Mostrar el registro sencillo del ítem

dc.contributor.authorGamarra, Walter
dc.contributor.authorBogado, Maira Santacruz 
dc.contributor.authorCikel, Kevin
dc.contributor.authorMartínez, Elvia
dc.contributor.otherUniversidad Nacional de Asunción - Facultad de Ingenieríaes
dc.date.accessioned2022-04-25T16:02:58Z
dc.date.available2022-04-25T16:02:58Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.14066/3588
dc.description.abstractThis work proposes the use of deep neural networks for the prediction of traffic variables for measuring traffic congestion. Deep neural networks are used in this work in order to determine how much time each vehicle spends in traffic, considering a certain amount of vehicles in the traffic network and traffic light configurations. A genetic algorithm is also implemented that finds an optimal traffic light configuration. With the implementation of a deep neural network for the simulation of traffic instead of using a simulation software, the computation time of the fitness function in the genetic algorithm improved considerably, with a decrease of precision of less than 10%. Genetic algorithms are used in order to show how useful deep neural networks models can be when dealing with vehicular flow slowdown.es
dc.description.sponsorshipCONACYT - Consejo Nacional de Ciencia y Tecnologíaes
dc.language.isoenges
dc.subject.classification4 Transporte, telecomunicaciones y otras infraestructurases
dc.subject.otherTRAFFIC SIMULATIONes
dc.subject.otherDEEP LEARNINGes
dc.subject.otherGENETIC ALGORITHMSes
dc.titleDeep Learning for Traffic Prediction with an Application to Traffic Lights Optimization.es
dc.typeresearch articlees
dc.description.fundingtextPROCIENCIAes
dc.relation.projectCONACYTPINV15-66es
dc.rights.accessRightsopen accesses


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos
    La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.

Mostrar el registro sencillo del ítem