [1, d]Z such that
fi(x) 6= fi(y). Hence

wi( fi(x)− fi(y)) = ∑
j 6=i

wj( f j(y)− f j(x)). (2)
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The right hand of Equation (2) is 0 because for all j 6= i we have that f j(x) = f j(y). The left hand
of Equation (2), however, is not 0 by our assumption, hence, a contradiction. Therefore, x is equivalent
to y.

In this work, we are only interested in finding non-trivial Pareto-optimal solutions. Finding trivial
elements can be done by optimizing each fi independently; consequently, in Equation (1) we do not
allow for any wi to be 1.

Definition 7. The set of supported Pareto-optimal solutions denoted S(Π) is defined as the set of Pareto-optimal
solutions x where 〈 f (x), w〉 is optimal for some w ∈Wd.

From Lemma 2, we know that some Pareto-optimal solutions cannot be found using any
linearization w ∈Wd.

Definition 8. The set of non-supported Pareto-optimal solutions is the set N(Π) = P(Π) \ S(Π).

Note that there may be Pareto-optimal solutions x and y that are non-comparable and
〈 f (x), w〉 = 〈 f (y), w〉 for some w ∈ Wd. That is equivalent to saying that the objective function
obtained from a linearization of an MCO is not one-to-one (injective).

Definition 9. Any two elements x, y ∈ D are weakly-equivalent if and only if there exists w ∈Wd such that
〈 f (x), w〉 = 〈 f (y), w〉.

By Lemma 3, any two equivalent solutions x, y are also weakly-equivalent; on the other hand, if x
and y are weakly-equivalent it does not imply that they are equivalent. For example, consider two
objective vectors f (x) = (1, 2, 3) and f (y) = (1, 3, 2). Clearly, x and y are not equivalent; however,
if w = (1/3, 1/3, 1/3) we can see that x and y are indeed weakly-equivalent. In Figure 1, points x = 10
and x = 12 are weakly-equivalent.

3. The Quantum Adiabatic Algorithm

The quantum adiabatic computing paradigm was discovered by Farhi et al. [2] and the quantum
adiabatic algorithm was designed to solve single-objective optimization problems. The main idea
behind quantum adiabatic algorithms is that optimization problems are somehow encoded into
time-dependent Hamiltonians. Then, we start the algorithm with an easy-to-prepare quantum state
and we let the system evolve according to the adiabatic theorem. After some time, we measure the
system and obtain an optimal solution to our optimization problem. In this work, we follow the
definition of McGeoch [1].

Given an objective function f where each element in its domain can be represented with poly(n)
bits, a quantum adiabatic algorithm for f is constructed from three components:

1. an initial Hamiltonian H0 chosen in such a way that its ground state is easy to prepare;
2. a final Hamiltonian H1 encodes the function f in such a way that the minimum eigenvalue of H1

corresponds to f (x) and its ground-state corresponds to x;
3. an adiabatic evolution path, that is, a function s(t) that decreases from 1 to 0 as the time t goes

from 0 to a given time T. In this work, we will always use a linear path s(t) = 1− t/T.

The time-dependent Hamiltonian H for the algorithm is thus defined as

H(t) = s(t)H0 + (1− s(t))H1. (3)

If |ψ(t)〉 is an eigenvector of H(t) that corresponds to the minimum eigenvalue, the quantum
adiabatic algorithm works as follows. Prepare the system in state |ψ(0)〉 and let it evolve according
to the Schrödinger’s equation. After some time T, measure the state |ψ(T)〉 with respect to some
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well-defined basis. The adiabatic theorem says that if T is large enough and H is non-degenerate
in its minimum eigenvalue, the quantum state that is observed from the measurement is very close
to |ψ(T)〉.

One of the most recent versions of the adiabatic algorithm is due to Ambainis and Regev [14]
where a lower bound in the value of T can be estimated. Below we transcribe the complete statement of
their theorem since it is one of the main pieces in our proof. Let H(s) be a time-dependent Hamiltonian
with a linear path s = 1− t/T for some given T. Let ‖H‖ = maxs∈[0,1] ‖H(s)‖ where ‖ · ‖ is the
operator norm with respect to the `2-norm, and let H′ and H′′ be the first and second derivatives of
H, respectively.

