Hard and Easy Instances of L-Tromino Tilings ${ }^{1}$

Javier T. Akagi ${ }^{1}$, Carlos F. Gaona ${ }^{1}$, Fabricio Mendoza ${ }^{1}$, Manjil P. Saikia ${ }^{2}$, Marcos Villagra ${ }^{1}$
${ }^{1}$ Universidad Nacional de Asunción
NIDTEC, Campus Universitario, San Lorenzo C.P. 2619, Paraguay
${ }^{2}$ Fakultät für Mathematik, Universität Wien
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

09/01/2019
${ }^{1}$ To appear in Proceedings of the the 13th International Conference and Workshops on Algorithms and Computation (WALCOM), Guwahati, India, February 27 - March 02, 2019. arXiv:1710.04640.

Outline

(1) Introduction

- Polyominoes
- L-Tromino Tiling Problem
(2) Tiling of the Aztec Rectangles
- Aztec Rectangle
- Aztec Rectangle with a single defect
- Tiling Aztec Rectangle with unbounded number of defects
(3) 180-Tromino Tiling
- A rotation constraint
- Forbidden Polyominoes

Outline

(1) Introduction

- Polyominoes
- L-Tromino Tiling Problem
(2) Tiling of the Aztec Rectangles
- Aztec Rectangle
- Aztec Rectangle with a single defect
- Tiling Aztec Rectangle with unbounded number of defects
(3) 180-Tromino Tiling
- A rotation constraint
- Forbidden Polyominoes

Polyominoes

Polyominoes

Definition

A polyomino is a planar figure made from one or more equal-sized squares, each joined together along an edge [S. Golomb (1953)].

Polyominoes

Definition

A polyomino is a planar figure made from one or more equal-sized squares, each joined together along an edge [S. Golomb (1953)].

Polyominoes

Definition

A polyomino is a planar figure made from one or more equal-sized squares, each joined together along an edge [S. Golomb (1953)].

- Every cell (square) is fixed in a square lattice.

Polyominoes

Definition

A polyomino is a planar figure made from one or more equal-sized squares, each joined together along an edge [S. Golomb (1953)].

- Every cell (square) is fixed in a square lattice.
- Two cell are adjacent if the Manhattan distance is 1 .

Outline

(1) Introduction

- Polyominoes
- L-Tromino Tiling Problem
(2) Tiling of the Aztec Rectangles
- Aztec Rectangle
- Aztec Rectangle with a single defect
- Tiling Aztec Rectangle with unbounded number of defects
(3) 180 -Tromino Tiling
- A rotation constraint
- Forbidden Polyominoes

L-Tromino Tiling Problem

L-Tromino Tiling Problem

Definition

L-Tromino Tiling Problem

Definition

Given:

- A set of L-trominoes Σ called a tile set, $\Sigma=\{\square, \square, \square$, $\square\}$

L-Tromino Tiling Problem

Definition

Given:

- A set of L-trominoes Σ called a tile set, $\Sigma=\{\square, \square, \square$, $\square\}$
- and a polyomino R called region.

L-Tromino Tiling Problem

Definition

Given:

- A set of L-trominoes Σ called a tile set, $\Sigma=\{\square, \square, \square$, $\square\}$
- and a polyomino R called region.

Goal: Place tiles from Σ to fill the region R covering every cell without overflowing the perimeter of R and without overlapping between the tiles.

L-Tromino Tiling Problem

Definition

Given:

- A set of L-trominoes Σ called a tile set, $\Sigma=\{\square, \square, \square$, $\square\}$
- and a polyomino R called region.

Goal: Place tiles from Σ to fill the region R covering every cell without overflowing the perimeter of R and without overlapping between the tiles.

(a) A region R

(b) A tiling of region R

L-Tromino Tiling Problem (cont'd)

L-Tromino Tiling Problem (cont'd)

- C. Moore and J. M. Robson (2000) proved that deciding the existence of a L-tromino tiling in a given region is NP-complete with a reduction from Monotone 1-in-3 SAT.

L-Tromino Tiling Problem (cont'd)

- C. Moore and J. M. Robson (2000) proved that deciding the existence of a L-tromino tiling in a given region is NP-complete with a reduction from Monotone 1-in-3 SAT.
- T. Horiyama, T. Ito, K. Nakatsuka, A. Suzuki and R. Uehara (2012) constructed a one-one reduction from 1-in-3 SAT.

