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Abstract: Skin dermoscopy images frequently lack contrast caused by varying light conditions.
Indeed, often low contrast is seen in dermoscopy images of melanoma, causing the lesion to blend in
with the surrounding skin. In addition, the low contrast prevents certain details from being seen in
the image. Therefore, it is necessary to design an approach that can enhance the contrast and details
of dermoscopic images. In this work, we propose a multi-scale morphological approach to reduce
the impacts of lack of contrast and to enhance the quality of the images. By top-hat reconstruction,
the local bright and dark features are extracted from the image. The local bright features are added
and the dark features are subtracted from the image. In this way, images with higher contrast and
detail are obtained. The proposed approach was applied to a database of 236 color images of benign
and malignant melanocytic lesions. The results show that the multi-scale morphological approach
by reconstruction is a competitive algorithm since it achieved a very satisfactory level of contrast
enhancement and detail enhancement in dermoscopy images.

Keywords: skin dermoscopy images; multi-scale morphological approach; top-hat reconstruction;
contrast enhancement

1. Introduction

Medical images are the visual representations of the interior of a body. These visual
representations have facilitated some health care tasks such as diagnosing diseases. Despite
technological advances in recent years, image acquisition, storage, or transmission still
suffer from various types of degradation [1]. These factors can cause inefficient or inaccurate
diagnoses, thus compromising the healing of patients.

Many techniques have been proposed to improve the contrast of medical images [2].
The traditional histogram equalization (HE) [3], one of the most popular techniques,
was the first attempt to automatically improve contrast. HE distributes the gray levels
within the image (each gray level has an equal chance to occur) to enhance contrast and
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brightness. Studies have shown that HE introduces saturation and over-enhancement in
the images [4,5]. Several improved techniques have been proposed to maintain average
image brightness, reducing saturation effects, thus avoiding unnatural image enhancement.
Some of these techniques are: brightness preserving bi-histogram equalization (BBHE) [6],
dual sub-image histogram equalization (DSIHE) [7], minimum mean brightness error bi-
histogram equalization (MMBEBHE) [8], and quadri-histogram equalization with limited
contrast (QHELC) [9].

With the emergence of mathematical morphology (MM) based approaches in recent
decades, new techniques have been developed for contrast enhancement [10–13]. Due
to its ability to extract dark and light features from images using structuring elements of
different shapes and sizes [14], the top-hat transformation has received a lot of attention.
In [15], the top-hat transformation was used to correct the illumination of images with
melanocytic lesions as a preprocessing for a subsequent feature extraction study. In [16],
a method for segmentation of retinal blood vessels is presented. Vessel enhancement is
performed using the contrast enhancement technique based on the top-hat transform.

Various authors have proposed to use a multi-scale approach, called multi-scale
top-hat transformation (MTH). An advantage of MTH is that it allows to process the
image content from the most global to the most detailed level. Several works propose
to improve different types of medical images by integrating MTH in a morphological
based image enhancement approach [10,17–24]. Currently, in the field of computer vision,
MTH-based algorithms are used as a preliminary step for other applications based on
artificial intelligence. For example, in [25], a deep learning approach using convolutional
neural networks was proposed to detect vessel regions in angiography images. In this
work, the multi-scale top-hat transform for contrast enhancement (MSTH) algorithm [10]
was used to preprocess the images by enhancing their contrast. In [26], a method for
edge detection in images based on top-hat operators with multidirectional and multiscale
structuring elements was proposed.

A multimodal medical image fusion scheme based on multiscale top-hat transform
combined with morphological contrast operators is presented in [27].

In [28], an automatic coronary artery segmentation approach was proposed. In this
work, in the preprocessing stage, the input image was processed with the MSTH algorithm
for better segmentation of coronary arteries. In [29], MSTH was used as the first step of an
algorithm for detecting bright lesions in retinal images. In [30] proposed Sine-Net, an auto-
mated tool based on a fully convolutional deep learning architecture for the segmentation
of blood vessels in retinal images. The architecture obtained better segmentation results
on three databases by using the combination of the MSTH and contrast-limited adaptive
histogram equalization (CLAHE) [31] algorithms in the preprocessing.