Theorem 1 (Ambainis and Regev [14]). Let H(s), 0 ≤ s ≤ 1, be a time-dependent Hamiltonian, let |ψ(s)〉
be one of its eigenstates, and let γ(s) be the corresponding eigenvalue. Assume that for any s ∈ [0, 1], all other
eigenvalues of H(s) are either smaller that γ(s)− λ or larger than γ(s) + λ. Consider the adiabatic evolution
given by H and |ψ(s)〉 applied for time T. Then, the following condition is enough to guarantee that the final
state is at distance at most δ from |ψ(1)〉:

T ≥ 105

δ2 ·max
{
‖H‖3

λ4 ,
‖H′‖ · ‖H′′‖

λ3

}
.

One of the main design decisions for adiabatic algorithms is choosing an adequate initial
Hamiltonian. To make use of the adiabatic theorem, we need to construct an initial Hamiltonian
that does not commute with the final Hamiltonian; otherwise, the eigenvalue gap will disappear [2].

4. Main Result of This Work

With all the technical definitions established, now we are ready to formally state our main result.
For any vector w in Euclidian space we define the `1-norm of w as ‖w‖1 = |w1|+ · · · |wd|.

Theorem 2. Let Πλ
d be any normal and collision-free MCO. If there are no equivalent Pareto-optimal solutions,

then for any w ∈ Wd there exists w′ ∈ Wd and a Hamiltonian Hw′ , satisfying ‖w − w′‖1 ≤ 1/poly(n),
such that the quantum adiabatic algorithm, using Hw′ as final Hamiltonian, can find a Pareto-optimal solution
x corresponding to w in finite time.

In the following subsections we present a proof of Theorem 2. In Section 4.1 we show how to
construct the initial and final Hamiltonians, and in Section 4.2 we show that our construction is correct.

4.1. The Initial and Final Hamiltonians for MCOs

In this section we show how to construct the initial and final Hamiltonians. Given any normal
and collision-free MCO Πλ

d = (D, R,F ), assume with no loss of generality that the domain of the
objective functions is D = {0, 1}n, that is, the set of al bit strings of length n.

For each i ∈ [1, d]Z we define a Hamiltonian H fi
= ∑x∈{0,1}n f (x)|x〉〈x|. Since Πλ

d is collision-free
and normal, each H fi

is nondegenerate in all its eigenvalues and its minimum eigenvalue is 0. Given a
linearization w of Πλ

d , we construct the final Hamiltonian Hw for our quantum algorithm as

Hw = w1H f1 + · · ·+ wd H fd

= ∑
x∈{0,1}n

〈 f (x), w〉|x〉〈x|. (4)

Now we construct the initial Hamiltonian, which cannot commute with the final Hamiltonian
recently defined. In this work we make use of the Hamiltonian defined in [2]. Let |0̂〉 = (|0〉+ |1〉)/

√
2

and |1̂〉 = (|0〉 − |1〉)/
√

2. The operation F that makes |0̂〉 = F|0〉 and |1̂〉 = F|1〉 is called the
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Walsh-Hadamard transform. Thus, for any x ∈ {0, 1}n we can make |x̂〉 = F⊗n|x〉, where F is the
n-fold Walsh–Hadamard transform. The initial Hamiltonian is

H0 = ∑
x∈{0,1}n

h(x)|x̂〉〈x̂|, (5)

where h(0n) = 0 and h(x) = 1 for any x 6= 0n.
Now that we have defined our initial and final Hamiltonians we need to show that the

interpolating hamiltonian H(t) of Equation (3) is indeed nondegenerate in all its eigenvalues and that
it fulfils the requirements of Theorem 2.

