Mostrar el registro sencillo del ítem

dc.contributor.authorGrillo, Sebastián Alberto 
dc.contributor.authorMello Román, Julio César
dc.contributor.authorMello Román, Jorge Daniel
dc.contributor.authorVázquez Noguera, José Luis 
dc.contributor.authorGarcía Torres, Miguel
dc.contributor.authorDivina, Federico
dc.contributor.authorGardel Sotomayor, Pedro Esteban
dc.contributor.otherUniversidad Americana/ INCADE S.A.Ees
dc.date.accessioned2025-02-03T17:14:44Z
dc.date.available2025-02-03T17:14:44Z
dc.date.issued2021-11-25
dc.identifier.citationGrillo, S. A., Mello Román, J. C., Mello Román, J. D., Vázquez Noguera, J. L., García Torres, M., & Divina, F. (2021). Adjacent inputs with different labels and hardness in supervised learning. IEEE Access, 9, 162487-162498. https://doi.org/10.1109/ACCESS.2021.3131150en
dc.identifier.otherhttps://doi.org/10.1109/ACCESS.2021.3131150es
dc.identifier.urihttp://hdl.handle.net/20.500.14066/4519
dc.descriptionCorresponding author: Sebastián A. Grillo (sebastian.grillo@ua.edu.py)en
dc.description.abstractAn important aspect of the design of effective machine learning algorithms is the complexity analysis of classification problems. In this paper, we propose a study aimed at determining the relation between the number of adjacent inputs with different labels and the required number of examples for the task of inducing a classification model. To this aim, we first quantified the adjacent inputs with different labels as a property, using a measure denoted as Neighbour Input Variation (NIV). We analyzed the relation that NIV has to random data and overfitting. We then demonstrated that a threshold of NIV may determine if a classification model can generalize to unseen data. We also presented a case study aimed at analyzing threshold neural networks and the required first hidden layer size in function of NIV. Finally, we performed experiments with five popular algorithms analyzing the relation between NIV and the classification error on problems with few dimensions. We conclude that functions whose similar inputs have different outputs with high probability, considerably reduce the generalization capacity of classification algorithms.es
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnologíaes
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineerses
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectComplexity theoryen
dc.subjectData modelsen
dc.subjectMachine learning algorithmsen
dc.subjectMeasurement uncertaintyen
dc.subjectNeural networksen
dc.subjectParticle measurementsen
dc.subjectSupervised learningen
dc.subject.classification7. Saludes
dc.subject.classification7.3. Prevención, vigilancia y control de enfermedades transmisibles y no transmisibleses
dc.subject.otherClassificationes
dc.subject.otherData complexityes
dc.subject.otherMachine learninges
dc.subject.otherOverfittinges
dc.subject.otherSupervised learninges
dc.titleAdjacent inputs with different labels and hardness in supervised learninges
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1109/ACCESS.2021.3131150es
dc.description.fundingtextPrograma Paraguayo para el Desarrollo de la Ciencia y Tecnología. Proyectos de investigación y desarrolloes
dc.identifier.essn2169-3536es
dc.journal.titleIEEE Accesses
dc.page.initial162487es
dc.page.final162498es
dc.relation.projectCONACYTPINV18-1199es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.copyright© 2021 Los Autoreses
dc.subject.ocde2. Ingeniería y Tecnologíaes
dc.subject.ocde2.2. Ingeniería Eléctrica, Electrónica e Informática [ingeniería eléctrica, electrónica, ingeniería y sistemas de comunicación, ingeniería informática (sólo equipos) y otras disciplinas afines]es
dc.volume.number9es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos
    La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional