Mostrar el registro sencillo del ítem
Adjacent inputs with different labels and hardness in supervised learning
dc.contributor.author | Grillo, Sebastián Alberto | |
dc.contributor.author | Mello Román, Julio César | |
dc.contributor.author | Mello Román, Jorge Daniel | |
dc.contributor.author | Vázquez Noguera, José Luis | |
dc.contributor.author | García Torres, Miguel | |
dc.contributor.author | Divina, Federico | |
dc.contributor.author | Gardel Sotomayor, Pedro Esteban | |
dc.contributor.other | Universidad Americana/ INCADE S.A.E | es |
dc.date.accessioned | 2025-02-03T17:14:44Z | |
dc.date.available | 2025-02-03T17:14:44Z | |
dc.date.issued | 2021-11-25 | |
dc.identifier.citation | Grillo, S. A., Mello Román, J. C., Mello Román, J. D., Vázquez Noguera, J. L., García Torres, M., & Divina, F. (2021). Adjacent inputs with different labels and hardness in supervised learning. IEEE Access, 9, 162487-162498. https://doi.org/10.1109/ACCESS.2021.3131150 | en |
dc.identifier.other | https://doi.org/10.1109/ACCESS.2021.3131150 | es |
dc.identifier.uri | http://hdl.handle.net/20.500.14066/4519 | |
dc.description | Corresponding author: Sebastián A. Grillo (sebastian.grillo@ua.edu.py) | en |
dc.description.abstract | An important aspect of the design of effective machine learning algorithms is the complexity analysis of classification problems. In this paper, we propose a study aimed at determining the relation between the number of adjacent inputs with different labels and the required number of examples for the task of inducing a classification model. To this aim, we first quantified the adjacent inputs with different labels as a property, using a measure denoted as Neighbour Input Variation (NIV). We analyzed the relation that NIV has to random data and overfitting. We then demonstrated that a threshold of NIV may determine if a classification model can generalize to unseen data. We also presented a case study aimed at analyzing threshold neural networks and the required first hidden layer size in function of NIV. Finally, we performed experiments with five popular algorithms analyzing the relation between NIV and the classification error on problems with few dimensions. We conclude that functions whose similar inputs have different outputs with high probability, considerably reduce the generalization capacity of classification algorithms. | es |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología | es |
dc.language.iso | eng | es |
dc.publisher | Institute of Electrical and Electronics Engineers | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Complexity theory | en |
dc.subject | Data models | en |
dc.subject | Machine learning algorithms | en |
dc.subject | Measurement uncertainty | en |
dc.subject | Neural networks | en |
dc.subject | Particle measurements | en |
dc.subject | Supervised learning | en |
dc.subject.classification | 7. Salud | es |
dc.subject.classification | 7.3. Prevención, vigilancia y control de enfermedades transmisibles y no transmisibles | es |
dc.subject.other | Classification | es |
dc.subject.other | Data complexity | es |
dc.subject.other | Machine learning | es |
dc.subject.other | Overfitting | es |
dc.subject.other | Supervised learning | es |
dc.title | Adjacent inputs with different labels and hardness in supervised learning | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1109/ACCESS.2021.3131150 | es |
dc.description.fundingtext | Programa Paraguayo para el Desarrollo de la Ciencia y Tecnología. Proyectos de investigación y desarrollo | es |
dc.identifier.essn | 2169-3536 | es |
dc.journal.title | IEEE Access | es |
dc.page.initial | 162487 | es |
dc.page.final | 162498 | es |
dc.relation.projectCONACYT | PINV18-1199 | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.copyright | © 2021 Los Autores | es |
dc.subject.ocde | 2. Ingeniería y Tecnología | es |
dc.subject.ocde | 2.2. Ingeniería Eléctrica, Electrónica e Informática [ingeniería eléctrica, electrónica, ingeniería y sistemas de comunicación, ingeniería informática (sólo equipos) y otras disciplinas afines] | es |
dc.volume.number | 9 | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos científicos
La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.