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Proteomic mass spectrometry analysis

Enhanced data acquisition⇒ large high-dimensional data!
MS analysis⇒ Peptide and protein analysis.
Objective: Biomarker detection.
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Proteomic mass spectrometry analysis
Challenges

Small high-dimensional dataset.
Orignal signal decomposition unknown.
No standard data preprocessing workflow.
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The Knowledge Discovery in Databases process
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Classification

Notation

X = {Xj, j = 1, . . . , d} full set of features.
Y ≡ the class variable (target class to be learned).
E = (x, y) ≡ training set.
T = (x, ?) ≡ test set.

Given E, the aim of classification is to learn a function

C : X → Y.
MOSAIC PINV15-257 Feature Selection for Classification
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Feature selection for classification

Not all the features are equally useful⇒ removing some of them
may improve the predictive model C.

⇒ The objective of feature selection is to find the subset of features
S ∈ X with which C achieves the lowest error rate.

Benefits
Reduction in the cost of acquisition of the data.
Improvement of the comprehensibility of the model.
Faster induction of the final classification model.
Improvement in classification accuracy.
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Feature selection (FS)

FS traditionally focused on finding a highly discriminating power
set of features for minimizing the classification error rate.
Several works have made an effort for defining the different
feature types according to their contribution to the meaning of the
class concept.
In this context, feature relevance has arisen as a measure of the
amount of relevant information that a feature may contain about
the class in classification tasks.
A feature is considered irrelevant if it contains no information
about the class and therefore it is not necessary at all for the
predictive task
Relevant features are those that embody information about the
class concept
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Feature selection (FS)

Optimal feature subset defined with respect to the induction
algorithm:
Given an inducer I, and a training dataset E with features
X1, . . . ,Xd, from a distribution D over the labeled instance space,
an optimal feature subset, Sopt, is a subset of the features such
that the accuracy of the induced classifier C : I(D) is maximal.
Optimal feature subset not necessarily unique.
Problem: distribution of data unknown.

⇒ Accuracy of the classifier must be estimated from data.
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Kohavi & John [19]

Sj = X \ {Xj}.
Strong relevance ≡ A feature Xj is strongly relevant iff

P (Y|Xj, Sj) 6= P (Y|Sj).

Weak relevance ≡ A feature Xj is weakly relevant iff

P (Y|Xj, Sj) = P (Y|Sj).

and ∃ S′j , such that

P (Y|Xj, S′j) 6= P (Y|Sj).

Irrelevance ≡ A feature Xj is irrelevant iff

∀ S′j ⊆ Sj, P (Y|Xj, S′j) = P (Y|Sj).
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Target concept
Y = X1 ⊕ X2.

where
X4 = X̄2
X5 = X̄3

X1 X2 X3 X4 X5 Y

0 1 1 0 0 0
0 1 0 0 1 0
0 0 1 1 0 1
0 0 0 1 1 1
1 1 1 0 0 1
1 1 0 0 1 1
1 0 1 1 0 0
1 0 0 1 1 0

X1 ≡ strongly relevant.
X2,X4 ≡ weakly relevants.
X3,X5 ≡ irrelevants.
model with highest
accuracy {X1,X2}, {X1,X4}
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Feature redundancy

Feature redundancy is usually presented in terms of feature
correlation.
Perfectly correlated features are truly redundant in the sense that
no additional information is gained by adding them.
Redundancy may exist between two uncorrelated features.
Two highly correlated features may improve the accuracy⇒
correlation cannot be adequated to feature redundancy.
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Selecting the most relevant variables is usually suboptimal for
building a predictor, particularly if the variables are redundant
A subset of useful variables may exclude many redundant, but
relevant, variables.
Relevance does not imply optimality ≡ Let X1,X2,X3 be binary
features. Let the distribution of instances be uniform, and
assume that the target concept is J(X1,X2,X3) = (X1 ∧ X2) ∨ X3.
In this case, all features are relevant but the optimal subset of
features is {X3}.
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Feature subset generation
Evaluation

Steps in a typical feature selection method

Feature subset generation ≡ select subset candidate.
Evaluation ≡ compute relevancy value of the subset.
Stopping criterior ≡ determine whether subset is relevant.
Validation ≡ verify subset validity.
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Feature subset generation
Search space
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Feature subset generation
Approaches to examine the search space

Complete ≡ it does a complete search for the optimal subset
according to the evaluation function.
⇒Worst case: Exhaustive search (O(2d)).
⇒ Optimality of the feature subset, according to the evaluation
funcion, is guaranteed.
Heuristic ≡ it generates the subsets under certain guidelines.
⇒ Optimality is not guaranteed.
⇒ Procedures very simple to implement and fast in producing
results.
⇒ Search space is usually quadratic (O(d2)).

