• Contacto
  • Sugerencias
  • Acerca de
    • Repositorio Institucional del CONACYT
    • Preguntas frecuentes
    • español
    • English
Ver ítem 
  •   RI-CONACYT Principal
  • Producción científica
  • Artículos científicos
  • Ver ítem
  •   RI-CONACYT Principal
  • Producción científica
  • Artículos científicos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Agent-Based learning model for assessing strategic generation investments in electricity markets

14-INV-271art14 (562.5Kb)
Exportar
RISMendeleyRefworksZotero
Compartir
URI
http://hdl.handle.net/20.500.14066/3025
Registro completo
Mostrar el registro completo del ítem
Autor(es)
Blanco Bogado, Gerardo AlejandroAutoridad CONACYT; Baum Ramos, Gabriel FernandoAutoridad CONACYT; Olsina, Fernando; Lopez Moscarda, Sonia BeatrizAutoridad CONACYT
Fecha de publicación
2017
Tipo de publicación
research article
Materia(s)
INVESTMENT
SIMILARITY LEARNING
STRATEGIC BEHAVIOR
UNCERTAINTY
ENERGIA ELECTRICA
 
Resumen
The liberalization of electricity markets has significantly changed the perspective of the power generation business. Nowadays, generation companies pursue economic goals due their investment decisions are based on expectations of profitability and the risk of their alternatives. These expectations are difficult to predict because they depend upon various factors that are highly uncertain, including both exogenous uncertainties -such as variations of demand and endogenous uncertainties - such as the behavior of competing generation agents. This paper proposes a numerical tool that financially evaluates investment alternatives of generation companies based on a novel adaptive learning technique that links the generation agents' experiences under the current situation considering their expectations of profitability and risk. In this model, the Agent-based Computational Economics approach has been applied. This method represents generation agents through autonomous and heterogeneous entities pursuing economic goals and interacting through computer models.
Colecciones
  • Artículos científicos

Listar

Todo RI-CONACYTComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Consejo Nacional de Ciencia y Tecnología (CONACYT)

Dr. Justo Prieto N 223 entre Teófilo del Puerto y Nicolás Billof, Villa Aurelia.

Telefax: +(595-21) 506 223 / 506 331 / 506 369

Código Postal 001417 - Villa Aurelia

Asunción - Paraguay