Mostrar el registro sencillo del ítem

dc.contributor.advisorBarán Cegla, Benjamín 
dc.contributor.authorFogel Lezcano, Gerardo Gabriel
dc.date.accessioned2022-04-22T23:48:29Z
dc.date.available2022-04-22T23:48:29Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.14066/3110
dc.description.abstractThis thesis studies multiobjective optimization problems in the context of quantum computing. Quantum computing is a computational paradigm based on the laws of quantum physics as superposition, interference and entanglement. New quantum algorithms have emerged that proved to be more efficient than classical algorithms. Particularly, Grover’s search algorithm can find a specific element out of a set of N elements with complexity O(√N). Applications of Grover’s algorithm to optimization problems are currently being studied by other researchers, and in this thesis, a new adaptive search method based on Grover’s algorithm applied to several biobjective optimization problems is introduced. This new algorithm is compared against one of the most cited multiobjective optimization algorithms known as NSGA-II. Experimental evidence suggests that the quantum optimization method proposed in this work is at least as effective as NSGA-II in average, considering an equal number of executions. The proposed quantum algorithm, however, only requires approximately the square root of the number of evaluations executed by NSGA-II. Also, two different types of oracles with regard to the proposed algorithm were considered and the experimental results have shown that one of this oracles has requiered less iterations for similar performance.es
dc.description.sponsorshipCONACYT - Consejo Nacional de Ciencia y Tecnologíaes
dc.language.isoenges
dc.publisherFP-UNAes
dc.subject.classification1302 I+D en relación con la Ingenieríaes
dc.subject.otherINVESTIGACIONes
dc.subject.otherALGORITMOS CUANTICOSes
dc.subject.otherINFORMATICAes
dc.titleQuantum Algorithms for Multiobjective Combinatorial Optimizationes
dc.typemaster thesises
dc.description.fundingtextPROCIENCIAes
dc.relation.projectCONACYTBECA 08-9es
dc.rights.accessRightsopen accesses
dc.subject.ocdeINVESTIGACION; CIENCIAes
thesis.degree.disciplineIngeniería y Tecnologíaes
thesis.degree.grantorUniversidad Nacional de Asunción - Facultad Politécnica (PY)es
thesis.degree.levelMaestríaes
thesis.degree.nameMaestría en Ciencias de la Computaciónes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Tesis de Maestría
    La colección consiste en las tesis de maestría aprobadas en el marco del instrumento "Creación y fortalecimiento de programas de posgrados académicos" del Programa PROCIENCIA.

Mostrar el registro sencillo del ítem