Mostrar el registro sencillo del ítem
A weighted bootstrap approximation for comparing the error distributions in nonparametric regression
dc.contributor.author | Rivas Martínez, Gustavo Ignacio | |
dc.contributor.author | Jiménez Gamero, María Dolores | |
dc.date.accessioned | 2024-07-17T21:31:00Z | |
dc.date.available | 2024-07-17T21:31:00Z | |
dc.date.issued | 2017-09-06 | |
dc.identifier.citation | Rivas Martínez, G. I., & Jiménez Gamero, M. D. (2020). Computationally efficient approximations for independence tests in non-parametric regression. Journal of Statistical Computation and Simulation, 91(6), 1134-1154. https://doi.org/10.1080/00949655.2020.1843038 | en |
dc.identifier.other | https://doi.org/10.1080/00949655.2020.1843038 | es |
dc.identifier.uri | http://hdl.handle.net/20.500.14066/4433 | |
dc.description | Correspondence: gusyri@hotmail.com | en |
dc.description.abstract | Several procedures have been proposed for testing the equality of error distributions in two or more nonparametric regression models. Here we deal with methods based on comparing estimators of the cumulative distribution function (CDF) of the errors in each population to an estimator of the common CDF under the null hypothesis. The null distribution of the associated test statistics has been approximated by means of a smooth bootstrap (SB) estimator. This paper proposes to approximate their null distribution through a weighted bootstrap. It is shown that it produces a consistent estimator. The finite sample performance of this approximation is assessed by means of a simulation study, where it is also compared to the SB. This study reveals that, from a computational point of view, the proposed approximation is more efficient than the one provided by the SB. | es |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología | es |
dc.language.iso | eng | es |
dc.publisher | Taylor & Francis | es |
dc.subject.other | Computational efficiency | es |
dc.subject.other | Consistency | es |
dc.subject.other | Nonparametric models | es |
dc.subject.other | Regression residuals | es |
dc.subject.other | Weighted bootstrap | es |
dc.title | A weighted bootstrap approximation for comparing the error distributions in nonparametric regression | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1080/00949655.2017.1373776 | es |
dc.description.fundingtext | Programa Paraguayo para el Desarrollo de la Ciencia y Tecnología. Programa de Vinculación de Científicos y Tecnólogos | es |
dc.identifier.essn | 1563-5163 | es |
dc.issue.number | 18 | es |
dc.journal.title | Journal of Statistical Computation and Simulation | es |
dc.page.initial | 3503 | es |
dc.page.final | 3520 | es |
dc.relation.projectCONACYT | PVCT16-48 | es |
dc.rights.accessRights | info:eu-repo/semantics/closedAccess | es |
dc.rights.copyright | © Taylor & Francis | es |
dc.volume.number | 87 | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos científicos
La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.