4.2. Analysis of the Final Hamiltonian

Note that if the initial Hamiltonian does not commute with the final Hamiltonian, it suffices to
prove that the final Hamiltonian is nondegenerate in its minimum eigenvalue [2]. For the remaining of
this work, we let σw and αw be the smallest and second smallest eigenvalues of Hw corresponding to a
normal and collision-free MCO Πλ

d = (D, R,F ).

Lemma 4. Let x be a non-trivial Pareto-optimal solution of Πλ
d . For any w ∈Wd it holds that σw > 〈λ, w〉.

Proof. Let σw = w1 f1(x) + · · ·+ wd fd(x) and let x be a non-trivial Pareto-optimal element. For each
wi ∈ N we have that

σw = ∑
i

wi fi(x) > ∑
i

wiλi = 〈λ, w〉.

Lemma 5. For any w ∈ Wd, let Hw be a Hamiltonian with a nondegenerate minimum eigenvalue.
The eigenvalue gap between the smallest and second smallest eigenvalues of Hw is at least 〈λ, w〉.

Proof. Let σw be the unique minimum eigenvalue of Hw. We have that σw = 〈 f (x), w〉 for some
x ∈ {0, 1}n. Now let αw = 〈 f (y), w〉 be a second smallest eigenvalue of Hw for some y ∈ {0, 1}n where
y 6= x. Hence,

αw − σw = 〈 f (y), w〉 − 〈 f (x), w〉
= w1 f1(y)− w1 f1(x) + w2 f2(y)− w2 f2(x)

≥ w1λ1 + w2λ2

= 〈λ, w〉.

Lemma 6. If there are no weakly-equivalent Pareto-optimal solutions in Πλ
d , then the Hamiltonian Hw is

non-degenerate in its minimum eigenvalue.

Proof. By the contrapositive, suppose Hw is degenerate in its minimum eigenvalue σw. Take any two
degenerate minimal eigenstates |x〉 and |y〉, with x 6= y, such that

w1 f1(x) + · · ·+ wd fd(x) = w1 f1(y) + · · ·+ wd f2(d) = σw.

Then it holds that x and y are weakly-equivalent.

We further show that even if Πλ
d has weakly-equivalent Pareto-optimal solutions, we can find a

nondegenerate Hamiltonian. Let m = maxx,i{ fi(x)}.
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Lemma 7. For any Πλ
d , let x1, . . . , x` ∈ D be Pareto-optimal solutions that are not pairwise equivalent.

If there exists w ∈ Wd and σw ∈ R+ such that 〈 f (x1), w〉 = · · · = 〈 f (x`), w〉 = σw is minimum among
all y ∈ D, then there exists w′ ∈ Wd and i ∈ [1, `]Z such that for all j ∈ [1, `]Z, with j 6= i, it holds
〈 f (xi), w′〉 < 〈 f (xj), w′〉. Additionally, if the linearization w′ satisfies ‖w− w′‖1 ≤ 〈λ,w〉

md , then 〈 f (xi), w′〉
is unique and minimum among all 〈 f (y), w′〉 for y ∈ D.

Proof. We prove the lemma by induction on `. Let ` = 2, then 〈 f (x1), w〉 = 〈 f (x2), w〉, and hence,

w1 f1(x1) + · · ·+ wd fd(x1) = σw

w1 f1(x2) + · · ·+ wd fd(x2) = σw.
(6)

for some σw ∈ R+. From linear algebra we know that there is an infinite number of elements
of Wd that simultaneously satisfy Equation (6). With no loss of generality choose adequately f1

and f2, fix w3, . . . , wd and set b1 = w3 f3(x1) + · · · + wd fd(x1) and b2 = w3 f3(x2) + · · · + wd fd(x2).
We have that

w1 f1(x1) + w2 f2(x1) = σw − b1

w1 f1(x2) + w2 f2(x2) = σw − b2.
(7)

Again, by linear algebra, we know that Equation (7) has a unique solution w1 and w2; it suffices to
note that the determinant of the coefficient matrix of Equation (7) is not 0, as it is proved in Appendix A.