Deterministic ≡ it generates the subsets in a predefined way.
Non deterministic ≡ it generates the subsets randomly.
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Evaluation

Determines the relevancy of the generated feature subset candidate
towards the classification task.

Type of evaluation functions

Filter
1 Distance (euclidean distance, Manhattan distance, etc.).
2 Information (entropy, informacion gain, etc.)
3 Dependency (correlation).
4 Consistency (min-features bias).

Wrapper (classifier).
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Filter approach

FS done as a preprocessing step.
Subsets evaluated according to intrinsic properties of the data.
Computationally fast⇒ can be scaled to high-dimensional
datasets.
Drawback: Effect of FS on induction algorithm is not known.
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Wrapper approach

Wrappers use the learner as a black box to score the subsets of
features according to their predictive power.
The quality of feature subsets for classification is defined with
respect to the induction algorithms.
Drawback: Wrappers are slow.
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Filters vs. wrappers

Wrappers tend to have higher risk of overfitting than filters.
Filter may lead to worse accuracy than wrappers.
Filters are independent of the learner⇒ FS done once for a
given training dataset.
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Categorization of feature selection methods

Search Complete Heuristic
Evaluation deterministic non deterministic

Distance B&B [31] Relief [18]
BFF [42] ReliefF [22]
Seg84 [36]
EUBAFES [34]

Information MDLM [37] SFG [4] PGVNS [12]
DT − CBL [3]
DTM [4]
KS96 [20]
FCBF [43]
MIFS [2]
CR [40]

Dependence POE + ACC [30]
PRESET [28]

Consistency FOCUS [1] SetCover [6] LVF [26]
Sch93 [35] VCC [41] SLV [27]
MIFES1 [32] QBB [7]
ABB [24]

Error AMB&B [11] SFS [8] LVW [25]
BS [9] SBE [8] GA [38]
LC [14] SBE − SLASH [5] SA [9]
BC [15] SFFS [33] FSSEBNA [16]
PQSS [9] BDS [9] SS [12]

RACE [29]
RC [10]
RACE [29]
Oblivion [23]
IS [39]
RFE [13]
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Sequential Forward Selection (SFS)
Main idea

Deterministic heuristic search.
Filter and wrapper approach.
Complexity (O(d2)).
Forward search.
Starts with empty set.
Each step, adds the best feature if its addition improves current
solution.
SFS performs best when the optimal subset is small.
SFS is unable to remove features⇒ the solution can get stuck in
a local optimum.
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Pseudocode

Procedure Sequential Forward Search
begin
1: S← {∅}
2: repeat
3: foreach Xj /∈ S;
4: Jj ← J(S ∪ {Xj});
5: Let j′ ← argmax{Jj};
6: S′ ← S ∪ {Xj′};
7: if J(S′) > J(S) then
8: S← S′;
9: J(S)← J(S′);
10: until (J(S′) ≤ J(S) || |S′| == d)
end
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Example od execution of SFS

Objective function

J(X) = −2x1X2 + 3x1 + 5x2 − 2x1x2x3 + 7x3 + 4x4 − 2x1x2x3x4.
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Sequential Backward Elimination (SBE)
Main idea

Deterministic heuristic search.
Filter and wrapper approach.
Complexity (O(d2)).
Starts with the full set set.
Each step, removes the worst feature if its removal improves
current solution.
SBE performs best when the optimal subset is large.
It is unable to reevaluate the usefulness of a feature after it has
been discarded.
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Pseudocode

Procedure Sequential Backward Elimination
begin
1: S← {X1, . . . ,Xd}
2: repeat
3: foreach Xj ∈ S;
4: Jj ← J(S \ {Xj});
5: Let j′ ← argmax{Jj};
6: S′ ← S \ {Xj′};
7: if J(S′) > J(S) then
8: S← S′;
9: J(S)← J(S′);
10: until (J(S′) ≤ J(S) || |S′| == 1)
end
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SFS vs. SBE

|SSFS| ≤ |SSBE|.
SFS may suffer of overfitting.
tSFS ≤ tSBE.
SBE cannot be applied to medium high-dimensional data.
Complexity (O(d2))⇒ not suitable for large high-dimensional
data.