In this work an improvement of MTH is proposed. The underlying idea is to replace
the opening and the closing operation with morphological filters by reconstruction. This
replacement is done because the morphological operators by reconstruction are very
attractive by avoiding damaging the image contour, the edge and many other important
information of the medical image.

For such purpose MTH integrates the concept of geodesic reconstruction [32]. By com-
bining the advantages of morphological reconstruction with MTH ability to extract dark
and bright characteristics, the resulting strategy is a multi-scale morphological approach ca-
pable of enhancing medical images. Experiments show that the resulting skin dermoscopy
images have less distortion, greater detail accuracy, and better contrast than different image
enhancement approaches.

We can summarize the contributions in this work as follows:

(a) Propose a new MTH based strategy which incorporates the geodesic reconstruction
concept in combination with a mathematical morphological approach;

(b) Design a novel contrast enhancement algorithm based on the proposed MTH approach.

The rest of the article is organized as follows. In Section 2, the basic concepts are
introduced. Then, in Section 3, the proposed approach is described. The experiments and
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discussions of the results achieved are presented in Section 4. Finally, Section 5 presents
the conclusions of the work.

2. Mathematical Morphology

In mathematical morphology (MM) the aim is to analyze and extract unknown struc-
tures contained in an image. For such purpose, it uses a structuring element of known
shape and size, and the erosion and dilation operators [14]. By providing a wide range of
filters represented by the combination of these two basic operators, MM offers efficient
tools and represents a relatively simple and powerful tool in terms of image analysis.

2.1. Dilation and Erosion

Given an image I, the morphological dilation δH(I) and erosion εH(I) of I using the
structuring element H at the pixel x with respect to the structuring element H of domain
DH , are defined as follows [14]:

δH(I)(x) = max{I(x− y), ∀y ∈ DH},
εH(I)(x) = min{I(x + y), ∀y ∈ DH}. (1)

2.2. Opening and Closing

Opening γ(I, mH) operator is the sequential combination of erosion εmH(I) with mH
(structuring element H of size m) followed by dilation δm̃H(I). Closing, on the other hand,
φ(I, mH) is the sequential combination of dilation δmH(I) with mH followed by erosion
εm̃H(I). Both operators are defined as [14]:

γ(I, mH) = δm̃H(εmH(I)),

φ(I, mH) = εm̃H(δmH(I)), (2)

where m is the size of the structuring element and m̃H the reflection of mH. In the case of
symmetrical structuring element, mH = m̃H.

Viewing an image as a two-dimensional surface in a three-dimensional space, applying
opening (closing) has the consequence of removing peaks (or filling valleys) smaller than
the structuring element.

2.3. Classical Top-Hat Transform

By taking the difference between the original image and its opening, some different
peaks can be extracted. In a dual way, we can extract different valleys by making the
difference between a closed image and the original one. Top-hat transform represents the
mathematical formalism of this idea. During top-hat transform by opening (WTH) [14]
is the rest of the original image I and its opening γ(I, mH), top-hat transform by closing
(BTH) [14] is the subtraction between the morphological closing φ(I, mH) and the original
image I, defined as follows:

WTH(I, mH) = I − γ(I, mH),

BTH(I, mH) = φ(I, mH)− I, (3)

where m is the size of the structuring element.

2.4. Geodesic Transformation and Reconstruction

In geodesic transformations, two equally sized input images are used, denoted as
marker and mask. The first image (marker) is modified by a morphological transformation
and restricted below (geodesic dilation) or above (geodesic erosion) the second image
(mask) [14].
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Let J and I be the marker and mask images, respectively, with the same domain (DJ = DI).
Geodesic dilation δI(J) and erosion ε I(J) can be defined as [14]:

δ
(1)
I (J) = δI(J) ∧ I with J(x) ≤ I(x),

ε
(1)
I (J) = ε I(J) ∨ I with J(x) ≥ I(x), (4)

where ∧ is the minimum between the pixels of J(x) and I(x) and ∨ is the maximum
between the pixels of J(x) and I(x). If we perform k times the geodesic dilation or erosion
of J with respect to I, we have to δ

(k)
I (J) = δ

(1)
I (J)[δ(k−1)

I (J)] or ε
(k)
I (J) = ε

(1)
I (J)[ε(k−1)