Choose any w′1 6= w1 and w′2 6= w2 satisfying w′1 + w′2 + w3 + · · · + wd = 1 and let
w′ = (w′1, w′2, w3, . . . , wd). Then we have that 〈 f (x1), w′〉 6= 〈 f (x2), w′〉 because w′1 and w′2 are not
solutions to Equation (7). Hence, either 〈 f (x1), w′〉 or 〈 f (x2), w′〉must be smaller than the other.

Suppose that 〈 f (x1), w′〉 < 〈 f (x2), w′〉. We now claim that 〈 f (x1), w′〉 is minimum and unique
among all y ∈ D. In addition to the constraint of the preceding paragraph that w′ must satisfy, in order
for 〈 f (x1), w′〉 to be minimum, we must choose w′ such that ‖w− w′‖1 ≤ 〈λ,w〉

md .
Assume for the sake of contradiction the existence of y ∈ D such that 〈 f (y), w′〉 ≤

〈 f (x1), w′〉. Hence,
〈 f (y), w′〉 ≤ 〈 f (x1), w〉 < 〈 f (y), w〉.

From Lemma 4, we know that |〈 f (x1), w〉 − 〈 f (y), w〉| > 〈λ, w〉, and thus,

|〈 f (y), w′〉 − 〈 f (y), w〉| > 〈λ, w〉. (8)

Using the Cauchy–Schwarz inequality we have that

|〈 f (y), w′〉 − 〈 f (y), w〉| = |〈 f (y), w′ − w〉|
≤ ‖ f (y)‖1 · ‖w′ − w‖1

≤ 〈λ, w〉,

where the last line follows from ‖ f (y)‖1 ≤ md and ‖w− w′‖1 ≤ 〈λ,w〉
md ; from Equation (8), however,

we have that |〈 f (y), w′ − w〉| > 〈λ, w〉, which is a contradiction. Therefore, we conclude that
〈 f (y), w′〉 > 〈 f (x1), w′〉 for any y ∈ D; the case for 〈 f (x1), w′〉 > 〈 f (x2), w′〉 can be proved similarly.
The base case of the induction is thus proved.

Now suppose the statement holds for `. Let x1, . . . , x`, x`+1 be Pareto-optimal solutions that are
not pairwise equivalent. Let w ∈ Wd be such that 〈 f (x1), w〉 = · · · = 〈 f (w`+1), w〉 holds. By our
induction hypothesis, there exists w′ ∈ Wd and i ∈ [1, `]Z such that 〈 f (xi), w′〉 < 〈 f (y), w′〉 for any
other y ∈ D.

If 〈 f (xi), w′〉 6= 〈 f (x`+1), w′〉 then we are done, because either one must be smaller. Suppose,
however, that 〈 f (x`+1), w′〉 = 〈 f (xi), w′〉 = σw′ for some σw′ ∈ R+. From the base case of the



Axioms 2019, 8, 32 9 of 14

induction we know there exists w′′ 6= w′ that makes 〈 f (xi), w′′〉 < 〈 f (x`+1), w′′〉, and hence,
〈 f (xi), w′′〉 < 〈 f (y), w′′〉 for any y ∈ D. Therefore, the lemma is proved.

The premise in Lemma 7, that each x1, . . . , x` must be Pareto-optimal solutions, is a sufficient
condition because if one solution is not Pareto-optimal, then the statement will contradict Lemma 2.

We now apply Lemma 7 to find a Hamiltonian with a nondegenerate minimum eigenvalue.

Lemma 8. Let Πλ
d be a MCO with no equivalent Pareto-optimal solutions and let Hw be a degenerate

Hamiltonian in its minimum eigenvalue with corresponding minimum eigenstates |x1〉, . . . , |x`〉. There exists
w′ ∈ Wd, satisfying ‖w − w′‖1 ≤ 〈λ,w〉

md , and i ∈ [1, `]Z such that Hw′ is nondegenerate in its smallest
eigenvalue with corresponding eigenvector |xi〉.

