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Abstract: Forecasting the dynamics of the number of cases with coronavirus disease 2019 (COVID-19)
in a given population is a challenging task due to behavioural changes which occur over short
periods. Planning of hospital resources and containment measures in the near term require a scenario
analysis and the use of predictive models to gain insight into possible outcomes for each scenario.
In this paper, we present the SEIR-H epidemiological model for the spread dynamics in a given
population and the impact of COVID-19 in the local health system. It was developed as an extension
of the classic SEIR model to account for required hospital resources and behavioural changes of the
population in response to containment measures. Time-varying parameters such as transmissibility
are estimated using Bayesian methods, based on the database of reported cases with a moving time-
window strategy. The assessment of the model offers reasonable results with estimated parameters
and simulations, reflecting the observed dynamics in Paraguay. The proposed model can be used to
simulate future scenarios and possible effects of containment strategies, to guide the public institution
response based on the available resources in the local health system.

Keywords: epidemiological model; COVID-19; spread dynamic; transmissibility; SEIR-H; hospital
resources

1. Introduction

Recently, the use of mathematical models in public health decision-making has been
increasing, especially to forecast the spread of epidemics [1]. Timely country-based de-
cisions have become critical during the coronavirus disease 2019 (COVID-19) pandemic
due to the high contagiousness and the non-negligible proportion of severe cases [2,3].
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After a year of intensive research, several types of vaccines for COVID-19 were developed
and approved, but are not widely available in most of the countries [4]. Thus, the use of
mathematical models in forecasting the course of this pandemic and the required hospital
resources is still relevant in order to enforce measures to maintain the situation at levels
that can be sustained by a local health system.

A vast amount of works use mathematical models to study the dynamics of the
spread of COVID-19 in different contexts [5–14]. The dynamics of epidemic transmission
can be represented by compartmental models based on a system of ordinary differential
equations [15]. In these models, the population in a region is divided into groups or
compartments such as susceptible, exposed, infectious, recovered, among others, where
other groups can be added and/or removed depending on the dynamics or mechanism to
be modelled.

Among the simplest and most traditional models for the dynamics of transmission of
COVID-19, we find the Susceptible–Infectious–Recovered (SIR) model and, the Susceptible–
Exposed–Infectious–Recovered (SEIR) model. Cooper et al. [5] have presented modifica-
tions of the SIR model by considering variable the susceptible population, and Ellison [6]
have added heterogeneity to the population. Further modifications of the model can be
seen in the work of Crokidakis [7], who has included a “quarantined” group in order
to analyse the effect of isolation of newly confirmed cases. Additionally, He et al. [8],
based on the SEIR model, proposed to divide the infected group into two groups, be-
ing with and without interventions, and have also incorporated the “quarantined” and
hospitalised groups.

On the other hand, Arino and Portet [11] have considered the latently infected and
asymptomatic infectious groups in order to take into account the pre-symptomatic or
asymptomatic transmission, which are characteristics of the COVID-19 [9,10]. Additionally,
they have subdivided each group into stages to incorporate the Erlang distribution of
residence times in each group [16]. There are more elaborate models, such as, SIDARTHE
proposed in [12] or θ-SEIHQRD presented in [13], where more compartments are included.
In metapopulation models, the spread dynamic of disease is split into age groups or regions,
and these groups are interconnected to each other by additional interaction or mobility
terms. For instance, Arenas et al. [14] applied a metapopulation model with age-stratified
and mobility-based for the spread of COVID-19.

Although there have been published several works proposing mathematical models
for the spread dynamics of COVID-19, there are still challenges in adapting particular
models in specific situations. These challenges are related to:

• the amount of available data and the quality of such data, that vary from one country
to another, and

• the containment strategies applied in each country.

In particular, highly detailed models are composed of many parameters, which have
to be determined independently, using different groups of data. When the available data
is limited, then the models with many parameters are over-fitted, which increases the
prediction error [17]. However, the simple SIR or SEIR models with constant parameters
along the epidemic cycle, fail to represent the dynamics when different containment
strategies are applied along the time.

Thus, we developed a mathematical model, which is as simple as possible, but at
the same time, applicable to several situations. Our model, named SEIR-H, is based on
the simple SEIR model, where R stands for reported instead of recovered. The reported
group is composed of individuals who have been diagnosed as positive confirmed cases.
Also, in order to answer the specific question about required hospital resources, our model
tracks the number of hospitalisations and admissions to an Intensive Care Unit (ICU) of
COVID-19 patients. Some parameters, such as the latent period or the average residence
times in each compartment or group, are maintained constants as in traditional SEIR
models. A key feature that distinguishes our model is to allow the transmissibility and
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proportions of individuals who need hospital beds or ICU, to vary daily with a moving
time-window strategy.

Most of the mathematical models developed in the context of the COVID-19 pandemic
were applied to large countries or those with early outbreaks, with a large amount of
available data. However, in the context of limited data availability in low-to-middle-income
countries, specific models and strategies are needed to overcome this difficulty. In particular,
the mathematical model developed in this work is based on limited data available from
Paraguay, where except around the capital city, there is no regular testing policy in the
rest of the country, nor a good record of region-based mobility. The data used in order
to calibrate the model was provided by the Ministry of Public Health and Social Welfare
(MSPyBS: Ministerio de Salud Pública y Bienestar Social) and Health Monitoring Centre in
Paraguay (DGVS: Dirección General de Vigilancia de la Salud) (http://dgvs.mspbs.gov.py/,
accessed on 20 May 2021).

The spread of COVID-19 in Paraguay is characterised by a strongly enforced initial
lockdown, which kept the amount of new positive cases low for several months. In this
sense, it is worth discussing the effect of early lockdown in the dynamics of spread, as well
as, how the time-varying parameters can explain different scenarios observed in Paraguay.
The feature of time-varying parameters allows a user to draw future scenarios and use our
model as a prediction tool to guide decision-making to contain outbreaks and plan hospital
resources accordingly.

The work is organised as follows: the proposed model is presented in Section 2
including the spread dynamics in Section 2.1.1 and the dynamics of hospital resources in
Section 2.1.3, as well as the parameter estimations in Section 2.3; Section 3 shows the results
obtained and the forecast capability of the model, and it is followed by the discussions in
Section 4, the relevance of the present work in Section 5, and final remarks in Section 6.

2. Materials and Methods

In this section, a description of the SEIR-H model is given in Section 2.1. Section 2.2
gives a brief overview of the restriction policies applied in Paraguay. Finally, the methodol-
ogy used for parameter estimation is presented in Section 2.3.

2.1. SEIR-H Model

The SEIR-H model is a compartmental model. For the COVID-19 spread dynamics,
the SEIR-H model is nearly identical to the classic SEIR model, with the difference that in
the proposed model, the group R stands for the reported individuals, who are diagnosed
as confirmed positive cases. This reported group is split mainly into three groups: (i) H:
hospitalised group, composed of individuals who have severe symptoms, and thus are
hospitalised, (ii) U: a group composed of individuals who are admitted to ICU due to
the worsening of the symptoms, and (iii) F: death. Thus, the SEIR-H model is separated
into two parts representing two dynamics: (i) the dynamics of spread/transmission of the
disease, and (ii) the dynamics of the use of hospital beds. In this model, the dynamics of
hospital resources do not affect the spread dynamics of the disease, i.e., the compartments
S, E, I, R are not influenced by H, U and F. This assumption is reasonable in the sense that
the disease transmissions from the hospitalised COVID-19 patients are negligible compared
to the transmissions occurring in the community outside the hospitals.