Outline

(1) Introduction

- Polyominoes
- L-Tromino Tiling Problem
(2) Tiling of the Aztec Rectangles
- Aztec Rectangle
- Aztec Rectangle with a single defect
- Tiling Aztec Rectangle with unbounded number of defects
(3) 180-Tromino Tiling
- A rotation constraint
- Forbidden Polyominoes

Aztec Rectangle

Aztec Rectangle

The Aztec Diamond $A D(n)$ is the union of all cell inside the contour $|x|+|y|=n+1$.

Aztec Rectangle

The Aztec Diamond $A D(n)$ is the union of all cell inside the contour $|x|+|y|=n+1$.

(a) $A D(1)$

(b) $A D(2)$

(d) $A D(4)$

Aztec Rectangle

The Aztec Diamond $A D(n)$ is the union of all cell inside the contour $|x|+|y|=n+1$.

(a) $A D(1)$

(c) $A D(3)$

(d) $A D(4)$

The Aztec Rectangle $\mathcal{A R}_{a, b}$ is a generalization of an Aztec Diamond.

Aztec Rectangle

The Aztec Diamond $A D(n)$ is the union of all cell inside the contour $|x|+|y|=n+1$.

(a) $A D(1)$

(c) $A D(3)$
(d) $A D(4)$

The Aztec Rectangle $\mathcal{A R}_{a, b}$ is a generalization of an Aztec Diamond.

(a) $\mathcal{A R}_{1,2}$

(b) $\mathcal{A R}_{1,3}$

(c) $\mathcal{A R}_{2,3}$

(d) $\mathcal{A R}_{3,4}$

Tiling Aztec Rectangle (cont'd)

Tiling Aztec Rectangle (cont'd)
Each piece of L-tromino covers 3 cells.

Tiling Aztec Rectangle (cont'd)

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always multiple of 3.

Tiling Aztec Rectangle (cont'd)

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always multiple of 3 .

The number of cells in an $\mathcal{A R}_{a, b}$ is given by

Tiling Aztec Rectangle (cont'd)

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always multiple of 3 .

The number of cells in an $\mathcal{A R}_{a, b}$ is given by

$$
\left|\mathcal{A} \mathcal{R}_{a, b}\right|=a(b+1)+b(a+1)
$$

Tiling Aztec Rectangle (cont'd)

Each piece of L-tromino covers 3 cells.

In any L-tromino tiling, the number of covered cells is always multiple of 3 .

The number of cells in an $\mathcal{A R}_{a, b}$ is given by

$$
\left|\mathcal{A R}_{a, b}\right|=a(b+1)+b(a+1)
$$

Theorem

An Aztec rectangle $\mathcal{A R}_{a, b}$ has a tiling with L-trominoes
$\Longleftrightarrow\left|\mathcal{A R}{ }_{a, b}\right| \equiv 0(\bmod 3)$
$\Longleftrightarrow(a, b)$ is equal to $\left(3 k, 3 k^{\prime}\right)$ or $\left(3 k-1,3 k^{\prime}-1\right)$ for some $k, k^{\prime} \in \mathbb{N}$.

Tiling Aztec Rectangle (cont'd)

Tiling Aztec Rectangle (cont'd)
The problem of tiling an Aztec Rectangle can be solved recursively.

Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals $\left(3 k, 3 k^{\prime}\right)$, use pattern 1 .
- If (a, b) equals $\left(3 k-1,3 k^{\prime}-1\right)$, use pattern 2 .

Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals $\left(3 k, 3 k^{\prime}\right)$, use pattern 1 .
- If (a, b) equals $\left(3 k-1,3 k^{\prime}-1\right)$, use pattern 2 .

(a) Pattern 1

Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals $\left(3 k, 3 k^{\prime}\right)$, use pattern 1 .
- If (a, b) equals $\left(3 k-1,3 k^{\prime}-1\right)$, use pattern 2 .

(a) Pattern 1

(b) Pattern 2

Tiling Aztec Rectangle (cont'd)
The problem of tiling an Aztec Rectangle can be solved recursively.

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals $\left(3,3 k^{\prime}\right)$, use pattern 3 .
- If (a, b) equals $\left(2,3 k^{\prime}-1\right)$, use pattern 4.

Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals $\left(3,3 k^{\prime}\right)$, use pattern 3 .
- If (a, b) equals $\left(2,3 k^{\prime}-1\right)$, use pattern 4 .