Proof. From Lemma 6, we know that if Πλ
d has no weakly-equivalent Pareto-optimal solutions, then for

any w the Hamiltonian Hw is nondegenerate.
We consider now the case when the minimum eigenvalue of Hw is degenerate with `

Pareto-optimal solutions that are weakly-equivalent. Let x1, . . . , x` be such weakly-equivalent
Pareto-optimal solutions that are non-trivial and xi 6≡ xj for all i 6= j. By Lemma 7 there exists
w′ ∈Wd, where w 6= w′, such that 〈 f (xi), w′〉 is minimum among all y ∈ D.

If we consider our assumption from Section 2 that m = maxx,i{ fi(x)} is bounded by poly(n),
where n is the maximum number of bits of any element in x ∈ D, by Lemma 8 we have that any w′

must satisfy ‖w− w′‖1 ≤ 1/poly(n). Then Theorem 2 follows immediately from Lemmas 2 and 8.
To see that the adiabatic evolution takes finite-time let ∆max = maxs ‖ d

ds H(s)‖ and
gmin = mins g(s), where g(s) is the eigenvalue gap of H(s). Letting T = O(∆max

g2
min

) suffices to find

a supported solution corresponding to w. Since gmin > 0 and ‖ d
ds H(s)‖ = poly(n), we conclude that T

is finite.

5. An Application to the Two-Parabolas Problem

In this section we present a numerical example on how to construct a quantum adiabatic algorithm
for the two-parabolas problem. Let TPλ

2 denote the two-parabolas problem with two objective functions
and gap vector λ = (0.2, 0.4) whose description is in Appendix B. In order to use the adiabatic
algorithm of Section 3 we need to consider a collision-free version of the problem.

Let n = 7 be the number of bits that are needed to encode the entire domain of each objective
function. Thus, a feasible solution x ∈ {0, . . . , 127}. Since the gap vector is λ = (0.2, 0.4), we construct
objective functions f1 and f2 that resemble two parabolas in such a way that for each pair of feasible
solutions x, y it holds that | f1(x)− f1(y)| ≥ 0.2 and | f2(x)− f2(y)| ≥ 0.4. See Table A1 for a complete
definition of TPλ

2 and Figure 2 shows a plot of all points.
We define the final and initial Hamiltonians following Equations (4) and (5), respectively.

In particular, the initial Hamiltonian is defined as

H0 = ∑
x∈{0,1}n\{0n}

8|x̂〉〈x̂|. (9)

The number 8 in Equation (9) is there only to enhance the visual presentation of the plots in this
paper. The Hamiltonian of the entire system for TPλ

2 is

H(s) = (1− s)H0 + sHw. (10)
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From the previous section we know that T = O(∆max
g2

min
) suffices to find a supported solution

corresponding to w [15]. The quantity ∆max is usually easy to estimate [2]. The eigenvalue gap
gmin is, however, very difficult to compute; indeed, determining for any Hamiltonian if gmin > 0 is
undecidable [16].

Figure 2. A discrete two-parabolas problem on seven qubits. Each objective function f1 and f2 is
represented by the rounded points and the squared points, respectively. The gap vector is λ = (0.2, 0.4).
The trivial Pareto-optimal points are 40 and 80.

In Figure 3 we present the eigenvalue gap of TPλ
2 for w = 0.57 where we let w1 = w and

w2 = 1−w1; for this particular value of w the final Hamiltonian Hw has a unique minimum eigenstate
which corresponds to Pareto-optimal solution x0 = 59. The two smallest eigenvalues never touch,
and exactly at s = 1 the gap is |〈 f (x0), w〉 − 〈 f (x1), w〉|, where x0 = 59 and x1 = 60 are the smallest
and second smallest solutions with respect to w, which agrees with Lemmas 4 and 5. Figure 4 shows
the eigenvalue gap as a function of s in a logarithmic scale.

Figure 3. Eigenvalues of Equation (10) for the two-parabolas problem TPλ
2 of Figure 2 for w = 0.57.

The eigenvalue gap g(s) at s = 1 is exactly |〈w, f (x0)〉 − 〈w, f (x1)〉|, where x0 = 59 and x1 = 60 are
the smallest and second smallest solutions with respect to this value of w.