Figure 1 schematically illustrates the proposed SEIR-H model. Both parts of the model
are highlighted: (i) the spread dynamics with yellow background, (ii) the dynamics of
reported cases in green background. The parameters in blue are associated with the pro-
portions of individuals moving from one compartment to the next, and the parameters in
orange are associated with the reciprocal of the average length of stay in each compartment.
In the next subsections, both parts are discussed in detail by presenting the systems of
differential equations along with the definitions of the parameters. The compartment O in
Figure 1, corresponds to those who are recovered from COVID-19. In this work, we do not
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track the count of recovered individuals, because the data of those recovered are unreliable.
Thus, the equation for this compartment is omitted.
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Figure 1. Schematic diagrams of the SEIR-H model: the region in yellow indicates the transmission
dynamics given by a SEIR with external reported cases, and the region in green represents the
dynamics related to hospital resources. A more detailed version of the green region is used to show
that the R compartment contains the dynamics related to the health system, represented mainly by
H, U and F.

2.1.1. Dynamics of The Spread

The spread dynamics of the disease, highlighted in yellow in Figure 1, is similar to the
SEIR model [15], and is given by:

dS
dt

= −β
S
N

I, (1)

dE
dt

= β
S
N

I − αE, (2)

dI
dt

= αE− γI, (3)

dR
dt

= γI + Rim. (4)

In this model, the Equations (1)–(4), respectively, show the dynamics of the com-
partments of: the susceptible S, the exposed E, the infectious I and the reported R. The
term Rim represents a rate of reported cases from the travellers, which was relevant at the
beginning of the dynamics of COVID-19 in Paraguay. The susceptible group S represents
those who have not yet contracted the disease and could contract it in the future.

The exposed group E represents those who were exposed to the infection and have
been infected, but are in a latent period not yet capable of infecting others. The latent period
refers to the time between exposure to the virus and the moment when the individual
becomes contagious and is one of the epidemiological characteristics of COVID-19 [8,18–21]
While in the classic SEIR model, compartment E could include those in the incubation
period [22], in this work, however, we only include in E those in the latent period. It is
crucial to establish this distinction between the latent period and the incubation period,
since COVID-19 is characterised by a pre-symptomatic infection [9,10,23]. Furthermore,
the inclusion of the E-compartment can resemble the Erlang distribution in the infectious
period [11].
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The infectious compartment I represents individuals who become contagious. The key
feature which distinguishes compartments I from E, is the onset of infectivity. Individuals
in I may transmit the disease to susceptibles in S, even without presenting symptoms.

The compartment R is composed of those who are reported with the confirmation of
COVID-19 positive diagnosis. In the classic SEIR model, the R compartment is associated
with those who are recovered or removed from the dynamics after a certain time. In this
work, the R compartment also has the meaning of removed, given the assumption that
those who are reported are also isolated and removed from the transmission dynamics.
However, since R will be fitted to the officially positive confirmations, we rename it as
the reported compartment. The population N is maintained constant throughout the time,
equal to the initial population. This condition differs from the actual population that varies
due to the reported cases from the travellers Rim, and also because of the individuals who
are travelling abroad (which are not considered in the proposed model).

Three parameters appear in this model: (i) β(t) is the rate at which susceptible indi-
viduals acquire the disease, also known as transmissibility, which is time-dependent in this
work, (ii) α is the rate at which an exposed individual becomes infectious, also defined as
the reciprocal of the average latent period, and (iii) γ is the rate at which an infectious indi-
vidual is reported, expressed as the reciprocal of the average time an individual remains
contagious to other individuals. Table 1 shows the parameters of the SEIR-H model, with
its descriptions and values, and whether it is considered to be constant or time-dependent.

Table 1. SEIR-H parameters.

Parameter Description Type * Value **

β Transmissibility. T-D Est.
α Reciprocal of average latent period. C 1/3 (a)

γ Reciprocal of average infectious period. C 1/7 (b)

λI→H Proportion of infected that are hospitalised. T-D Est.
λI→F Proportion of infected that are death. T-D Est.
λH→U Proportion of hospitalised that are admitted in ICU. T-D Est.
λH→F Proportion of hospitalised that are death. T-D Est.
λU→F Proportion of admitted in ICU that are death. T-D Est.

δH→U
Reciprocal of average stay in hospitals bed before
admittion in ICU. C 1/7 (c)

δH→F Reciprocal of average stay in hospital bed before death. C 1/9 (c)

δH→O Reciprocal of average recovery period in hospital bed. C 1/11 (c)

ϕU→F Reciprocal of average stay in ICU before death. C 1/11 (c)

ϕU→O Reciprocal of average recovery period in ICU. C 1/12 (c)

* T-D: Time-Dependent; C: Constant. ** Est.: indicates that the values will be estimated using the method-
ology described in Section 2.3; all periods of time in this table are considered in days. (a) See [18–21,24,25].
(b) See [18,20,25,26]. (c) Obtained from the data provided by DGVS.

2.1.2. Reproduction Number

The dynamics of disease transmission can be expressed using a single parameter
called the reproduction number R0. This number can be defined as the expected number of
secondary cases that arise after introducing an infectious individual into a susceptible pop-
ulation. This reproduction number is useful to define a threshold value to be maintained for
a certain time, for the epidemic to persist (R0 > 1), or be extinguished (R0 < 1) [15,27,28].

The reproduction number is affected by various biological, socio-behavioural and
environmental factors [27]. The numerical value depends on the estimation method, and the
specific value obtained from the mathematical models based on differential equations
should be understood as a threshold rather than as the number of secondary cases [28].
The numerical value can be considered a function of three parameters: the duration of the
infectious period, the average probability of transmission of the virus in each contact and
the average rate of contacts [27].
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The reproduction number of the classic SEIR model can be expressed in terms of the
parameters β and γ, as follows:

R0 =
β

γ
. (5)

As the spread of disease is evolving, the number of susceptible individuals declines
monotonically. Thus, the number in which effectively works as an epidemic threshold is:

Re(t) =
β(t)

γ

S(t)
N

, (6)

also known as the effective reproduction number. This expression is obtained by adding
the right-hand sides of the Equations (2) and (3) and then making it equal to zero.

From these equations, it can be observed that the value of the reproduction number
R0 or Re(t) can be altered by interventions on parameters β and γ. Containment and social
distancing measures can affect the parameter β, by reducing the average rate of contacts.
However, hygiene recommendations and proper use of face masks can also affect β by
reducing the average probability of virus transmission in each contact. While the parameter
γ depends on the disease itself, it can be altered by effective tracing, testing and isolation
of infected individuals.

2.1.3. Dynamics of Required Hospital Resources

The dynamics of reported cases, highlighted in green in Figure 1, is mainly focused
on the number of reported individuals in need of general hospitalisations and Intensive
Care Units (ICUs). Hence, it is important to analyse the portion of infected individuals that
develop severe cases of the disease as well as the fatality rate.

