A study of the optimality of PCA under spectral sparsification
Compartir
Registro completo
Mostrar el registro completo del ítemFecha de publicación
2018Tipo de publicación
conference paperMateria(s)
Resumen
Principal component analisys (PCA) is a data analysis technique for mapping points in Rn to a two or three dimensional space. This dimensionality reduction preserves the natural grouping of points and information of data.