(a) Pattern 3

Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals $\left(3,3 k^{\prime}\right)$, use pattern 3 .
- If (a, b) equals $\left(2,3 k^{\prime}-1\right)$, use pattern 4 .

(a) Pattern 3

(b) Pattern 4

Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals $\left(3,3 k^{\prime}\right)$, use pattern 3.
- If (a, b) equals $\left(2,3 k^{\prime}-1\right)$, use pattern 4 .

(a) Pattern 3

(b) Pattern 4

Base case: $\mathcal{A R}_{2,2}$ and $\mathcal{A R}_{3,3}$.

Tiling Aztec Rectangle (cont'd)

The problem of tiling an Aztec Rectangle can be solved recursively.

- If (a, b) equals $\left(3,3 k^{\prime}\right)$, use pattern 3.
- If (a, b) equals $\left(2,3 k^{\prime}-1\right)$, use pattern 4 .

(a) Pattern 3

(b) Pattern 4

Base case: $\mathcal{A R}_{2,2}$ and $\mathcal{A R}_{3,3}$.

Outline

(1) Introduction

- Polyominoes
- L-Tromino Tiling Problem
(2) Tiling of the Aztec Rectangles
- Aztec Rectangle
- Aztec Rectangle with a single defect
- Tiling Aztec Rectangle with unbounded number of defects
(3) 180-Tromino Tiling
- A rotation constraint
- Forbidden Polyominoes

Tiling Aztec Rectangle with a single defect

Tiling Aztec Rectangle with a single defect

A defect cell is a cell in which no tromino can be placed on top.

Tiling Aztec Rectangle with a single defect

A defect cell is a cell in which no tromino can be placed on top.

Tiling Aztec Rectangle with a single defect

A defect cell is a cell in which no tromino can be placed on top.

Theorem

An Aztec rectangle $\mathcal{A R}_{a, b}$ with one defect has a tiling with L-trominoes
$\Longleftrightarrow\left|\mathcal{A R}_{a, b}\right| \equiv 1(\bmod 3)$
$\Longleftrightarrow a$ or b is equal to $3 k-2$ for some $k \in \mathbb{N}$.

Tiling Aztec Rectangle with a single defect (cont'd)

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.
- Place stairs to cover other cells.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.
- Place stairs to cover other cells.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.
- Place stairs to cover other cells.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.
- Place stairs to cover other cells.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.
- Place stairs to cover other cells.

Tiling Aztec Rectangle with a single defect (cont'd)

- Place a fringe where it covers the defect.
- Place stairs to cover other cells.

- Place a fringe where it covers the defect.
- Place stairs to cover other cells.

- Place a fringe where it covers the defect.
- Place stairs to cover other cells.

Outline

(1) Introduction

- Polyominoes
- L-Tromino Tiling Problem
(2) Tiling of the Aztec Rectangles
- Aztec Rectangle
- Aztec Rectangle with a single defect
- Tiling Aztec Rectangle with unbounded number of defects
(3) 180 -Tromino Tiling
- A rotation constraint
- Forbidden Polyominoes

Tiling Aztec Rectangle with an unbounded number of defects

Tiling Aztec Rectangle with an unbounded number of defects

Given a region R^{\prime}, we can embed R^{\prime} inside a sufficiently large Aztec Rectangle $\mathcal{A R}_{a, b}$.

Tiling Aztec Rectangle with an unbounded number of defects

Given a region R^{\prime}, we can embed R^{\prime} inside a sufficiently large Aztec Rectangle $\mathcal{A R}_{a, b}$.

Tiling Aztec Rectangle with an unbounded number of defects

Given a region R^{\prime}, we can embed R^{\prime} inside a sufficiently large Aztec Rectangle $\mathcal{A R}_{a, b}$.

Theorem

The problem of tiling Aztec Rectangle $\mathcal{A R}_{a, b}$ with an unbounded number of defects is NP-complete.

Outline

(1) Introduction

- Polyominoes
- L-Tromino Tiling Problem
(2) Tiling of the Aztec Rectangles
- Aztec Rectangle
- Aztec Rectangle with a single defect
- Tiling Aztec Rectangle with unbounded number of defects
(3) 180-Tromino Tiling
- A rotation constraint
- Forbidden Polyominoes
180° L-Tromino Tiling

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be
$\Sigma=\{$ right-oriented 180 -trominoes $\}=\{\square, \square\}$

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be
$\Sigma=\{$ right-oriented 180-trominoes $\}=\{\square, \square\}$ or

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be
$\Sigma=\{$ right-oriented 180 -trominoes $\}=\{\square, \square\}$
$\Sigma=\{$ left-oriented 180 -trominoes $\}=\{\square, \square\}$.