A compartmental model is considered: (i) the compartment H includes general hos-
pitalisation of COVID-19 patients, (ii) the compartment U includes all those reported
individuals requiring ICU, and (iii) the compartment of the deceased F. In this work, we
use the letter F for the deceased because it is the first letter of the translation in Spanish of
the deceased (Fallecido).

The equations that describe the dynamics in hospitals can be expressed as follows:

dH
dt

= λI→HγI − λH→UδH→U H − λH→FδH→F H − λH→OδH→OH, (7)

dU
dt

= λH→UδH→U H − λU→F ϕU→FU − λU→O ϕU→OU, (8)

dF
dt

= λI→FγI + λH→FδH→F H + λU→F ϕU→FU. (9)

The dynamics of the portion of infected individuals who develop severe cases and
need to be hospitalised, is represented in Equation (7), by using a parameter λI→H . A
portion of those who are hospitalised, given by the parameter λH→U , require intensive care.
The average length of stay at a normal bed before requiring an intensive care unit, is given
by 1/δH→U . However, hospitalised individuals are dying with portion λH→F with average
staying in a hospital of 1/δH→F. The rest of the portion λH→O = 1− λH→U − λH→F is
recovered with average staying in hospital of 1/δH→O.

The Equation (8) represents the dynamics of the occupation of ICU. The admission in
ICU is restricted to individuals with severe cases who are initially hospitalised in normal
beds. The portion of dying individuals from the ICU is λU→F, with an average stay in
ICU of 1/ϕU→F. The recovered portion is λU→O = 1− λU→F, with average stay in ICU of
1/ϕU→O.

The last compartment corresponds to accumulated death, given by the Equation (9).
Here, it is included those who die from those hospitalised and also those who were in ICU.
In addition, a certain portion given by λI→F dies without admission in the hospitals.
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2.2. Containment Measures in Paraguay

The first confirmed COVID-19 positive case in Paraguay was reported on 7 March 2020
(First case of the new coronavirus in Paraguay: https://www.mspbs.gov.py/portal/20535/
primer-caso-del-nuevo-coronavirus-en-el-paraguay.html, accessed on 20 May 2021). Before
the COVID-19 pandemic has reached Paraguay, the country was emerging from one of the
worst dengue fever epidemics (The worst Dengue epidemic has been contained: https://www.
mspbs.gov.py/portal/20525/la-peor-epidemia-de-dengue-esta-contenida.html, accessed on
20 May 2021). Thus, the government had adopted very strong containment policies in order
to gain some time to strengthen the health system (Gs. 530 billion in supplies and 2700
health contracts: https://www.mspbs.gov.py/portal/20576/g-530-mil-millones-en-insumos-
y-2700-contratos-para-salud.html, accessed on 20 May 2021; Personal protective equipment
delivered to health regions: https://www.mspbs.gov.py/portal/20621/entregan-equipos-de-
proteccion-personal-a-regiones-sanitarias.html, accessed on 20 May 2021). This lockdown
lasted at least two months, after which the government adopted a system of gradual lifting
of the containment measures with enumerated phases: from the most rigorous confinement
at Phase 0 to the more relaxed at Phase 4. After that, the policy named “New normality”
is applied, which is the most relaxed measure with specific restrictions in certain areas
depending on its situation. Table 2 summarise the different phases of quarantine (while the
term quarantine is used for mobility restrictions on exposed individuals, in Paraguay, this
term is widely adopted to refer to the various degrees of lockdown measures) in Paraguay.
Local and temporary restrictions that differ from the main phases can be consulted in
Appendix A.

Table 2. Quarantine phases during the COVID-19 pandemic in Paraguay, until May 2021 [29,30].

Denomination Time Frame Description

Pre-quarantine 11 March to 19 March 2020 - Curfew from 8 p.m. to 4 a.m.
- First restrictions taken.

Phase 0 20 March to 3 May 2020 - 24 h curfew.
- Confinement/isolation.

Phase 1 4 May to 24 May 2020 - Curfew from 9 p.m. to 5 a.m.
- Flexibility: marginal.

Phase 2 25 May to 14 June 2020 - Curfew from 9 p.m. to 5 a.m.
- Flexibility: slight.

Phase 3 15 June to 19 July 2020

- Curfew from 23 p.m. to 5 a.m. (Sunday to Thursday) and midnight to 5 a.m.
(Friday to Saturday).
- Flexibility: moderate.
- Greater local restrictions in two departments, representing at most 7% of the
population.

Phase 4 20 July to 4 October 2020

- Curfew from 23 p.m. to 5 a.m. (Sunday to Thursday) and midnight to 5 a.m.
(Friday to Saturday).
- Flexibility: high.
- Greater local restrictions in six departments, representing at most 61% of the
population.

New normality From 5 October 2020 - Curfew from midnight to 5 a.m. (but from 8 p.m. to 5 a.m. in red areas).
- Only specific restrictions, until the appearance of the vaccine or cure.

https://www.mspbs.gov.py/portal/20535/primer-caso-del-nuevo-coronavirus-en-el-paraguay.html
https://www.mspbs.gov.py/portal/20535/primer-caso-del-nuevo-coronavirus-en-el-paraguay.html
https://www.mspbs.gov.py/portal/20525/la-peor-epidemia-de-dengue-esta-contenida.html
https://www.mspbs.gov.py/portal/20525/la-peor-epidemia-de-dengue-esta-contenida.html
https://www.mspbs.gov.py/portal/20576/g-530-mil-millones-en-insumos-y-2700-contratos-para-salud.html
https://www.mspbs.gov.py/portal/20576/g-530-mil-millones-en-insumos-y-2700-contratos-para-salud.html
https://www.mspbs.gov.py/portal/20621/entregan-equipos-de-proteccion-personal-a-regiones-sanitarias.html
https://www.mspbs.gov.py/portal/20621/entregan-equipos-de-proteccion-personal-a-regiones-sanitarias.html
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2.3. Estimation of Model Parameters

This section presents the methodology to estimate the parameters of the proposed
model. For this purpose, we use data provided by the Ministry of Public Health and Social
Welfare, and the Health Monitoring Centre. The available data are daily records of:

1. diagnosed with positive confirmed cases or daily reported cases DR(tj), excluding
the count of confirmed cases from travellers,

2. diagnosed with positive confirmed cases in the isolated groups who were travellers
from abroad Rim(tj),

3. occupation in general bed in the hospitals by the patients of COVID-19 DH(tj),
4. occupation in ICU by patients of COVID-19 DU(tj),
5. confirmed daily deaths by COVID-19 DF(tj).

These data in a specific day are assumed to be independent of each other. These
data are from t1 = 7 March 2020 until tjend

= 22 May 2021. From the data provided by
the Health Monitoring Centre, it was determined: (i) the average time of stay in general
beds in the hospitals by the COVID-19 patients, and (ii) the average time of ICU stay by
COVID-19 patients.

The estimation of the model parameters is mainly performed in two steps: (i) the
estimation of the transmissibility β of the disease for the spread dynamics using the
Equations (1)–(4), and (ii) the different portions λ∗, with ∗ ∈ {I → H, I → F, H → U, H →
F, U → F}, for bed occupations in hospitals using the Equations (7)–(9) in addition with
the Equations (1)–(4). The estimation of transmissibility β is performed from the date of
the first confirmed positive case in Paraguay, at t1. Due to the initial strong containment,
the amount of hospital bed occupations by COVID-19 patients remained very low for
several months.

