Mostrar el registro sencillo del ítem
Redundancy Is Not Necessarily Detrimental in Classification Problems
dc.contributor.author | Grillo, Sebastián Alberto | |
dc.contributor.author | Vázquez Noguera, José Luis | |
dc.contributor.author | Mello Román, Julio César | |
dc.contributor.author | García Torres, Miguel | |
dc.contributor.author | Facon, Jacques | |
dc.contributor.author | Pinto Roa, Diego Pedro | |
dc.contributor.author | Salgueiro, Luis Fernando | |
dc.contributor.author | Bareiro Paniagua, Laura Raquel | |
dc.contributor.author | Leguizamón Correa, Deysi Natalia | |
dc.contributor.other | Universidad Americana (PY) | es |
dc.contributor.other | Universidad Nacional de Concepción (PY) | es |
dc.date.accessioned | 2022-04-29T23:02:18Z | |
dc.date.available | 2022-04-29T23:02:18Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14066/3777 | |
dc.description.abstract | In feature selection, redundancy is one of the major concerns since the removal of redun dancy in data is connected with dimensionality reduction. Despite the evidence of such a connection, few works present theoretical studies regarding redundancy. In this work, we analyze the effect of redundant features on the performance of classification models. We can summarize the contribution of this work as follows: (i) develop a theoretical framework to analyze feature construction and selection, (ii) show that certain properly defined features are redundant but make the data linearly separable, and (iii) propose a formal criterion to validate feature construction methods. The results of experiments suggest that a large number of redundant features can reduce the classification error. The results imply that it is not enough to analyze features solely using criteria that measure the amount of information provided by such features. | es |
dc.description.sponsorship | CONACYT - Consejo Nacional de Ciencia y Tecnología | es |
dc.language.iso | eng | es |
dc.subject.classification | 1302 I+D en relación con la Ingeniería | es |
dc.subject.other | FEATURE CONSTRUCTION | es |
dc.subject.other | FEATURE SELECTION | es |
dc.title | Redundancy Is Not Necessarily Detrimental in Classification Problems | es |
dc.type | research article | es |
dc.description.fundingtext | PROCIENCIA | es |
dc.journal.title | Mathemathics Applied | es |
dc.relation.projectCONACYT | PINV18-1199 | es |
dc.rights.accessRights | open access | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos científicos
La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.