Definition

The 180-tromino tiling problem only allows 180° rotations of L-trominoes, i.e., the tile set can be
$\Sigma=\{$ right-oriented 180 -trominoes $\}=\{\square, \square\}$

$$
\Sigma=\{\text { left-oriented } 180 \text {-trominoes }\}=\{\square, \square\} .
$$

With no loss of generality, we will only consider right-oriented 180-trominoes.
180° L-Tromino Tiling (cont'd)

180° L-Tromino Tiling (cont'd)

Theorem
 There is a one-one correspondence between 180-tromino tiling and the triangular trihex tiling [Conway and Lagarias, (1990)].

180° L-Tromino Tiling (cont'd)

Theorem

There is a one-one correspondence between 180-tromino tiling and the triangular trihex tiling [Conway and Lagarias, (1990)].

Two triangular trihex.

180° L-Tromino Tiling (cont'd)

Theorem

There is a one-one correspondence between 180-tromino tiling and the triangular trihex tiling [Conway and Lagarias, (1990)].

Two triangular trihex.

Transformation from triangular trihex to 180-tromino
180° L-Tromino Tiling (cont'd)

180° L-Tromino Tiling (cont'd)

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

180° L-Tromino Tiling (cont'd)

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

$$
\square \rightarrow \square
$$

Definition

A tetrasected polyomino P^{\boxplus} is obtained by tetrasecting each cell of a poylomino P.

180° L-Tromino Tiling (cont'd)

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

$$
\square \rightarrow \square
$$

Definition

A tetrasected polyomino P^{\boxplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a I-tromino tiling for some R, then there is also a 180-tromino tiling for R^{\boxplus}.

180° L-Tromino Tiling (cont'd)

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

$$
\square \rightarrow \square
$$

Definition

A tetrasected polyomino P^{\boxplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a l-tromino tiling for some R, then there is also a 180-tromino tiling for R^{\boxplus}.

180° L-Tromino Tiling (cont'd)

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

$$
\square \rightarrow \square
$$

Definition

A tetrasected polyomino P^{\boxplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a l-tromino tiling for some R, then there is also a 180-tromino tiling for R^{\boxplus}.

180° L-Tromino Tiling (cont'd)

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

$$
\square \rightarrow \boxplus
$$

Definition

A tetrasected polyomino P^{\boxplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a l-tromino tiling for some R, then there is also a 180-tromino tiling for R^{\boxplus}.

180° L-Tromino Tiling (cont'd)

Definition

A cell tetrasection is a division of a cell into 4 equal size cells.

$$
\square \rightarrow \boxplus
$$

Definition

A tetrasected polyomino P^{\boxplus} is obtained by tetrasecting each cell of a poylomino P.

If there is a l-tromino tiling for some R, then there is also a 180 -tromino tiling for R^{\boxplus}.

However, it is not know if the converse statement is true or false.
180° L-Tromino Tiling (cont'd)

Horiyama et al. also proved that the l-tromino tiling problem is NP-Complete.

180° L-Tromino Tiling (cont'd)

Horiyama et al. also proved that the I-tromino tiling problem is NP-Complete.

Theorem [Horiyama, Ito, Nakatsuka, Suzuki and Uehara (2012)]
1-in-3 SAT \leq_{P} I-tromino Tiling

180° L-Tromino Tiling (cont'd)

Horiyama et al. also proved that the I-tromino tiling problem is NP-Complete.

Theorem [Horiyama, Ito, Nakatsuka, Suzuki and Uehara (2012)]
1-in-3 SAT \leq_{P} I-tromino Tiling

180° L-Tromino Tiling (cont'd)

In each gadget G, I-tromino tiling for G can be simulated with 180 -tromino tiling for G^{\boxplus}.

180° L-Tromino Tiling (cont'd)

In each gadget G, I-tromino tiling for G can be simulated with 180 -tromino tiling for G^{\boxplus}.

(a) Original gadget G.

In each gadget G, I-tromino tiling for G can be simulated with 180 -tromino tiling for G^{\boxplus}.

(a) Original gadget G.

(b) Tetrasected gadget G^{\boxplus}.