Because of this conditions, and due to the high intermittency of the available data, there
were difficulties in estimating the portions λ∗, thus these values are estimated only as of
tjh = 5 October 2020, when the “new normality” policy measures are applied. Consequently,
the states of H, U and F, which are associated with these proportions are simulated from
tjh .

The time-varying parameters are determined using the moving time-window. In
this work, we fixed the size of the time-window to W = 14 days. In the classic SEIR
model, the time-window size would correspond to the entire epidemic cycle, keeping the
transmissibility β invariant over the cycle. This hypothesis is a reasonable assumption
in seasonal flu epidemics, because most of the population do not change their behaviour
during the season. However, this condition is not the case with the COVID-19 pandemic,
because behavioural changes of the population are continuous and vary mainly in response
to official containment measures. Thus, in order to capture the relevant dynamics of
transmission, a mechanism is needed to approach a time-varying transmissibility.

The strategy of using a moving time-window in the parameter estimation resembles
the moving average for time-series data, i.e., a smaller time-window size will better fit
daily noisy data with higher oscillations, and on the other hand, a larger time-window
size will offer smoother results and reveal trends. Thus, parameters obtained using time-
windows with size W = 14 days can be understood as an average during this time span.
This size was chosen mainly because of two reasons: (i) according to the officials at the
Health Monitoring Centre in Paraguay (DGVS), the delay from the day when a contagion
occurs until the detection is normally at least 10 days, and (ii) the strategy of containment
measures in Paraguay is usually dictated in a two-week time span.

Algorithm 1 shows schematically the procedure for parameter estimation. The re-
quired information is the set of parameters which are maintained constant (see Table 1),
the data DR(tj), DH(tj), DU(tj), DF(tj), Rim(tj), from j = 1 to j = jend, population N and
size of time-window W. The results are the transmissibility β(tj) from j = 0 to j = jend−W,
and the proportions λ∗(tj) from j = jh to j = jend −W.
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Algorithm 1: Parameter estimation

Input: t0, jh, jend,N, α, γ, δ, ϕ, W, {DR(tj), DH(tj), DU(tj), DF(tj), Rim(tj)|1 ≤ j ≤ jend}
Result: {β(tj)|0 ≤ j ≤ jend −W}, {λ∗(tj)|jh ≤ j ≤ jend −W}

1 at t0, estimate the values E(t0), I(t0), β(t0) using (10) ; // See Section 2.3.1
2 for j = 1; j ≤ jend −W; j = j + 1 do
3 estimate β(tj) using (16) ; // See Section 2.3.2
4 if j ≥ jh then
5 estimate λ∗(tj) using (19) ; // See Section 2.3.3
6 end
7 end

2.3.1. Estimation of Initial Condition

The population of Paraguay is estimated at N = 7,252,671 according to the National In-
stitute of Statistics (INE: Instituto Nacional de Estadística https://www.ine.gov.py/default.
php?publicacion=2, accessed on 20 May 2021). The initial time is set on t0 = 6 March 2020,
one day before the day when the first case is reported. On this day, the reported group is set
as R(t0) = 0, and the initial conditions for: the exposed e0 = E(t0), the infectious i0 = I(t0)
and the transmissibility β(t0) are estimated using DR

0 = {DR(t0 + k) | k = 1, . . . , W},
available data of daily reported or confirmed cases in the first W = 14 days (Algorithm 1,
line 1). The initial susceptible population is S(t0) = N − E(t0)− I(t0)− R(t0).

Some parameters that do not depend on the particularities of each country or region
but on the disease itself are set according to the values presented in the literature. The
average of the latent period is 1/α = 3 days [18–21,24,25] and the average of the infectious
period is 1/γ = 7 days [18,20,25,26] (see Table 1). Although the infectious period can
be reduced by early tracing and isolation (quarantine) strategies for infectious persons,
after the movement restriction period and throughout much of the pandemic in Paraguay,
early tracing and isolation of infectious persons was difficult.

The estimation is performed using the Bayesian method, which can be expressed as:

P(e0, i0, β0, σR
0 |DR

0 ) ∝ P(DR
0 |e0, i0, β0, σR

0 ) P(e0, i0, β0, σR
0 ), (10)

where P(e0, i0, β0, σR
0 |DR

0 ) is the posterior probability distribution of the parameters {e0,
i0, β0, σR

0 } given the observation of the data DR
0 , P(DR

0 |e0, i0, β0, σR
0 ) is the probability of

observing the data DR
0 given specific values of the parameters, which is also known as like-

lihood function, and P(e0, i0, β0, σR
0 ) is the prior probability distribution of the parameters.

We assumed that the observed data DR
0 are normal-distributed around the daily

reported cases dRe0,i0,β0 from the simulations results using the parameter set {e0, i0, β0}
with standard deviation σR

0 . Thus, the likelihood function can be expressed as:

P(DR
0 |e0, i0, β0, σR

0 ) =
W

∏
k=1

1√
2πσR

0

exp

[(
DR(t0 + k)− dRe0,i0,β0(tk)

)2

2(σR
0 )

2

]
, (11)

where given a set of values of the parameters {e0, i0, β0}, the simulated daily reported cases
dRe0,i0,β0 are obtained by:

dRe0,i0,β0(tk) = Re0,i0,β0(tk)− Re0,i0,β0(tk − 1), for 0 < k ≤W, (12)

where Re0,i0,β0 is the accumulated count of reported cases from the simulation results.
This standard deviation σR

0 is restricted to the interval [0,100]. The priors are assumed as
restricted uniform distributions, with a search range of [0, 100] for both initial exposed and
infectious populations, e0 and i0, and [0, 0.8] for the transmissibility β (see Table 3).

https://www.ine.gov.py/default.php?publicacion=2
https://www.ine.gov.py/default.php?publicacion=2
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Table 3. Priors for SEIR-H parameters.

Parameter Search Range Prior Distribution

E(t0) [0, 100] Uniform
I(t0) [0, 100] Uniform

β [0, 0.8] Uniform
λI→H [0, 0.15] Uniform
λI→F [0, 0.004] Uniform
λH→U [0, 0.3] Uniform
λH→F [0, 0.25] Uniform
λU→F [0.2, 1] Normal: µ = 0.4, σ = 0.1

The library stan [31] in the platform R [32] is used for estimating the posterior
distributions of the parameters. In the estimation, stan uses the Hamiltonian Monte
Carlo (HCM) algorithm of Markov chain Monte Carlo method (MCMC) [33]. The log
probability lp (the logarithm of the right-hand side of the Equation (10)) is evaluated in-
ternally in stan, and the parameter set from the posterior distribution samplings that
gives the maximum log probability is chosen for the optimum values: {eopt

0 , iopt
0 , β

opt
0 } =

{e0m , i0m , β0m |maxm∈[1,Niter]
lp}, where Niter is the number of samplings of the MCMC

method. This number of samplings with the amount of Markov chains are maintained
large enough to ensure the convergence of the parameters obtained: 30 Markov-chains
with 5000 iterations for each chain including, 1000 warm-up iterations, and the average
proposal acceptance probability adapt_delta [31] is set to 0.94. These optimum values
of the parameters are used to advance one day, and to obtain the state of the variables:
(S(t0 + 1), E(t0 + 1), I(t0 + 1), R(t0 + 1)). To solve the system of differential equations,
stan uses the fourth and fifth-order Runge-Kutta method.

