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Polyominoes

Definition
A polyomino is a planar figure made from one or more equal-sized
squares, each joined together along an edge [S. Golomb (1953)].

Every cell (square) is fixed in a square lattice.
Two cell are adjacent if the Manhattan distance is 1.
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L-Tromino Tiling Problem

Definition
Given:

A set of L-trominoes Σ called a tile set, Σ = { , , ,

}
and a polyomino R called region.

Goal: Place tiles from Σ to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

(a) A region R (b) A tiling of region R

6/31



L-Tromino Tiling Problem

Definition

Given:

A set of L-trominoes Σ called a tile set, Σ = { , , ,

}
and a polyomino R called region.

Goal: Place tiles from Σ to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

(a) A region R (b) A tiling of region R

6/31



L-Tromino Tiling Problem

Definition
Given:

A set of L-trominoes Σ called a tile set, Σ = { , , ,

}

and a polyomino R called region.
Goal: Place tiles from Σ to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

(a) A region R (b) A tiling of region R

6/31



L-Tromino Tiling Problem

Definition
Given:

A set of L-trominoes Σ called a tile set, Σ = { , , ,

}
and a polyomino R called region.

Goal: Place tiles from Σ to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

(a) A region R (b) A tiling of region R

6/31



L-Tromino Tiling Problem

Definition
Given:

A set of L-trominoes Σ called a tile set, Σ = { , , ,

}
and a polyomino R called region.

Goal: Place tiles from Σ to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

(a) A region R (b) A tiling of region R

6/31



L-Tromino Tiling Problem

Definition
Given:

A set of L-trominoes Σ called a tile set, Σ = { , , ,

}
and a polyomino R called region.

Goal: Place tiles from Σ to fill the region R covering every cell
without overflowing the perimeter of R and without overlapping
between the tiles.

(a) A region R (b) A tiling of region R

6/31



L-Tromino Tiling Problem (cont’d)

C. Moore and J. M. Robson (2000) proved that deciding the
existence of a L-tromino tiling in a given region is
NP-complete with a reduction from Monotone 1-in-3 SAT.

T. Horiyama, T. Ito, K. Nakatsuka, A. Suzuki and R. Uehara
(2012) constructed a one-one reduction from 1-in-3 SAT.
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Aztec Rectangle

The Aztec Diamond AD(n) is the union of all cell inside the
contour |x |+ |y | = n + 1.

(a) AD(1) (b) AD(2) (c) AD(3) (d) AD(4)

The Aztec Rectangle ARa,b is a generalization of an Aztec Diamond.

(a) AR1,2 (b) AR1,3 (c) AR2,3 (d) AR3,4
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Tiling Aztec Rectangle (cont’d)

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always
multiple of 3.

The number of cells in an ARa,b is given by

|ARa,b| = a(b + 1) + b(a + 1).

Theorem
An Aztec rectangle ARa,b has a tiling with L-trominoes
⇐⇒ |ARa,b| ≡ 0 (mod 3)
⇐⇒ (a, b) is equal to (3k, 3k ′) or (3k − 1, 3k ′ − 1) for some k, k ′ ∈ N.
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Tiling Aztec Rectangle (cont’d)

The problem of tiling an Aztec Rectangle can be solved recursively.
If (a, b) equals (3k, 3k ′), use pattern 1.
If (a, b) equals (3k − 1, 3k ′ − 1), use pattern 2.

ARa,b

ARa+2,b+2

(a) Pattern 1

ARa,b

ARa+4,b+4

(b) Pattern 2

11/31



Tiling Aztec Rectangle (cont’d)
The problem of tiling an Aztec Rectangle can be solved recursively.

If (a, b) equals (3k, 3k ′), use pattern 1.
If (a, b) equals (3k − 1, 3k ′ − 1), use pattern 2.

ARa,b

ARa+2,b+2

(a) Pattern 1

ARa,b

ARa+4,b+4

(b) Pattern 2

11/31



Tiling Aztec Rectangle (cont’d)
The problem of tiling an Aztec Rectangle can be solved recursively.

If (a, b) equals (3k, 3k ′), use pattern 1.
If (a, b) equals (3k − 1, 3k ′ − 1), use pattern 2.

ARa,b

ARa+2,b+2

(a) Pattern 1

ARa,b

ARa+4,b+4

(b) Pattern 2

11/31



Tiling Aztec Rectangle (cont’d)
The problem of tiling an Aztec Rectangle can be solved recursively.

If (a, b) equals (3k, 3k ′), use pattern 1.
If (a, b) equals (3k − 1, 3k ′ − 1), use pattern 2.

ARa,b

ARa+2,b+2

(a) Pattern 1

ARa,b

ARa+4,b+4

(b) Pattern 2

11/31



Tiling Aztec Rectangle (cont’d)
The problem of tiling an Aztec Rectangle can be solved recursively.

If (a, b) equals (3k, 3k ′), use pattern 1.
If (a, b) equals (3k − 1, 3k ′ − 1), use pattern 2.

ARa,b

ARa+2,b+2

(a) Pattern 1

ARa,b

ARa+4,b+4

(b) Pattern 2

11/31



Tiling Aztec Rectangle (cont’d)
The problem of tiling an Aztec Rectangle can be solved recursively.

If (a, b) equals (3, 3k ′), use pattern 3.
If (a, b) equals (2, 3k ′ − 1), use pattern 4.