Similar results can be observed for different values of w and a different number of qubits.
Therefore, the experimental evidence lead us to conjecture that in the two-parabolas problem
gmin ≥ |〈 f (x), w〉 − 〈 f (y), w〉|, where x and y are the smallest and second smallest solutions with
respect to w.
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Figure 4. Logarithmic plot of the eigenvalue gap g(s) = (αw − σw) as a function of s.

6. Concluding Remarks and Open Problems

In the last few years the field of quantum computation is finding new applications in artificial
intelligence, machine learning and data analysis. These new discoveries were fueled by a deeper
understanding in the foundations of quantum information and computation which resulted in new
quantum algorithms for optimization problems (see for example [17]).

In this paper we addressed another side of optimization problems, namely, multiobjective
optimization problems, where multiple objective functions must be optimized at the same time.
This paper presented the first quantum multiobjective optimization algorithm with provable finite-time
convergence. Other authors proposed quantum algorithms for multiobjective optimization [7,8] but
these algorithms were ad-hoc heuristics with no theoretical guarantees for convergence. Furthermore,
these aforementioned proposals utilized a hybrid approach of classical and quantum computation
where Grover’s search algorithm constitutes the only “quantum part” and the other parts of the
algorithm are classical. The quantum algorithm of this work is based on the successful quantum
adiabatic paradigm of Farhi et al. [2] and it is a full quantum algorithm, that is, all of its execution
is performed by quantum operations with no classical parts except the initialization and read-out of
the results.

The quantum multiobjective optimization algorithm of this work finds a single Pareto-optimal
solution and in order to find other Pareto-optimal solutions it must be executed several times.
Furthermore, the main result of this work, Theorem 2, requires that all multiobjective optimization
problems be normal, collision-free and with no equivalent solutions. Even though this result constrains
the class of mulitiobjective problems that can be solved, this work presents a first step forward to a
general purpose quantum multiobjective optimization algorithm.

We end this paper by listing a few promising and challenging open problems.

1. We know from Lemma 2 that if we linearize a multiobjective optimization problem,
some Pareto-optimal solutions (the non-supported solutions) may not be found. Considering that
our quantum algorithm uses a linearization technique, a new mapping or embedding method of a
multiobjective problem into a Hamiltonian is necessary in order to construct a quantum adiabatic
algorithm that can also find supported Pareto-optimal solutions.

2. For a practical application of our quantum algorithm, the linearization w in Theorem 2 must be
chosen so that the resulting total Hamiltonian is non-degenerate in its ground-state. Therefore,
more research is necessary in order to develop a heuristic for choosing w before executing
the algorithm.

3. As mentioned before, currently our algorithm is only good for multiobjective problems with
no equivalent solutions. Natural multiobjective optimization problems appear in engineering
and science with several equivalent solutions, and hence, in order to use our algorithm in a
real-world situation we need to take into account equivalent solutions. This is a crucial point
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mainly because equivalent solutions yields degenerate ground-states in the total Hamiltonian,
and hence, the quantum adiabatic theorem cannot be used.

4. The time complexity of our quantum multiobjective algorithm depends on the spectral gap of the
total Hamiltonian. Even though we presented some numerical results that suggest a polynomial
execution time for the two-parabolas problem, a more thorough and rigorous approach must be
done. This depends on the analysis of the spectral gap of Hamiltonians that can be constructed
for specific multiobjective problems, for example, solving our conjecture for the two-parabolas
problem of Section 5.
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Appendix A. Proof of Non-Singularity of Equation (7)

We want to demonstrate that the determinant of the matrix

A =

(
f1(x1) f2(x1)

f1(x2) f2(x2)

)

is not 0.
Let det(A) = f1(x1) f2(x2) − f2(x1) f1(x2). Since x1 and x2 are two different Pareto-optimal

solutions, we have that x1 ∼ x2; therefore, there exists a function fi(x) that we will call f1(x) for which
f1(x1) < f1(x2). Since x1 and x2 are Pareto-optimal, it cannot happen that fi(x1) < fi(x2) for all i;
otherwise, x1 would dominate x2. Therefore, there exists at least one function f j(x) that we denote
f2(x) such that f2(x1) > f2(x2). Thus it holds that

f1(x1) < f1(x2),

f2(x2) < f2(x1).

