Hybridizing Deep Learning and Neuroevolution: Application to the Spanish Short-Term Electric Energy Consumption Forecasting

PINV18-846: Análisis de la eficiencia energética en edificios no residenciales mediante técnicas metaheurísticas y de inteligencia artificial 11/Octubre/2021

Miguel García Torres

Data Science & Big Data Research Lab 🧐

Lenguajes y Sistemas Informáticos, Universidad Pablo de Olavide

Short-Term Electric Energy Consumption Forecasting

introduction

Results

What is a smart city?

2/23

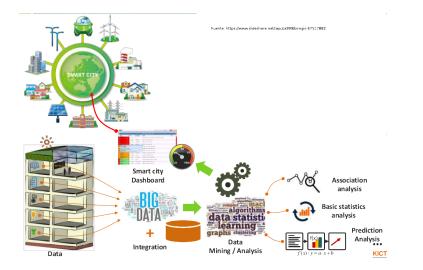
What is a smart building?

- Automated and integrated management system.
 - HCAV (heating, ventilation, and air conditioning).
 - Lighting, access control, security, etc.
- Remote monitoring with sensors.
- Decision-making support system.
- Benefits:
 - Energy efficiency.
 - Security.
 - Usability.
 - Accessibility.

introduction

Regulto

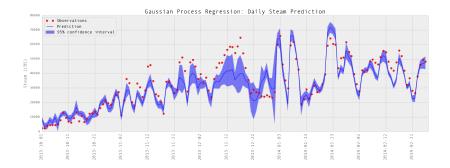
Workflow



introduction Methodology

Time series Deep Learning

Time series data



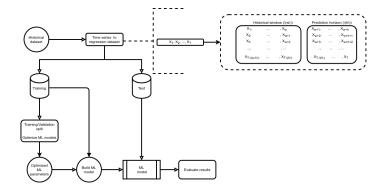
Time series Deep Learning

Training data						
Date	T (C)	Humidity	Energy demand (mw)			
23 Feb	9.47	0.89	20820			
24 Feb	8.28	0.83	19950			
25 Feb	8.75	0.83	19825			
26 Feb	16.02	0.67	15437			
16 Apr	10.70	0.95	12375			
	Test da	ta				
Data						
Date	T (C)	Humidity	Energy demand (mw)			
17 Jun	9.87	0.75	?			
18 Jun	12.04	0.50	?			

introduction Methodology

Time series Deep Learning

Data analysis workflow



Time series Deep Learning

Model evaluation

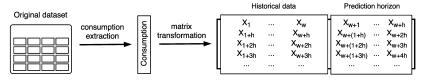
Train-Test split: Walk Forward Validation

Walk Forward Validation

Validation for hyperparameter tuning

Time series Deep Learning

From time series to a regression problem



Training data

Date	Cons. (mw)			
23 Feb	20820			
24 Feb	19950			
25 Feb	19825			
26 Feb	15437			
27 Feb	19825			
28 Feb	15437			

...

...

Historical: 3, Horizon: 2

Historical data (w)			Prediction horizon (h)		
23 Feb	24 Feb	25 Feb	26 Feb	27 Feb	
24 Feb 25 Feb	25 Feb 26 Feb	26 Feb 27 Feb	26 Feb 27 Feb 28 Feb	28 Feb 1 mar	
			I		

Time series Deep Learning

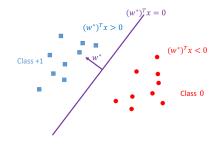
The Perceptron (Minsky-Papert, 1969)

The linear classifier

Inputs: feature values Parameters: weights Hypothesis: $f(x) = w^T x$

$$y = \begin{cases} 1 & \text{if } w^T x > 0 \\ 0 & \text{if } w^T x \le 0 \end{cases}$$

Prediction: $y = sign(f(x)) = sign(w^T x)$

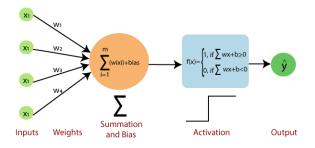


Time series Deep Learning

The Perceptron (Minsky-Papert, 1969)