MOSAIC PINV15-257 Feature Selection for Classification



32/ 63

Background
Feature selection Steps

Feature selection algorithm

Greedy Sequential Search
Fast Correlation Based Filter (FCBF)
Scatter Search (SS)

Fast Correlation Based Filter (FCBF)
Main idea

Deterministic heuristic search.
Filter approach ≡ information theory measures.
Complexity:

best case: only one feature selected (O(d)).
worst case: all features are selected (O(d2)).

Two steps:
1 Analysis of relevance.
2 Analysis of redundance.
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Definitions
Entropy

It measures the uncertainty about the value of a random variable X.

H(X) = −
∑

i

P(xi) log2(P(xi)).

Feature X with values
{0, 1}.
Entropy is 0 if there is
no uncertainty.
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Definitions
Conditional entropy

It measures the uncertainty about the value of X given the value of Y.

H(X|Y) = −
∑

j

P(yj)
∑

i

P(xi|yj) log2(P(xi|yj)).

H(X|Y) = 0 iff the value of X is completely determined by the
value of Y.
H(X|Y) = H(X) iff X and Y are independent.
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Definitions
Information Gain

It measures the reduction in uncertainty about the value of X given
the value of Y

IG(X; Y) = H(X)− H(X|Y).

H(X) ≡ circle on the left (red
and violet).
H(Y) ≡ circle on the right (blue
and violet).
H(X,Y) ≡ area contained by
both circles.
H(X|Y) ≡ red.
H(Y|X) ≡ blue.
I(X; Y) ≡ violet.
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Definitions
Symmetrical Uncertainty (SU)

SU(X,Y) = 2
[

IG(X; Y)

H(X) + H(Y)

]
.

1000 examples generated
randomly.
99 features with:

X1 = {0, 1},
X2 = {0, 1, 2},
. . .,
X99 = {0, 1, . . . , 99}.

Target class generated
randomly⇒ MI and SU values
should be close to 0,
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Definitions

Approximate Markov blanket (AMb)

Given two features Xi and Xj (i 6= j) so that SU(Xj,Y) ≥ SU(Xi,Y),
then Xj forms an approximate Markov blanket for Xi iff
SU(Xi,Xj) ≥ SU(Xi,Y).

Predominant feature
Given a set of features S, a relevant feature is a predominant feature
iff it does not have any AMb in S.
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Analysis of relevance

Relevance measure ≡ Symmetrical Uncertainty
SU(Xj,Y), j = 1, . . . , d.
Given δ, a feature Xj is irrelevant if SU(Xj,Y) ≤ δ.

Analysis of redundance

Markov blanket [21] ≡ Given a feature Xj, Mj ⊂ X (Xj /∈ Mj) is said to
be a Markov blanket for Xj iff
P(X −Mj − {Xj},Y|Xj,Mj) = P(X −Mj − {Xj},Y|Mj).

M subsumes not only the information that Xi has about Y but
also about all of the other features.
A feature Xj ∈ S is redundant and, so, it can be removed from S if
we find a Markov blanket M for Xj within S.
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Analysis of redundance

Features are ordered in descending order according to the SU
values.
First feature X(1) is a predominant feature.
Second iteration⇒ remove those features X(j) for which X(1) is
an AMb.
Second iteration⇒ select next non-removed feature as
predominant feature and remove thoses features for which, this
feature forms an AMb.
So on.
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Example of analysis of redundance
Iteration 1

X(1) X(2) X(3) X(4) X(5)
SU12 ≥ SU2y

SU13 < SU3y

SU14 ≥ SU4y

SU15 < SU5y
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Example of analysis of redundance
Iteration 2

X(1) X(3) X(5)
SU35 ≥ SU5y
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Pseudocode

Procedure Fast Correlation Based Filter
begin
1: for i = 1 to d do
3: calculate SUic for Xi;
4: if (SUic > δ)
5: append Xi to S′list ;
6: end;
7: order S′list in descending SUic value;
8: Xj = getFirstElement(S′list);
9: do begin;
10: Xi = getNextElement(S′list , Xj);
11: if(Xi <> NULL)
12: do begin;
13: if(SUij ≥ SUic);
14: remove Xi from S′list ;
15: Xi = getNextElement(S′list , Xj);
16: end until (Xi == NULL);
17: Xj = getNextElement(S′list , Fj);
18: end until (Xj == NULL);
19: Sbest = S′list ;
end
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Scatter Search (SS)
Main idea

Heuristic and non deterministic method.
Population based strategy.
Evolution based on intensification and diversification strategies.