I (J)].
In practice, we can define geodesic reconstruction ρI(J) and dual geodesic reconstruc-

tion ρ∗I (J) as follows:

ρI(J) = δ
(i)
I (J) with i such as δ

(i)
I (J) = δ

(i+1)
I (J),

ρ∗I (J) = ε
(i)
I (J) with i such as ε

(i)
I (J) = ε

(i+1)
I (J) (5)

Similar to the standard opening and closing, opening γ
(m)
ρ and closing φ

(m)
ρ by recon-

struction of an image I can be defined as follows [14]:

γ
(m)
ρ (I) = ρI(εmH(I)),

φ
(m)
ρ (I) = ρ∗I (δmH(I)), (6)

where I is the mask image, εmH(I) and δmH(I) are the markers image and m is the size of
the structuring element.

In the full experiment, the structuring element has the shape of a disk, and m indicates
the size of the radius.

2.5. Top-Hat by Reconstruction

The use of morphological operators by reconstruction has shown that, contrary to the
standard ones, they remove details without modifying the structure of remaining objects.
Another significant advantage is that geodesic reconstructions use an elementary isotropic
structuring element and it is not necessary to specify sizes like in standard morphological
operators. Analogously to the standard top-hat transform, it is possible to preserve or
remove structures through geodesic reconstruction (dual geodesic reconstruction) that will
have the role of opening (closing).

Although structures removed in the image I from the opening by reconstruction can
be recovered with the white top-hat transform by reconstruction (RWTH), similarly, we
can recover structures removed from the closing with the dark top-hat transformation by
reconstruction (RBTH) as follows [14]:

RWTH(m)(I) = I − γ
(m)
ρ (I),

RBTH(m)(I) = φ
(m)
ρ (I)− I. (7)

3. Proposed Algorithm

The proposed algorithm, called Multi-scale Geodesic Reconstruction based Top-Hat trans-
form (MGRTH), is presented in this section. Additionally, all operations are presented in
detail, step by step.

Let I be the image, H be the structuring element and n be the number of iterations.
The proposed algorithm is divided into five stages.

First stage: the bright structures at level i are extracted by RWTHm as follows:

RWTHm = ρ(WTH(I,mH))(RWTH(m)(I)), (8)
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where WTH(ImH) is the mask obtained by Equation (3), RWTH(m)(I) is the marker
obtained by Equation (7). Each RWTHm represents the m-level of bright structures
of the original image I controlled by m = {1, 2, 3, . . . , n} which is the size of the
structuring element, and the dark structures at level m are extracted by RBTHm
as follows:

RBTHm = ρ(BTH(I,mH))(RBTH(m)(I)), (9)

where BTH(I, mH) is the mask obtained by Equation (3), RBTH(m)(I) is the marker
obtained by Equation (7). Each RBTHm represents the m-level of dark structures of
the original I controlled by m = {1, 2, 3, . . . , n} the size of the structuring element.

Second stage: the light residues SWm are extracted from the dark structures at levels m
and m− 1 and the dark residues SBm are extracted from the light structures at levels
m and m− 1 as follows:

SWm−1 =

{
RWTHm − RWTHm−1 case m = 2

RWTHm − SWm−2 for m > 2
, (10)

SBm−1 =

{
RBTHm − RBTHm−1 case m = 2

RBTHm − SBm−2 for m > 2
. (11)

Third stage: The maximum bright scaled details are computed from the bright structures
extracted at the first stage by RWTHm, and the maximum dark scaled details are
computed from the dark structures extracted at the first stage by RBTHm as follows:

SRWTH = ∑
1≤m≤n

{RWTHm}, (12)

SRBTH = ∑
1≤m≤n

{RBTHm}. (13)

Fourth stage: The maximum light residues are computed from the light residues extracted
at the second stage by SWm, and the maximum dark residues are computed from the
dark residues extracted at the second stage by SBm as follows [13]:

SSW = ∑
2≤m≤n

{SWm−1}, (14)

SSB = ∑
2≤m≤n

{SBm−1}. (15)

Final stage: the enhanced image IE is performed per pixel as follows:

IE = I + ω×max(SRWTH, SSW)−ω×max(SRBTH, SSB), (16)

where ω is a factor used to adjust the level of brightness or darkness added to
the image.