The linear classifier

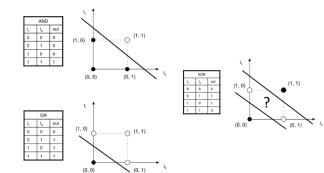
Inputs: feature values



Time series Deep Learning

The Perceptron

The linear classifier



Time series Deep Learning

The Perceptron

The nonlinear classifier

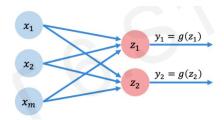


$$y = g(z)$$
$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Time series Deep Learning

The Perceptron

Multi output



 $y_i = g(z_i)$ $z_i = w_{0,i} + \sum_{j=1}^m x_j w_{j,i}$

14/23

Time series Deep Learning

Single Layer Neural network

Multi output

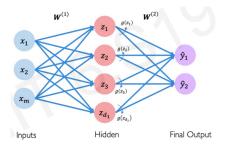


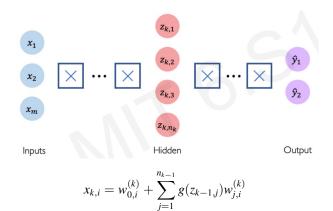
Figure adapted from A. Amini, Introduction to Deep learning.

$$z_i = w_{0,i}^{(1)} + \sum_{j=1}^m x_j w_{j,i}^{(1)}$$
$$\hat{y}_i = g(w_{0,i}^{(2)} + \sum_{j=1}^{d_1} g(z_j) w_{j,i}^{(2)})$$

introduction Methodology

Time series Deep Learning

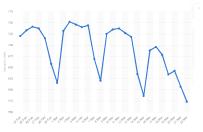
Deep Neural Network



introduction Data Methodology Experiments Results Conclusions and future works

Characteristics

- Data provided by the Spanish Nominated Electricity Market Operator (NEMO)
- Spanish electricity consumption from January 1, 2007 to June 21, 2016.
- 497832 Mesurements recorded every 10 minutes without neither missing values nor outliers.



introduction Data Aethodology Experiments Results Conclusions and future works

Experiment setup

Magnitud of Relative Error

$$MRE = \frac{1}{n} \sum_{i=1}^{n} \frac{|Y_i - \hat{Y}_i|}{Y_i}$$

Machine Learning Algorithms: Random Forest (RF), Artificial Neural Networks (ANN), Evolutionary Decision Trees (EV), the Auto-Regressive Integrated Moving Average (ARIMA), the Gradient Boost Method (GBM), Decision Tree (DT) and an hybrid approach (ENSEMBLE).

Deep Learning Algorithms: Feed-Forward Neural Network (FFNN), Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM).

troduction	
thodology	Experiments
Results	

Me

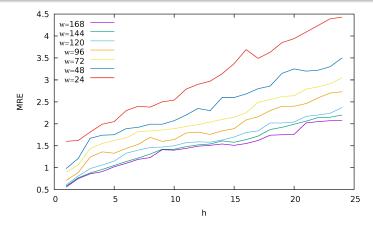
Experiment setup

Experiments

- Exp#1: Analysis of the historical window (*w*) impact on models quality.
- Exp#2: Hyperparameter tuning using a Genetic Algorithm (GA).
- Exp#3: Models comparison.

introduction Data Methodology Experiments Results Conclusions and future works

Results



The proposed strategy obtains similar results for w = 168, 144, 120 on all the considered values of the prediction horizon *h*. W = 168 was selected!