AR3,b

AR3,b+3

(a) Pattern 3

AR2,b

AR2,b+3

(b) Pattern 4

Base case: AR2,2 and AR3,3.

AR2,2

AR3,3
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Tiling Aztec Rectangle with a single defect

A defect cell is a cell in which no tromino can be placed on top.

defect cell

Theorem
An Aztec rectangle ARa,b with one defect has a tiling with L-trominoes
⇐⇒ |ARa,b| ≡ 1 (mod 3)
⇐⇒ a or b is equal to 3k − 2 for some k ∈ N.
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Tiling Aztec Rectangle with a single defect (cont’d)

Place a fringe where it covers the defect.
Place stairs to cover other cells.
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Tiling Aztec Rectangle with an unbounded number of
defects

Given a region R ′, we can embed R ′ inside a sufficiently large
Aztec Rectangle ARa,b.

R ′

Theorem
The problem of tiling Aztec Rectangle ARa,b with an unbounded
number of defects is NP-complete.
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180◦L-Tromino Tiling

Definition
The 180-tromino tiling problem only allows 180◦ rotations of
L-trominoes, i.e., the tile set can be

Σ = { right-oriented 180-trominoes } = { , }

or

Σ = { left-oriented 180-trominoes } = { , }.

With no loss of generality, we will only consider right-oriented
180-trominoes.
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180◦L-Tromino Tiling (cont’d)

Theorem
There is a one-one correspondence between 180-tromino tiling and
the triangular trihex tiling [Conway and Lagarias, (1990)].

Two triangular trihex.

Transformation from triangular trihex to 180-tromino
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180◦L-Tromino Tiling (cont’d)

Definition
A cell tetrasection is a division of a cell into 4 equal size cells.

Definition
A tetrasected polyomino P� is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R�.

However, it is not know if the converse statement is true or false.

21/31



180◦L-Tromino Tiling (cont’d)

Definition
A cell tetrasection is a division of a cell into 4 equal size cells.

Definition
A tetrasected polyomino P� is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R�.

However, it is not know if the converse statement is true or false.

21/31



180◦L-Tromino Tiling (cont’d)

Definition
A cell tetrasection is a division of a cell into 4 equal size cells.

Definition
A tetrasected polyomino P� is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R�.

However, it is not know if the converse statement is true or false.

21/31



180◦L-Tromino Tiling (cont’d)

Definition
A cell tetrasection is a division of a cell into 4 equal size cells.

Definition
A tetrasected polyomino P� is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R�.

However, it is not know if the converse statement is true or false.

21/31



180◦L-Tromino Tiling (cont’d)

Definition
A cell tetrasection is a division of a cell into 4 equal size cells.

Definition
A tetrasected polyomino P� is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R�.

However, it is not know if the converse statement is true or false.

21/31



180◦L-Tromino Tiling (cont’d)

Definition
A cell tetrasection is a division of a cell into 4 equal size cells.

Definition
A tetrasected polyomino P� is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R�.

However, it is not know if the converse statement is true or false.

21/31



180◦L-Tromino Tiling (cont’d)

Definition
A cell tetrasection is a division of a cell into 4 equal size cells.

Definition
A tetrasected polyomino P� is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R�.

However, it is not know if the converse statement is true or false.

21/31



180◦L-Tromino Tiling (cont’d)

Definition
A cell tetrasection is a division of a cell into 4 equal size cells.

Definition
A tetrasected polyomino P� is obtained by tetrasecting each cell
of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a
180-tromino tiling for R�.

However, it is not know if the converse statement is true or false.
21/31



180◦L-Tromino Tiling (cont’d)

Horiyama et al. also proved that the I-tromino tiling problem is
NP-Complete.

Theorem [Horiyama, Ito, Nakatsuka, Suzuki and Uehara (2012)]
1-in-3 SAT ≤P I-tromino Tiling
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180◦L-Tromino Tiling (cont’d)

In each gadget G , I-tromino tiling for G can be simulated with
180-tromino tiling for G�.

(a) Original gadget G . (b) Tetrasected gadget G�.

Theorem
180-tromino tiling is NP-complete.
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Forbidden Polyominoes

The 180-tromino tiling can also be reduced to the Maximum
Independent Set problem.

Transformation from R to GR :
Transform every cell of R to vertices of GR .
Add horizontal, vertical and northeast-diagonal edges.

Transformation from GR to IR :
Transform every 3-cycle of GR to vertices of IR .
Add an edge where 3-cycles intersects.
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Forbidden Polyominoes (cont’d)

Theorem

Maximum Independent Set of IR is equal to |R|3
⇐⇒ R has a 180-tromino tiling .

where |R| the number of cells in a region R.
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Forbidden Polyominoes (cont’d)

If IG is claw-free, i.e., does not contain a claw as induced graph,
then computing Maximum Independent Set can be computed in
polynomial time.

The following five polyominoes generates a distinct IG with a claw
in it.
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Forbidden Polyominoes (cont’d)

Theorem
If a region R doesn’t contains a rotated, reflected or sheared
forbidden polyomino, then 180-tromino tiling can be computed in
a polynomial time.
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Thank you!
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Thank you!
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Thank you!

You can try the tetrasected cell tiling program in your phone
browser: http://bit.ly/TetrasectedTiling
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