• Contact us
  • Give feedback
  • About
    • CONACYT Institutional Repository (RI-CONACYT)
    • Frequently Asked Questions
    • español
    • English
View Item 
  •   RI-CONACYT Home
  • Producción científica
  • Artículos científicos
  • View Item
  •   RI-CONACYT Home
  • Producción científica
  • Artículos científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Fast Multivariate Symmetrical Uncertainty Based Heuristic for High Dimensional Feature Selection.

PINV18-1199art1 (126.0Kb)
Export
RISMendeleyRefworksZotero
Share
URI
http://hdl.handle.net/20.500.14066/3778
Metadata
Show full item record
Author(s)
García Torres, Miguel; Divina, Federico; Gómez, Francisco; Vázquez Noguera, José LuisCONACYT Authority
Date of publishing
2021
Type of publication
research article
Subject(s)
CANCER
MELANOMA
ONCOLOGIA
 
Abstract
In classification tasks the increase in the number of dimensions of a data makes the learning process harder. In this context feature selection usually allows to induce simpler classifier models while keeping the accuracy. However, some factors, such as the presence of irrelevant and redundant features, make the feature selection process challenging.
Collections
  • Artículos científicos

Browse

All of RI-CONACYTCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

Consejo Nacional de Ciencia y Tecnología (CONACYT)

Dr. Justo Prieto N 223 entre Teófilo del Puerto y Nicolás Billof, Villa Aurelia.

Telefax: +(595-21) 506 223 / 506 331 / 506 369

Código Postal 001417 - Villa Aurelia

Asunción - Paraguay