Mostrar el registro sencillo del ítem
Computationally efficient approximations for independence tests in non-parametric regression
dc.contributor.author | Rivas Martínez, Gustavo Ignacio | |
dc.contributor.author | Jiménez Gamero, María Dolores | |
dc.date.accessioned | 2024-07-17T20:55:42Z | |
dc.date.available | 2024-07-17T20:55:42Z | |
dc.date.issued | 2020-11-12 | |
dc.identifier.citation | Rivas Martínez, G. I., & Jiménez Gamero, M. D. (2020). Computationally efficient approximations for independence tests in non-parametric regression. Journal of Statistical Computation and Simulation, 91(6), 1134-1154. https://doi.org/10.1080/00949655.2020.1843038 | en |
dc.identifier.other | https://doi.org/10.1080/00949655.2020.1843038 | es |
dc.identifier.uri | http://hdl.handle.net/20.500.14066/4432 | |
dc.description | Correspondence: gusyri@hotmail.com | en |
dc.description.abstract | A common assumption in non-parametric regression models is the independence of the covariate and the error. Some procedures have been suggested for testing that hypothesis. This paper considers a test, whose test statistic compares estimators of the joint and the product of the marginal characteristic functions of the covariate and the error. It is proposed to approximate the null distribution of such statistic by means of a weighted bootstrap estimator. The resulting test is able to detect any fixed alternative as well as local alternatives converging to the null at the rate n−1/2𝑛−1/2, n denoting the sample size. The finite sample performance of this approximation is assessed by means of a simulation study, where it is also compared with other estimators. This study reveals that, from a computational point of view, the proposed approximation is very efficient. Two real data set applications are also included. | es |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología | es |
dc.language.iso | eng | es |
dc.publisher | Taylor & Francis | es |
dc.subject.other | Characteristic function | es |
dc.subject.other | Computational efficiency | es |
dc.subject.other | Consistency | es |
dc.subject.other | Non-parametric regression models | es |
dc.subject.other | Testing for independence | es |
dc.subject.other | Weighted bootstrap | es |
dc.title | Computationally efficient approximations for independence tests in non-parametric regression | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1080/00949655.2020.1843038 | es |
dc.description.fundingtext | Programa Paraguayo para el Desarrollo de la Ciencia y Tecnología. Programa de Vinculación de Científicos y Tecnólogos | es |
dc.identifier.essn | 1563-5163 | es |
dc.issue.number | 6 | es |
dc.journal.title | Journal of Statistical Computation and Simulation | es |
dc.page.initial | 1134 | es |
dc.page.final | 1154 | es |
dc.relation.projectCONACYT | PVCT18-296 | es |
dc.rights.accessRights | info:eu-repo/semantics/closedAccess | es |
dc.rights.copyright | © Taylor & Francis | es |
dc.volume.number | 91 | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos científicos
La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.