Then, it follows that f1(x1) f2(x2) < f1(x2) f2(x1) and consequently det(A) 6= 0.

Appendix B. Data for the Two-Parabolas Problem of Figure 2

Table A1. Complete definition of the two-parabolas example of Figure 2 for seven qubits.

x f1(x) f2(x) x f1(x) f2(x) x f1(x) f2(x) x f1(x) f2(x)

0 36.14 214.879 1 34.219 208.038 2 32.375 201.354 3 30.606 194.825
4 28.91 188.449 5 27.285 182.224 6 25.729 176.148 7 24.24 170.219
8 22.816 164.435 9 21.455 158.794 10 20.155 153.294 11 18.914 147.933

12 17.73 142.709 13 16.601 137.62 14 15.525 132.664 15 14.5 127.839
16 13.524 123.143 17 12.595 118.574 18 11.711 114.13 19 10.87 109.809
20 10.07 105.609 21 9.309 101.528 22 8.585 97.564 23 7.896 93.715
24 7.24 89.979 25 6.615 86.354 26 6.019 82.838 27 5.45 79.429
28 4.906 76.125 29 4.385 72.924 30 3.885 69.824 31 3.404 66.823
32 2.94 63.919 33 2.491 61.11 34 2.055 58.394 35 1.63 55.769
36 1.214 53.233 37 0.805 50.784 38 0.401 48.42 39 0 46.139
40 0.801 43.939 41 1.205 41.818 42 1.614 39.774 43 2.03 37.805
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Table A1. Cont.

x f1(x) f2(x) x f1(x) f2(x) x f1(x) f2(x) x f1(x) f2(x)

44 2.455 35.909 45 2.891 34.084 46 3.34 32.328 47 3.804 30.639
48 4.285 29.015 49 4.785 27.454 50 5.306 25.954 51 5.85 24.513
52 6.419 23.129 53 7.015 21.8 54 7.64 20.524 55 8.296 19.299
56 8.985 18.123 57 9.709 16.994 58 10.47 15.91 59 11.27 14.869
60 12.111 13.869 61 12.995 12.908 62 13.924 11.984 63 14.9 11.095
64 15.925 10.239 65 17.001 9.414 66 18.13 8.618 67 19.314 7.849
68 20.555 7.105 69 21.855 6.384 70 23.216 5.684 71 24.64 5.003
72 26.129 4.339 73 27.685 3.69 74 29.31 3.054 75 31.006 2.429
76 32.775 1.813 77 34.619 1.204 78 36.54 0.6 79 38.54 0
80 40.621 1.2 81 42.785 1.804 82 45.034 2.413 83 47.37 3.029
84 49.795 3.654 85 52.311 4.29 86 54.92 4.939 87 57.624 5.603
88 60.425 6.284 89 63.325 6.984 90 66.326 7.705 91 69.43 8.449
92 72.639 9.218 93 75.955 10.014 94 79.38 10.839 95 82.916 11.695
96 86.565 12.584 97 90.329 13.508 98 94.21 14.469 99 98.21 15.469
100 102.331 16.51 101 106.575 17.594 102 110.944 18.723 103 115.44 19.899
104 120.065 21.124 105 124.821 22.4 106 129.71 23.729 107 134.734 25.113
108 139.895 26.554 109 145.195 28.054 110 150.636 29.615 111 156.22 31.239
112 161.949 32.928 113 167.825 34.684 114 173.85 36.509 115 180.026 38.405
116 186.355 40.374 117 192.839 42.418 118 199.48 44.539 119 206.28 46.739
120 213.241 49.02 121 220.365 51.384 122 227.654 53.833 123 235.11 56.369
124 242.735 58.994 125 250.531 61.71 126 258.5 64.519 127 266.644 67.423
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