Mostrar el registro sencillo del ítem

dc.contributor.authorRivas Martínez, Gustavo Ignacio
dc.contributor.authorJiménez Gamero, María Dolores
dc.date.accessioned2024-07-17T20:55:42Z
dc.date.available2024-07-17T20:55:42Z
dc.date.issued2020-11-12
dc.identifier.citationRivas Martínez, G. I., & Jiménez Gamero, M. D. (2020). Computationally efficient approximations for independence tests in non-parametric regression. Journal of Statistical Computation and Simulation, 91(6), 1134-1154. https://doi.org/10.1080/00949655.2020.1843038en
dc.identifier.otherhttps://doi.org/10.1080/00949655.2020.1843038es
dc.identifier.urihttp://hdl.handle.net/20.500.14066/4432
dc.descriptionCorrespondence: gusyri@hotmail.comen
dc.description.abstractA common assumption in non-parametric regression models is the independence of the covariate and the error. Some procedures have been suggested for testing that hypothesis. This paper considers a test, whose test statistic compares estimators of the joint and the product of the marginal characteristic functions of the covariate and the error. It is proposed to approximate the null distribution of such statistic by means of a weighted bootstrap estimator. The resulting test is able to detect any fixed alternative as well as local alternatives converging to the null at the rate n−1/2𝑛−1/2, n denoting the sample size. The finite sample performance of this approximation is assessed by means of a simulation study, where it is also compared with other estimators. This study reveals that, from a computational point of view, the proposed approximation is very efficient. Two real data set applications are also included.es
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnologíaes
dc.language.isoenges
dc.publisherTaylor & Francises
dc.subject.otherCharacteristic functiones
dc.subject.otherComputational efficiencyes
dc.subject.otherConsistencyes
dc.subject.otherNon-parametric regression modelses
dc.subject.otherTesting for independencees
dc.subject.otherWeighted bootstrapes
dc.titleComputationally efficient approximations for independence tests in non-parametric regressiones
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1080/00949655.2020.1843038es
dc.description.fundingtextPrograma Paraguayo para el Desarrollo de la Ciencia y Tecnología. Programa de Vinculación de Científicos y Tecnólogoses
dc.identifier.essn1563-5163es
dc.issue.number6es
dc.journal.titleJournal of Statistical Computation and Simulationes
dc.page.initial1134es
dc.page.final1154es
dc.relation.projectCONACYTPVCT18-296es
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses
dc.rights.copyright© Taylor & Francises
dc.volume.number91es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos
    La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.

Mostrar el registro sencillo del ítem