As the parameters of transmissibility β are time-dependent, it can be expressed as:

β(t) =
jend−W

∑
j=0

β
opt
j χ[tj , tj+1)(t), (13)

where β
opt
j is a specific value among the MCMC samples that gives the optimal lp at time tj

using the time-window [tj, tj + W], and χ is the indicator function defined as:

χA(t) =
{

1 if t ∈ A
0 if t /∈ A.

(14)

Similarly, the proportions λ∗ can be defined as:

λ∗(t) =
jend−W

∑
j=0

λ
opt
∗j χ[tj , tj+1)(t), (15)

where λ
opt
∗j are a MCMC sample which gives the optimal lp at time tj.

2.3.2. Estimation of Transmissibility

The estimation of the transmissibility of the j-th day, β j at tj = t0 + j, from the initial
day t0 is described (Algorithm 1, line 3). The estimated transmissibility of a day before, β

opt
j−1,

is used in order to obtain the state of the variables at time tj: (S(tj), E(tj), I(tj), R(tj)). This
state is adopted as the initial condition for estimating the transmissibility β j by performing
the Bayesian method as follows:

P(β j, σR
j |DR

j ) ∝ P(DR
j |β j, σR

j ) P(β j, σR
j ). (16)
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The interpretation of the different terms of this equation is similar to the Equation (10),
but in a time-window of W starting on tj: The observed data is DR

j = {DR(tj + k)|k =

1, . . . , W}, and these data are assumed to be normal-distributed around the daily reported
cases dRβ j from the simulation results with standard deviation σR

j (restricted to the interval
[0, 10,000]). The likelihood function can be expressed as:

P(DR
j |β j, σR

j ) =
W

∏
k=1

1√
2πσR

j

exp


(

DR(tj + k)− dRβ j(tk)
)2

2(σR
j )

2

, (17)

where, the daily reported cases dRβ j are obtained from:

dRβ j(tk) = Rβ j(tk)− Rβ j(tk − 1), for j < k ≤ j + W, (18)

where Rβ j is the accumulated count of reported cases from the simulation using the param-
eter β j. The priors for β j are also restricted to uniform distributions with a search range
of [0, 0.8] (see Table 3). The value for β j is estimated as the one that gives the maximum
log probability (the logarithm of the right-hand side of the Equation (16)) performed using
MCMC: β

opt
j = {β jm |maxm∈[1,Niter]

lp}. 30 Markov-chains with 3000 iterations for each
chain, including 1000 warm-up iterations are used, and the average proposal acceptance
probability adapt_delta [31] is set initially to 0.94. This average proposal acceptance
probability is dynamically augmented by 0.01 when divergent transitions after warm-up
are observed. In most cases, this value is remained in 0.94, and there are a few cases when
it is augmented up to 0.97.

2.3.3. Estimation of the Parameters for the Dynamics in the Hospitals

As mentioned above, the different proportions λ∗, with ∗ ∈ {I → H, I → F, H →
U, H → F, U → F} for the dynamics in the hospitals, are estimated as of tjh = 5 October
2020 (Algorithm 1, line 5). In order to estimate the proportions λ∗(tjh), the initial condition
for the SEIR part is obtained using the optimal estimated transmissibility at time tjh − 1
(β

opt
jh−1), and the initial state of the compartments H, U and F are set using the 7-days

average (from tjh − 3 to tjh + 3) of the data of hospitalisation (normal bed), ICU and daily
death, respectively.

For the estimation of the proportions λ∗ at time tj = t0 + j (j > jh), the state
(S(tj), E(tj), I(tj), R(tj), H(tj), U(tj), F(tj)), obtained using the optimal values of the es-
timated parameters β

opt
j−1 and λ

opt
∗j−1 at day before, is adopted as initial condition.

The parameters associated with the average lengths of stay in the hospitals are set to
be constant. These times are estimated from individualised case record data provided by
the DVGS (see Table 1 for the specific values).

The estimation of the proportions λ∗ is performed using also the Bayesian method,
maintaining constant the parameter β

opt
j obtained beforehand, and it is expressed as:

P(λ∗j , σH
j , σU

j , σF
j |DH

j , DU
j , DF

j ) ∝ P(DH
j , DU

j , DF
j |λ∗j , σH

j , σU
j , σF

j ) P(λ∗j , σH
j , σU

j , σF
j ). (19)

The observed data are: DH
j = {DH(tj + k)|k = 1, . . . , W}, DU

j = {DU(tj + k)|k =

1, . . . , W}, DF
j = {DF(tj + k)|k = 1, . . . , W}, where these data are assumed to be normal-

distributed around the simulation results of hospitalisation, UCI and daily death, with stan-
dard deviations σH

j , σU
j and σF

j , which are restricted to the intervals [0, 1000], [0, 200]

and [0, 200], respectively. Also, it is assumed that the data DH
j , DU

j , DF
j are independent,
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thus the likelihood in the Equation (19) is a product of three likelihoods: P(DH
j |λ∗j , σH

j ),

P(DU
j |λ∗j , σU

j ), and P(DF
j |λ∗j , σF

j ). The likelihood functions can be expressed as:

P(DH
j |λ∗j , σH

j ) =
W

∏
k=1

1√
2πσH

j

exp


(

DH(tj + k)− Hλ∗j (tk)
)2

2(σH
j )2

, (20)

P(DU
j |λ∗j , σH

j ) =
W

∏
k=1

1√
2πσU

j

exp


(

DU(tj + k)−Uλ∗j (tk)
)2

2(σU
j )2

, (21)

P(DF
j |λ∗j , σF

j ) =
W

∏
k=1

1√
2πσF

j

exp


(

DF(tj + k)− dFλ∗j (tk)
)2

2(σF
j )

2

, (22)

where, Hλ∗j and Uλ∗j are the hospitalised (in normal bed) and in ICU from the simulation
using {βopt

j , λ∗j}. The daily deaths from the simulation dFλ∗j are obtained from:

dFλ∗j (tk) = Fλ∗j (tk)− Fλ∗j (tk − 1), for j < k ≤ j + W, (23)

where Fλ∗j is the accumulated count of death, obtained from the simulation using {βopt
j , λ∗j}.

Based on previous data, before 5 October 2020, priors are assumed as restricted uniform
distributions, with the search ranges for: λI→H is [0, 0.15], λI→F is [0, 0.004], λH→U is
[0, 0.30], λH→F is [0, 0.22]; and particularly for λU→F it is considered a normal distribution
with mean µ = 0.4, standard deviation σ = 0.1, and search range [0.2, 1] (see Table 3). The
values for λ

opt
∗j are selected those which give the maximum log probability (the logarithm

of the right-hand side of the Equation (19)) performed by stan. 60 Markov-chains with
3000 iterations for each chain including 1000 warm-up iterations are used, and the average
proposal acceptance probability adapt_delta [31] is set initially to 0.94. Similar to the
transmissibility estimation, this average proposal acceptance probability is dynamically
augmented by 0.01 when divergent transitions after warm-up are observed. However, this
value remains at 0.94 at almost all times, and there are a few cases when it is augmented
up to 0.95.