Figure 1 shows the original melanoma images on the left (a,c) and the MGRTH-
enhanced images on the right (b,d).
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(a) Original image (b) Enhanced image

(c) Original image (d) Enhanced image

Figure 1. Dermoscopy images. Visual results obtained by MGRTH with n = 3 and ω = 0.25.

4. Results and Discussions

This section describes the experiments conducted to quantify the relative performance
of the proposed algorithm. The database used in these experiments contains 236 color
images of benign and malignant melanocytic lesions and used in [33]. For the tests on the
RGB images, first the RGB images were converted to HSV images. Then, the algorithms
and evaluations were applied to the V-channel of the images. Finally, the HSV images were
converted to RGB images.

All algorithms were implemented using the ImageJ [34] library, for algorithms based
on MM an extra library called MorphoLibJ [35] was used.

The results were evaluated with the metrics:

• Entropy (E) [13,21,36]: E is used to measure the details in the image. E is defined as,

E(I) = −
L−1

∑
k=0

P(k)log2(P(k)), (17)

where I is melanoma image, k is intensity of the pixel in the image, P(k) is probability
of occurrence of the k-value in the image. If b is number of bits of the image then L is
equal to 2b (b = 8 for grayscale images). An image is considered to have good detail
when its entropy value is high;

• Peak Signal-to-Noise Ratio (PSNR) [10,21,37]: PSNR measures how much distortion is
added to the image in the contrast enhancement process. PSNR is defined as,

PSNR(I, IE) = 10× log10
(L− 1)2

MSE(I, IE)
, (18)

where Mean Squared Error (MSE) is defined as,

MSE(I, IE) =
1

M× N

M

∑
x=1

N

∑
y=1

(I(x, y)− IE(x, y))2. (19)
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After the enhancement process, an image is considered to have low distortion if it has
a high PSNR value;

• Relative Enhancement in Contrast (REC) [36,38]: REC measures the contrast of the
enhanced melanoma image. REC is defined as,

REC =
C(IE)

C(I)
, (20)

where I is the melanoma image, IE is the melanoma image with contrast enhancement,
C is the image contrast and C is calculated as follows,

C(I) = 20× log

[
1

MN

M

∑
x=1

N

∑
y=1

(
(I(x, y))2 − µ2

)]
, (21)

where M× N are the dimensions of the melanoma image and (x, y) are the spatial
coordinates and µ is calculated as follows,

µ =
1

MN

M

∑
x=1

N

∑
y=1

I(x, y).

After image processing, if the REC value is higher than 1, the enhanced image is
considered to have enhanced contrast.

To test the performance of the proposed method, we have considered two differ-
ent experiments:

• In the first part (Section 4.1), we performed parameter tuning to find good parameter
values ω and n of the proposed algorithm. For this purpose, a comparison of the
results obtained with respect to the number of iterations and the contrast adjust-
ment weight was performed. The objective of this experiment was to observe the
performance of the proposal with respect to the E, PSNR, and REC metrics;

• Then, in the second part (Section 4.2) the proposed algorithm was compared with
algorithms based on the multiscale top-hat transform and algorithms based on his-
togram equalization.

In both experiments, apart from the numerical results, a visual assessment of the
dermatologist is presented.

4.1. Parameters Tuning

In this subsection, the parameter settings used in the MGRTH algorithm in relation
to the number of iterations n and the contrast adjustment weight ω are described. For
this purpose, the Shannon entropy Equation (17) and the PSNR Equation (18) are used.
In addition, the Equations (18) and (20) are used to visualize the the relation between the
PSNR and REC metric. This is done because as contrast increases more noise tends to be
added. Table 1 shows the parameters of the MGRTH algorithm to be adjusted.

Table 1. Parameters of the proposed algorithm.

Algorithm
Initial Structuring

Element (Disk) Number of Iterations Contrast Setting Weight

H n ω

MGRTH 1 [2–20] [0.25,0.50,0.75]
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4.1.1. Numerical Results

In Figure 2 it can be seen that: MGRTH with ω = 0.25 has longer increasing entropy
than using larger weights and from n = 7, it already equals or exceeds average values
obtained than using larger weights.

In Figure 3 it can be seen that also with ω = 0.25, there is a higher value of PSNR and in
Figure 4 a higher ratio between REC and PSNR can be observed in all iterations evaluated.