In each gadget G, I-tromino tiling for G can be simulated with 180 -tromino tiling for G^{\boxplus}.

(a) Original gadget G.

(b) Tetrasected gadget G^{\boxplus}.

180° L-Tromino Tiling (cont'd)

In each gadget G, I-tromino tiling for G can be simulated with 180 -tromino tiling for G^{\boxplus}.

(a) Original gadget G.

(b) Tetrasected gadget G^{\boxplus}.

In each gadget G, I-tromino tiling for G can be simulated with 180 -tromino tiling for G^{\boxplus}.

(a) Original gadget G.

(b) Tetrasected gadget G^{\boxplus}.

Theorem

180-tromino tiling is NP-complete.

Outline

(1) Introduction

- Polyominoes
- L-Tromino Tiling Problem
(2) Tiling of the Aztec Rectangles
- Aztec Rectangle
- Aztec Rectangle with a single defect
- Tiling Aztec Rectangle with unbounded number of defects
(3) 180-Tromino Tiling
- A rotation constraint
- Forbidden Polyominoes

Forbidden Polyominoes

Forbidden Polyominoes

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

Forbidden Polyominoes

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.

Forbidden Polyominoes

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.

Forbidden Polyominoes

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.

Forbidden Polyominoes

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.

Forbidden Polyominoes

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.

Forbidden Polyominoes

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_{R} to I_{R} :
- Transform every 3-cycle of G_{R} to vertices of I_{R}.
- Add an edge where 3-cycles intersects.

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_{R} to I_{R} :
- Transform every 3-cycle of G_{R} to vertices of I_{R}.
- Add an edge where 3-cycles intersects.

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_{R} to I_{R} :
- Transform every 3-cycle of G_{R} to vertices of I_{R}.
- Add an edge where 3-cycles intersects.

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_{R} to I_{R} :
- Transform every 3-cycle of G_{R} to vertices of I_{R}.
- Add an edge where 3-cycles intersects.

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_{R} to I_{R} :
- Transform every 3-cycle of G_{R} to vertices of I_{R}.
- Add an edge where 3-cycles intersects.

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_{R} to I_{R} :
- Transform every 3-cycle of G_{R} to vertices of I_{R}.
- Add an edge where 3-cycles intersects.

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_{R} to I_{R} :
- Transform every 3-cycle of G_{R} to vertices of I_{R}.
- Add an edge where 3-cycles intersects.

The 180 -tromino tiling can also be reduced to the Maximum Independent Set problem.

- Transformation from R to G_{R} :
- Transform every cell of R to vertices of G_{R}.
- Add horizontal, vertical and northeast-diagonal edges.
- Transformation from G_{R} to I_{R} :
- Transform every 3-cycle of G_{R} to vertices of I_{R}.
- Add an edge where 3-cycles intersects.

Forbidden Polyominoes (cont'd)

Forbidden Polyominoes (cont'd)

Forbidden Polyominoes (cont'd)

Forbidden Polyominoes (cont'd)

Forbidden Polyominoes (cont'd)

Theorem

Maximum Independent Set of I_{R} is equal to $\frac{|R|}{3}$ $\Longleftrightarrow R$ has a 180-tromino tiling.
where $|R|$ the number of cells in a region R.

Forbidden Polyominoes (cont'd)

Forbidden Polyominoes (cont'd)

If I_{G} is claw-free, i.e., does not contain a claw as induced graph, then computing Maximum Independent Set can be computed in polynomial time.

Forbidden Polyominoes (cont’d)

If I_{G} is claw-free, i.e., does not contain a claw as induced graph, then computing Maximum Independent Set can be computed in polynomial time.

Forbidden Polyominoes (cont’d)

If I_{G} is claw-free, i.e., does not contain a claw as induced graph, then computing Maximum Independent Set can be computed in polynomial time.

The following five polyominoes generates a distinct I_{G} with a claw in it.

If I_{G} is claw-free, i.e., does not contain a claw as induced graph, then computing Maximum Independent Set can be computed in polynomial time.

The following five polyominoes generates a distinct I_{G} with a claw in it.

Forbidden Polyominoes (cont'd)

Forbidden Polyominoes (cont'd)

Theorem

If a region R doesn't contains a rotated, reflected or sheared forbidden polyomino, then 180-tromino tiling can be computed in a polynomial time.

Thank you!

Thank you!

MHPMM

You can try the tetrasected cell tiling program in your phone browser: http://bit.ly/TetrasectedTiling