3. Results

The results obtained from the parameter estimations are presented in Section 3.1. Section 3.2
shows the model assessment together with the projection error horizon considering nearly
constant parameters.

3.1. Estimated Parameters

Figure 2 shows the estimated value of the transmissibility βopt together with a re-
gion bounding the 95th percentile of the credibility interval, obtained from the posterior
distribution of the MCMC.
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Figure 2. The estimated transmissibility βopt with 95% credibility interval of the posterior distribution, obtained using
the data of Paraguay. The horizontal line at 1/7 corresponds to the value of β that gives the basic reproduction number
equivalent to one.

Initially, the optimal transmissibility is about 0.3. This transmissibility gives the
reproduction number about 2, which is actually an estimated value presented in the first
studies conducted on COVID-19 pandemic [34].

A few days after the appearance of the first reported case, Paraguay has implemented
a strict pandemic containment regime with nationwide mobility restrictions for at least
2 months (see Table 2 in Section 2.2). This containment regime is detected in the estimates
of the β parameter, which are gradually reduced from about 0.3 until reaching values
close to 0 in early May 2020. Then, it begins a period of gradual lifting of containment
measures, with sporadic phase reversals and regionalisation of measures in case of need (see
Appendix A). Some outbreaks of infection in specific regions and penitentiaries between
May and June are reflected in sharp variations in the transmissibility parameter β.

To further analyse these variations in transmissibility between May and June, Figure 3
overlays the β parameter with the simulated values for the exposed E and infectious I
compartments, as well as the local confirmed data, i.e., excluding imported cases Rim. The
distinction between local and imported cases is important, as in the model considered,
imported cases Rim are mainly associated with those who are already isolated from the
outset in shelters and do not participate in the transmission dynamics.

Figure 3 shows how the amounts of exposed and infectious also decrease to values
very close to zero. This can be interpreted as a resetting of the model dynamics around
10 May. The outbreaks of contagion in the department of Paraguarí, that were reported at
the end of May and beginning of June explain the high values of β around 17 May, since the
number of infectious was insignificant. In fact, this outbreak had been caused by a single
person visiting the city of San Roque, Department of Paraguarí, and can be considered
a supercontagion. These outbreaks were mitigated by the rollback of more restrictive
measures in specific communities of the affected departments, during June (Phase zero for
San Roque and extreme sanitary measures: https://www.mspbs.gov.py/portal/21080/
fase-cero-para-san-roque-y-extremar-medidas-sanitarias.html, accessed on 20 May 2021).
A similar effect of increasing β values occurs around 10 June, with infections detected at
the end of June and mainly corresponding to the outbreak in a penitentiary. These sharp
variations in the β parameter can be smoothed out by incorporating some under-reporting
considerations in the months when the number of daily samples tested and the number of
active cases reported was lower.

https://www.mspbs.gov.py/portal/21080/fase-cero-para-san-roque-y-extremar-medidas-sanitarias.html
https://www.mspbs.gov.py/portal/21080/fase-cero-para-san-roque-y-extremar-medidas-sanitarias.html
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Figure 3. Details of the data and simulations between May and June 2020. The results from the simulation are obtained
using optimal βopt. Left vertical axis: the results of simulations and data; right vertical axis: transmissibility βopt.

From Figure 3, it can also be observed that the exposed E and infectious I decrease if
β is lower than the threshold and increase as it becomes larger. Furthermore, the delay of
at least ten days normally observed between the occurrence of contagion and the detection
can be clearly noticed here when beta adopts higher values and its effects are seen several
days later with the increase of daily reported.

From August onwards, there is a sustained increase in the number of cases reported
daily, but the various containment measures implemented have allowed that the transmis-
sibility remains around the value that corresponds to a reproduction number equal to one,
at least until December. The particularity of December as a summer festive month and
the increase in the number and frequency of social gatherings, reveal an increase in the
transmissibility in the last week of December, as shown in Figure 2.

In general, we observe that the simulations of the proposed model in its transmissibil-
ity dynamics reflect the different circumstances of COVID-19 in Paraguay throughout the
year 2020.

Estimated Parameters for Hospital Resources

Figure 4 shows the evolution of the estimated λ
opt
∗ (t) proportions defined in Section 2.3.3

as of 5 October 2020, from the beginning of the new normality phase as described in Table 2.
According to data provided by the Ministry of Public Health and Social Welfare, by 31
December 2020, 163 out of 461 available intensive care units (ICU) for respiratory diseases
were occupied by patients diagnosed with COVID-19. As can be observed from the data
points in Figure 5, between January and March 2021, while the number of hospitalisations
was nearly constant the number of patients in ICU at least doubled. This trend is reflected
in the parameter λH→U growing from 0.15 to 0.25 in this period.
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Although the total ICU capacity to receive COVID-19 patients was extended to a total
of around 600 units by May 2021, the rapidly growing number of hospitalisations between
March and May 2021 overwhelmed the health system, leading to increased waiting lines
to access an ICU and a sudden increase of daily deaths. This trend is coherent with the
decrease of λH→U due to the unavailability of ICU and increase of λH→F. The increase of
λI→H from 0.08 to 0.13 could be either attributed to a more aggressive COVID-19 variant or
to the limited testing regime, which leads to underreported cases. In general, λU→F tends
to stay around 0.4.

Figure 4. The proportions for the dynamics in the hospitals: the optimal values with the 95 credibil-
ity interval.

3.2. Model Assessment

In this section, the ability of the model to fit the available data is presented, as well
as an analysis of the error in the projections under the assumption of nearly constant
model parameters.

3.2.1. Comparisons

Figure 5 shows the state trajectories of the SEIR-H model along with reported data
points. The trajectories are obtained by solving the system of differential Equations (1)–(4)
and (7)–(9), with βopt and λ

opt
∗ (t) (∗ = I → H, I → F, H → U, H → F, U → F) parameters

obtained from the parameter estimation explained in Section 2.3. The trajectories shown

(from the top to bottom) are the daily reported dRβopt,λopt
∗ , normal bed occupation in

hospitals Hβopt,λopt
∗ , occupation in ICU Uβopt,λopt

∗ , and daily death dFβopt,λopt
∗ . As happened

with the proportions λ∗, the simulated trajectories of hospitalised, ICU and daily death
are plotted starting on 5 October 2020, which is when the “new normality” measures were
enforced. The simulation trajectories stop on 1 April 2021 and the posterior distributions
estimated for that day are used to advance trajectories for an additional month with the
percentile 95 credibility intervals for the trajectories.
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Figure 5. The trajectories from the simulations using βopt(t) and λ
opt
∗ (t) compared to the data. Using

the posterior distribution estimated on 1 April 2021, regions for trajectories are shown for one month
ahead with percentile 95 credibility intervals.