introduction Data Methodology Experiments Results Conclusions and future works

Results Exp#2: Hyperparameter tuning

Parameters selected by the GA for each h using a w of 168

h	Layers	Neurons	λ	ρ	e	Activation	Distributio
1	52	942	4.09× 10 ⁻¹⁰	1.00	6.43×10^{-12}	Tanh	Gaussian
2	68	921	0	1.00	0	Maxout	Huber
3	75	880	0	1.00	0	Maxout	Huber
4	68	921	0	1.00	0	Maxout	Huber
5	88	504	0	1.00	0	Maxout	Huber
6	80	789	0	1.00	0	Maxout	Huber
7	74	892	0	1.00	0	Maxout	Huber
8	46	300	0	1.00	0	Maxout	Huber
9	75	889	5.57×10^{-10}	0.99	6.74×10^{-10}	Tanh	Gaussian
10	25	852	0	1.00	0	Maxout	Huber
11	58	843	3.69×10^{-10}	1.00	2.45×10^{-10}	Tanh	Gaussian
12	41	491	0	1.00	0	Maxout	Huber
13	17	552	0	0.99	0	Maxout	Huber
14	26	661	0	0.99	0	Maxout	Huber
15	89	811	5.61 × 10 ⁻¹⁰	0.99	4.23×10^{-10}	Tanh	Gaussian
16	98	697	0	1.00	0	Maxout	Huber
17	74	478	1.46×10^{-10}	1.00	3.58×10^{-10}	Tanh	Gaussian
18	62	705	2.74×10^{-10}	0.99	6.64×10^{-10}	Tanh	Gaussian
19	65	879	0	0.99	0	Maxout	Huber
20	81	780	7.62×10^{-10}	0.99	5.21×10^{-10}	Tanh	Gaussian
21	27	931	0	1.00	0	Maxout	Huber
22	95	745	0	1.00	0	Maxout	Huber
23	41	923	0	1.00	0	Maxout	Huber
24	80	754	0	1.00	0	Maxout	Huber

21/23

PINV18-661 Short-Term Electric Energy Consumption Forecasting

Average results obtained by different methods for different historical window values. Standard deviation between brackets.

	w						
	24	48	72	96	120	144	168
NDL	3.01 (0.90)	2.38 (0.69)	2.08 (0.57)	1.85 (0.55)	1.60 (0.46)	1.51 (0.46)	1.44 (0.42)
CNN	4.08 (0.04)	3.16 (0.03)	2.69 (0.02)	2.51 (0.02)	2.30 (0.02)	1.71 (0.02)	1.79 (0.02)
LSTM	2.43 (0.03)	2.05 (0.02)	1.82 (0.02)	2.08 (0.02)	1.74 (0.02)	1.78 (0.02)	1.97 (0.02)
FFNN	4.51 (0.52)	3.46 (0.33)	3.39 (0.30)	3.12 (0.42)	2.98 (0.28)	2.32 (0.29)	2.46 (0.29)
ARIMA	8.82 (5.31)	8.26 (4.73)	11.37 (10.43)	14.03 (13.00)	6.79 (2.53)	7.63 (2.54)	6.92 (2.97)
DT	9.52 (1.55)	9.45 (1.48)	9.33 (1.39)	9.40 (1.45)	9.08 (1.12)	8.86 (1.01)	8.79 (0.96)
GBM	8.07 (3.82)	6.59 (2.71)	5.73 (2.23)	5.33 (2.08)	5.02 (1.81)	4.49 (1.54)	4.45 (1.56)
RF	4.39 (2.13)	3.69 (1.71)	2.93 (1.16)	2.78 (1.04)	2.45 (0.79)	2.22 (0.71)	2.15 (0.69)
EV	4.49 (1.91)	3.98 (1.52)	3.48 (1.18)	3.42 (1.15)	3.19 (0.95)	3.15 (0.90)	3.09 (0.84)
NN	4.39 (2.23)	4.27 (2.16)	4.13 (2.05)	3.55 (1.56)	3.15 (1.41)	2.16 (0.78)	2.08 (0.74)
ENSEMBLE	3.58 (1.65)	2.95 (1.19)	2.64 (0.99)	2.57 (0.97)	2.38 (0.81)	1.94 (0.69)	1.88 (0.67)

introduction Data Aethodology Experiments Results Conclusions and future works

Conclusions and future works

- The proposed methodology is efficient for short-term electric energy forecasting (it achieved the best performance).
- The best models performance is achieved for large values of w.
- Apply the framework proposed to Paraguay data and other datasets.
- Improve the hyperparameter tuning stage (due to technical limitations).