MOSAIC PINV15-257 Feature Selection for Classification



44/ 63

Background
Feature selection Steps

Feature selection algorithm

Greedy Sequential Search
Fast Correlation Based Filter (FCBF)
Scatter Search (SS)

SS pseudocode

Procedure Scatter search
begin
1: GeneratePopulation (InitPop);
2: GenerateReferenceSet (RefSet);
3: repeat
4: repeat
5: SelectSubset (Subset);
6: CombinationMethod (Subset, CurSol);
7: ImprovementMethod (CurSol, ImpSol);
8: until (StoppingCriterion1)
9: UpdateReferenceSet (RefSet);
10: until (StoppingCriterion2)
end
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Generate initial population

Let L be an ordered subset with featuresofel subconjunto
formado por los atributos con mayor poder predictivo (tal que
J({xj}) ≥ J({xj+1})).

1: Procedure Generate initital population
2: {
3: S← ∅;
4: Order {Xj}, j = 1, . . . , d such that f (Xj) ≥ J(Xj+1);
5: L← {Xj}, j = 1, . . . , k such that k ≤ d;
6: repeat
7: Select randomly Xj∗ ∈ L;
8: if J({Xj∗} ∪ S) ≥ J(S)
9: S← S ∪ {Xj∗}
10: L← (L \ {Xj∗}) ∪ {Xj},Xj /∈ L
11: until J({Xj∗} ∪ S) < J(S)
12: }
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Update the Reference Set

|RefSet| = |RefSet1|+ |RefSet2|.
RefSet1 ≡ quality and RefSet2 ≡ diversity.

1: Procedure Update the Reference Set
2: {
3: RefSet← ∅
3: RefSet← |RefSet| best solutions from Pop.
4: Let C = ∪Xj∈RefSetXj

5: repeat ∀ S /∈ RefSet
6: Calculate Div(S,C) = |(S ∪ C) \ (S ∩ C)|
7: Let S∗ ← argmaxDiv(S,C) : S /∈ RefSet.
8: RefSet← RefSet ∪ S∗.
9: |RefSet| ← |RefSet|+ 1.
10: Update C
11: until |RefSet| = |RefSet1|+ |RefSet2|
12: }
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Combination method

Si ≡ Solution i.
S′i ≡ new solution generated i.
(S1, S2)→ (S′1, S

′
2).

1: Procedure Greedy Combination
2: {
3: S′1 = S′2 ← S1 ∩ S2, C = (S1 ∪ S2) \ (S1 ∩ S2).
4: S′1 ← S′1 ∪ {Xj∗} : Xj∗ = maxj{J(S′1 ∪ {Xj})}.
5: repeat
6: j∗k : J(S′k ∪ {Xj∗k

}) = maxj{J(S′k ∪ {Xj})}, k = 1, 2;
7: Let j∗∗ = maxk{J(S′k ∪ {Xj∗k

})}
8: if J(S′k ∪ {Xj∗∗}) > J(S′k)
9: S′k ← S′k ∪ {Xj∗∗}
10: C← C \ {Xj∗∗}
11: until J(S′k ∪ {Xj∗∗}) ≤ J(S′k), k = 1, 2
12: }
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Example of the combination method

S1 = {X1,X3,X4} S2 = {X3,X9}

S′1 = S′2 = {X3} C = {X1,X4,X9}

J(S′1 ∪ {X4})J(S′1 ∪ {X1}) J(S′1 ∪ {X9})

S′1 = {X1,X3} S′2 = {X3} C = {X4,X9}

J(S′1 ∪ {X4})J(S′1 ∪ {X9}) J(S′2 ∪ {X9}) J(S′2 ∪ {X4})

¿J(S′2 ∪ {X9}) > J(S′2)? S′1 = {X1,X3} S′2 = {X3}

S′1 = {X1,X3} S′2 = {X3,X9} C = {X4}

no

yes
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Improvement method

Let CA = {Xj : Xj /∈ S}, ordered according to the evaluation
method (J({xj}) ≥ J({xj+1})).

1: Procedure Improvement method
2: {
3: j← 0
4: repeat
5: j← j + 1;
6: if J(S ∪ {Xj}) ≥ J(S)
7: S← S ∪ {Xj}
8: until j← |CA|
9: }
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More topics related to feature selection

Stability of the FS strategies.
FS applied to regression and clustering.
Causal Feature Selection.
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