0 2 4 6 8 10 12 14 16 18 20
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Number of iterations n

M
e
tr
ic

E
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Figure 2. Comparison with respect to metric E.
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Figure 3. Comparison with respect to metric PSNR.
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MGRTH (ω = 0.75)

Figure 4. Ratio between PSNR and REC.

4.1.2. Visual Assessment by the Dermatologist

Figure 5 shows that as the value of the ω increases, the brightness of the image also
increases. This causes bright or dark artifacts to appear. Due to this and the results obtained
in the previous subsection, the value ω = 0.25 is chosen for the next experiment.

(a) Original image (b) n = 7 and ω = 0.25 (c) n = 7 and ω = 0.50 (d) n = 7 and ω = 0.75

(a) Original image (b) n = 4 and ω = 0.25 (c) n = 4 and ω = 0.50 (d) n = 4 and ω = 0.75

Figure 5. Visual results obtained by MGRTH with different ω.

In Figure 6, we can see that as the iterations increase, distortions are introduced to the
image. Compared to the original image (Figure 6a), the images in Figure 6c,d present a
higher sharpness of the lesions and without much brightness. An image with too much
brightness may cause dermoscopic assignments or translations of malignancy that do
not correspond to the lesion. This can be considered as an artifact of the modified image.
The sharpness seen in the images in Figure 6c,d is also apparent in healthy peripheral skin.
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In the image in Figure 6b, the resulting image is visually similar to the original image.
In the images of Figure 6e–g the brightness observed in the lesion is pronounced, and could
induce errors of assessment by the dermatologist.

(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

Figure 6. Cont.
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(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

(a) Original image (b) n = 2 and ω =
0.25

(c) n = 3 and ω =
0.25

(d) n = 4 and ω =
0.25

(e) n = 5 and ω =
0.25

(f) n = 6 and ω =
0.25

(g) n = 7 and ω =
0.25

Figure 6. Visual results obtained by MGRTH in the different iterations.

4.2. Comparison of the Proposed Algorithm with State-of-the-Art Algorithms

MGRTH was compared with histogram-based algorithms: HE, BBHE, MMBEBHE,
and QHELC. These are good at improving the contrast and average brightness of medical
images. It was also compared with competitive algorithms based on multi-scale MM:
geodesic reconstruction multi-scale morphological contrast enhancement (GRMMCE) [23],
and multi-scale morphological approach to local contrast enhancement by reconstruction
(MMALCER) [39]. These are good at improving the local contrast of the images.

Table 2 shows the parameters of the algorithms based on multi-scale MM. The param-
eters ω of the algorithms presented in [23,39] are used in the reference articles.

Table 2. Parameters of the algorithms based on multi-scale MM.

Algorithms
Initial Structuring Element (Disk) Number of

Iterations
Contrast Setting

Weight

H H
′ n ω

MGRTH 1 - [2–20] 0.25
GRMMCE [23] 1 - [2–20] 1

MMALCER [39] 1 - [2–20] 0.5

4.2.1. Numerical Results

In Figure 7, it can be observed that as n grows and starting from n = 4, MGRTH
obtains higher image entropy with respect to the compared algorithms. This gives an
indication that the proposed algorithm is good at improving image detail. In Figure 7, the
entropy value of the original image I is also added.
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Figure 7. Comparison with respect to metric E.

Table 3 shows the average results obtained by the compared algorithms. For the
algorithms based on the multiscale top-hat transform the value of n = 4 was considered.
The best average results are highlighted in bold.

Table 3. Average results obtained by the compared algorithms.

Algorithms E REC PSNR

I 6.581 - -
MGRTH 6.838 1.049 28.018

GRMMCE 6.782 1.054 28.109
MMALCER 6.797 1.044 29.032

HE 6.408 1.249 12.420
BBHE 6.444 1.241 17.191

MMBEBHE 6.411 1.186 20.223
QHELC 6.554 1.024 38.342

The average results in Table 3 show that:

• MGRTH has better average performance according to the E metric, indicating that the
approach enhances the details of melanoma images;

• Among the algorithms based on the multiscale top-hat transform, MGRTH is the
second best performer for PSNR. This means that it introduces low distortion to
the images;

• According to the REC metric, all compared algorithms enhance images on average.