From Figure 5, we observe that the trajectories from the simulation can follow very
well the data. Actually, there is a lot of variability in the data, which is due to the limited
testing regime and delays in reporting of deaths. On the weekends, the amount of testing
and also the number of reports of the deaths are reduced. Thus, higher variability is
observed in daily reported and daily deaths. The relative mean deviation of the data can
be defined using a moving standard deviation and moving average of length 7 days. The
moving standard deviation of the data D at time tj is expressed as:

movstdD(tj) =

√√√√1
6

3

∑
k=−3

(D(tj+k)−movaveD(tj))2, (24)

where movaveD(tj) is the moving average of the data at time tj, which can be defined as:

movaveD(tj) =
1
7

3

∑
k=−3

D(tj+k). (25)

The relative mean deviation of the data is expressed as:

rel_devD =
1

jend −W − j∗

jend−W

∑
j=j∗

movstdD(tj)

movaveD(tj)
. (26)



Appl. Sci. 2021, 11, 9726 17 of 25

For the hospitalised and ICU, the relative mean deviation are rel_devDH ≈ 0.039 and
rel_devDU ≈ 0.036, respectively, meanwhile, for the daily reported and daily deaths are
rel_devDR ≈ 0.413 and rel_devDF ≈ 0.204, respectively. Data from j∗ = 1 to tjend

−W is
used in the computation of rel_devDR , and from j∗ = jh to tjend

−W for the rest.
In order to assess the model, the deviation of the relative error between the data and

the simulation results is computed. For this task, the relative error between the data and
the simulation results at time tj is defined as:

rel_errorX(tj) =
D(tj)− X(tj)

X(tj)
, (27)

where X is just a representation of any simulation results, whether it is daily reported,
hospitalised, ICU or daily death. Thus, the deviation of the relative error is expressed as:

dev_rel_errorX =

√√√√ 1
jend −W − j∗ − 1

jend−W

∑
j=j∗

rel_errorX(tj)2. (28)

For the hospitalised and ICU the deviation of relative error are dev_rel_errorH ≈ 0.047
and dev_rel_errorU ≈ 0.050, respectively, meanwhile, for the daily reported and daily
deaths are dev_rel_errorR ≈ 0.668 and dev_rel_errorF ≈ 0.234, respectively (see Table 4).
These values are comparable to the relative deviation of the data, and this means that
the methodology adopted in this work, by using the moving time-window to estimate
the parameters, allows us to obtain the time-varying parameters that give the simulation
trajectories almost similar to the moving average of the data.

Table 4. Comparison between the simulation trajectories and data.

Variable rel_dev dev_rel_error

Daily Reported ≈0.413 ≈0.668
Hospitalised ≈0.039 ≈0.047

UCI ≈0.036 ≈0.050
Daily Death ≈0.204 ≈0.234

3.2.2. Projection Error under the Assumption of Nearly Constant Parameter

This section presents a statistical analysis of the behaviour of the error as a function of
the projection horizon. An issue criticised to epidemiological models during the pandemic
was the error in the projections. These errors can have their origin in different factors,
e.g., the difficulty in detecting positive cases due to a limited testing rate, delay and diffi-
culties in confirming deaths related to COVID-19, the assumptions that social behaviour
will be homogeneous and stationary, among others. These sources of error are dynamic,
therefore they force a continuous update of the model parameters and limit the projection
horizon for which the parameters estimated at a given moment will be appropriate. Fur-
thermore, from the perspective of a decision-maker, it is important to be informed about
the limitations of a modelling framework to anticipate scenarios.
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We estimate the error in the projection under the assumption of nearly constant values
for the parameters. For the projection from the time tj+W , a Sigmoid function is used,
where the range is from the parameter value at tj to an average in 2W = 28 days of the
parameter, with a variation width of about W/2 = 7 days starting from tj+W . For the
transmissibility parameter, the mentioned Sigmoid function can be expressed as:

β
tj
proj(t) = β̄ +

β(tj)− β̄

1 + exp
(

W − 2
W

(t−W)− W
4

) for t ≥ tj+W , (29)

where β̄ is obtained by averaging the values of transmissibility for the last 2W = 28 days:
from tj−W to tj+W − 1. Using the available data until tj+W , β can be determined until tj,
i.e., β(tj) gives the better fit of data DR

j . Thus, the average transmissibility β̄ for the last 2W
days is composed of W days with β varying daily from tj−W to tj−1, and β is constant with
value β(tj) from tj. This average can be expressed as:

β̄ =

−1

∑
l=−W

β(tj+l) + Wβ(tj)

2W
. (30)

The Sigmoid function is chosen because, in one hand, the parameter value β(tj) fit
better to data for the last W days, but in the other hand, β̄ gives a representative transmis-
sibility for longer-term if there is no change in the containment policies or behaviour on
the population scale. The Sigmoid function is just a simple way to join smoothly these two
values of the parameters.

Similar functions are used for the parameters of proportions. Thus, the projections
are obtained using these parameters, and solving the system of differential equations. The
results obtained are named as dRj, H j, U j, and dFj.

The relative error (Equation (27)) is iteratively computed using the results obtained
from the simulations dRj, H j, U j, and dFj, with j such that, tjh = 5 October 2020 un-
til 1 March 2021. Thus, vectors of relative error are obtained, which are denoted as
rel_errorX j(tj+k) for k = 1, 2, . . . , W + Wp: composed of W = 14 days of training and
Wp = 30 days of test or projection. These vectors are visualised using box plots for
each k = 1, 2, . . . , W + Wp. In the analysis, the days are remapped in order that the pro-
jection days could start from 1. Thus, the day n is related to k by n = k − 14, where
k = 1, 2, . . . , W + Wp.

Figure 6 illustrates the statistical behaviour of the relative error corresponding to the
observation day n. As can be seen in the box plots, the most probable error in all projections
tends to show an average of 0. However, this average may increase in function of the
projection days for deaths, evidencing an underestimation tendency in terms of precision
(observed higher than expected). The red lines in the figures indicate a 20% threshold
of error. It was evident that up to Wp =30 days of projection (without considering the
W = 14 of training), the error is more frequently within this threshold, with a more frequent
tendency of underestimation. Also note that as the projection horizon increases, the margin
of error observed increases by the interquartile range (IQR), whiskers Q{1,3} ± 1.5(IQR),
and outliers, that is, the accuracy is compromised. Consequently, it is evident that both the
precision and accuracy of the model are compromised with the increase in projection days,
thus increasing the uncertainty in the estimate over time. This result reinforces the need for
periodic updates in the estimation of the model parameters for the projections.
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Figure 6. Statistical behaviour of the error as a function of the projection horizon.

4. Discussion

The estimated parameters helped us to interpret and analyse the spread dynamics of
COVID-19 in different circumstances, which was particular in Paraguay. The relative error
between the simulation results using the time-varying parameters and the available data
is comparable to the relative deviation of the data using the moving time-window. This
means that the simulation trajectories represent very well the variability in the population
scale. The obtained transmissibility β changes depending on the epidemic containment
policies applied. And, the different proportions λ are also changing due to the containment
policies, but primarily on the availability of the beds and ICU in the hospitals. As the
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number of severe cases of COVID-19 patients becomes larger than the available beds and
ICU in the hospitals, the proportions of deaths are also increasing.

The statistical analysis of the behaviour of the error showed reasonable results [35],
with a tendency to underestimate the observed data. This problem is somewhat inevitable
considering the assumption of nearly constant parameters. As a decision-making tool,
several scenarios can be drawn, for example: (i) plateau: by considering the transmissibility
that stabilises daily reported infections as approximately a constant, (ii) the average value
of transmissibility over the last month, (iii) 10% decrease in transmissibility when stronger
quarantine measures are enforced, or (iv) 10% increase in transmissibility when quarantine
measures are relaxed. All these scenarios can be based on the recently estimated parameters,
which give additional advantages in the sense that, in one hand, the transmissibility of
the disease can change over time due to the different strains of the viruses, and, on the
other hand, after several containment measures, a portion of the population respecting the
measures can vary compared to previous phases.

The early lockdown in Paraguay allowed for a slow increase in the number of COVID-
19 patients, and thus, severe cases could be treated adequately by the health system until
the beginning of 2021. Most of the time in 2020, the daily cases and deaths reported
followed a plateau, but starting February 2021, cases increased substantially and the death
proportions are becoming larger due to the collapse of the health system.

5. Relevance of the Work

Despite its simplicity, the SEIR-H model proposed in this work offers results relevant
for the evolution of cases for COVID-19 in Paraguay. A visualisation tool for these results
based on data from Paraguay is available at http://epymodel.uaa.edu.py (accessed on 12
October 2021). The Ministry of Public Health and Social Welfare and its Health Monitoring
Centre in Paraguay use and reference this tool for analysis and decision-making (http:
//dgvs.mspbs.gov.py/page/#1387, accessed on 20 May 2021). Currently, results from this
simple model are used to evaluate future scenarios and plan for resources allocation in the
public health budget.

Results and projections obtained using the proposed SEIR-H model, exhibits similar
statistical performance compared with other public platforms such as the COVID-19
Projections from IHME (Institute for Health Metrics and Evaluation) (https://covid19.
healthdata.org/, accessed on 20 May 2021) [35] which serves as a reference for multiple
governments and agencies. A sample comparison of the SEIR-H and IHME model results
is presented in Appendix B.

6. Conclusions and Future Work

In this work, we proposed the SEIR-H epidemiological model with time-varying
parameters in the form of step functions. This model is based on the classical SEIR model
maintaining its simplicity in the spread dynamics of the disease. However, the SEIR-H
model contains the dynamics of the occupations of normal beds and ICU in hospitals in
order to guide decisions based on available hospital resources. This model was designed to
have as few parameters as possible to be estimated, while still representing the dynamics
observed in Paraguay.

We summarise the contributions of this work as follows:

• Integration of health system dynamics into the SEIR model, without losing the sim-
plicity of the SEIR model.

• The methodology of parameter estimation for the time-varying parameters using a
moving time-window, which allows us to determine the variability of the parameters
according to the spread dynamics and social behaviour.

• The inclusion of the reported cases that were travellers from abroad in the inflow of
reported cases, which is important at the beginning of an epidemic.

• Model assessment and statistical analysis of the error as a function of the projec-
tion horizon.

http://epymodel.uaa.edu.py
http://dgvs.mspbs.gov.py/page/#1387
http://dgvs.mspbs.gov.py/page/#1387
https://covid19.healthdata.org/
https://covid19.healthdata.org/
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• Discussion of spread dynamics in Paraguay using the estimated parameters and
trajectories obtained.

The proposed model has two main limitations. The first limitation is the assumption
that all cases end up being reported ignoring the under-reporting of cases, which can be
quite significant [36]. The second limitation is to ignore the limits of hospital capacity,
both in terms of available care units for medium and severe cases. This issue is especially
important for projections of deaths when the health system is overburdened [37]. Future
work can address these aspects by adding a model for under-reported cases and by limiting
the capacity of the health system.

Although, the SEIR-H model is fitted to the case of Paraguay, this model can be
useful for any country or region to have a macroscopic overview of the dynamics of an
epidemic like COVID-19, especially in contexts of limited availability of data detailing the
heterogeneity of the population.
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Appendix A. Detailed Restriction Policies In Paraguay

The quarantine phases from Table 2 were dictated over the entire territory, except for
the following local or temporary restrictions:

• Paraguarí and Concepción in Phase 2 until 12 July 2020, representing at most 7% of
the population.

• Alto Paraguay in Phase 3 until 29 July 2020, representing at most 0.25 % of the
population.

• Central in Phase 3 until 22 August 2020, in addition to an intermediate phase between
2 and 3, from 23 August to 4 October 2020. That represents at most 37.5% of the
population.

• Boquerón and Carmelo Peralta (Alto Paraguay) in Phase 3 from 31 August to 4 October
2020. That represents at most 0.98% of the population.

• Alto Paraná in an intermediate phase between 0 and 1, from 30 July to 20 September
2020, in addition to an intermediate phase between 2 and 3, from 21 September to 4
October 2020. That represents at most 11.4% of the population.

• Caaguazú and Concepción in an intermediate phase between 2 and 3, from 13 Septem-
ber to 4 October 2020. That represents at most 11.3% of the population.

• Greater restrictions in the "red zones” from 18 March to 26 March 2021 and from 24
April to 10 May 2021.

• Greater restrictions nationwide for Easter from 27 March to 4 April 2021.

https://public.tableau.com/app/profile/mspbs/viz/COVID19PY-Registros/REGISTRODIARIO
https://public.tableau.com/app/profile/mspbs/viz/COVID19PY-Registros/REGISTRODIARIO
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Figure A1 gives a geographical and demographic contextualisation of the detailed re-
strictions.

�✁✂✄☎✆✝✞✁✟

✠✡☛✡✡✡ ☞ ✌✡☛✡✡✡

✌✡☛✡✡✡ ☞ ✠✡✡☛✡✡✡

✠✡✡☛✡✡✡ ☞ ✌✡✡☛✡✡✡

✌✡✡☛✡✡✡ ☞ ✠☛✡✡✡☛✡✡✡

✠☛✡✡✡☛✡✡✡ ☞ ✌☛✡✡✡☛✡✡✡

Figure A1. The population of Paraguay

Appendix B. Performance Comparison

In this appendix, we present a comparison between the proposed SEIR-H model
results with the COVID-19 daily death projections from the IHME platform. Daily death
reports are considered the most complete, in the sense that it is less subject to under-
reporting. Figure A2 illustrates a comparative analysis of the statistical performance for
daily deaths forecasts (at a time interval of 41 days) between these two models.

The expected and observed forecasts of the proposed model adjust to a line with
a slope 0.79. However, the expected and observed daily deaths from the forecasts of
the IHME platform (COVID-19 current projection) show a slope 0.78. Therefore, both
projections are similar, which can be confirmed by the last graph where the fit of the
expected values from the IHME and the expected values from the SEIR-H model shows
a line with unit slop. Thus, this analysis shows a remarkable statistical correspondence
between both models.
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Figure A2. Statistical performance comparison of the daily deaths forecasting between the proposed
SEIR-H model with the publicly available IHME COVID-19 projections: The values on the coordinate
axes are scaled with the z-score (or standard score defined as: [φ− ave(φ)]/std(φ)); the solid lines
represent the fit to the line equation with zero intercept and estimated slope; the dashed lines show
the line equation for the hypothesis zero intercept and unit slope.
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