In the Wilcoxon signed rank test, the differences of the q-pairs of observations are
calculated, and based on these differences in absolute value, order ranks are assigned.
In Table 4 the number of positive ranks observed is presented, i.e., the number of times
that the proposal has obtained higher values of the metric than the compared algorithm,
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in the same way the number of negative ranks is observed, i.e., the number of times
that the proposal has obtained lower values of the metric than the compared algorithm.
The Wilcoxon statistic constitutes the sum of ranks (positive or negative) and for the
number of pairs q ≥ 20 can be considered to be approximately normally distributed [40].
In Table 4, the Z statistic of the standard normal distribution and the significance associated
with the observed Wilcoxon statistic are presented.

Table 4. The Wilcoxon signed rank test for paired observations.

Algorithms
Metrics

E REC PSNR

MGRTH-I

Negative ranks 33 - -
Positive ranks 203 - -
Z −11.55 - -
Sig. asymptotic (bilateral) ≈0 - -

MGRTH-GRMMCE

Negative ranks 40 160 133
Positive ranks 196 76 103
Z −10.871 −6.987 −1.63
Sig. asymptotic (bilateral) ≈0 ≈0 0.103

MGRTH-MMALCER

Negative ranks 32 29 232
Positive ranks 204 207 4
Z −10.188 −11.524 −13.267
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0

MGRTH-HE

Negative ranks 6 218 4
Positive ranks 230 18 232
Z −13.228 −12.981 −13.287
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0

MGRTH-BBHE

Negative ranks 8 214 15
Positive ranks 228 22 221
Z −13.156 −12.789 −12.698
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0

MGRTH-MMBEBHE

Negative ranks 9 212 30
Positive ranks 227 24 206
Z −13.167 −12.547 −11.935
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0

MGRTH-QHELC

Negative ranks 24 48 232
Positive ranks 212 188 4
Z −12.182 −10.467 −13.303
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0

After analyzing the results (level of statistical significance α=0.01), the following can
be observed:

• The proposed algorithm has obtained higher values in the E metric than the other
evaluated algorithms;

• For the REC metric, the proposed algorithm has obtained lower values than the HE,
BBHE and MMBEBHE algorithms, and higher values than those obtained by QHELC
and MMALCER;

• For the PSNR metric, the proposed algorithm has obtained lower values than the GR-
MMCE, MMALCER, and QHELC algorithms, and higher values than those obtained
by HE, BBHE, and MMBEBHE.

4.2.2. Visual Assessment by the Dermatologist

In Figures 8 and 9, the images enhanced with different state-of-the-art algorithms
can be visualized. The images obtained by the multiscale MM based algorithms use an
iteration number n = 4.
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(a) Original image (b) MGRTH (c) GRMMCE (d) MMALCER

(e) HE (f) BBHE (g) MMBEBHE (h) QHELC

Figure 8. Malignant image. Visual results obtained by the algorithms.

(a) Original image (b) MGRTH (c) GRMMCE (d) MMALCER

(e) HE (f) BBHE (g) MMBEBHE (h) QHELC

Figure 9. Benign image. Visual results obtained by the algorithms.

It can be seen that MGRTH and MMALCER are the algorithms that preserve the most
features and provide the best sharpness. They also avoid adding unnecessary brightness
and improve the visualization of circumscribed skin. These algorithms are possibly the
most applicable for dermoscopic image assessment and classification.

5. Conclusions

In this work, a contrast and detail enhancement algorithm was presented. The pro-
posed algorithm is based on multi-scale morphological operations. The extraction of
features from the medical images is performed by combining the operations of the classic
top-hat with the top-hat by reconstruction. This combination of operations is used at
multiple scales, which are finally added to the image in a strategic way to enhance the
useful features of the image, such as details and edges.

The numerical and visual results show that MGRTH improves the contrast of melanoma
images according to REC metrics and is superior to comparative algorithms in improving
details images according to E metric. Among the multiscale top-hat transform-based algo-
rithms compared, MGRTH is the second one that introduces low distortion in the process
of detail improvement and contrast enhancement.

For future work this algorithm may be useful for preprocessing images before using
deep learning applications for segmentation, detection or classification purposes.
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