• Contacto
  • Sugerencias
  • Acerca de
    • Repositorio Institucional del CONACYT
    • Preguntas frecuentes
    • español
    • English
Ver ítem 
  •   RI-CONACYT Principal
  • Producción científica
  • Artículos científicos
  • Ver ítem
  •   RI-CONACYT Principal
  • Producción científica
  • Artículos científicos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybridizing Deep Learning and Neuroevolution: Application to the Spanish Short-Term Electric Energy Consumption Forecasting

PINV18-661art (400.8Kb)
Exportar
RISMendeleyRefworksZotero
Compartir
URI
http://hdl.handle.net/20.500.14066/3783
Registro completo
Mostrar el registro completo del ítem
Autor(es)
Torres, José F.; Divina, Federico; García Torres, Miguel; Martínez Alvarez, Francisco; Troncoso, Alicia
Fecha de publicación
2020
Tipo de publicación
research article
Materia(s)
ELECTRIC ENERGY
TIME-SERIES FORECASTING
DEEP LEARNING
EVOLUTIONARY COMPUTATION
NEUROEVOLUTION
 
Resumen
The electric energy production would be much more efficient if accurate estimations of the future demand were available, since these would allow allocating only the resources needed for the production of the right amount of energy required. With this motivation in mind, we propose a strategy, based on neuroevolution, that can be used to this aim. Our proposal uses a genetic algorithm in order to find a sub-optimal set of hyper-parameters for configuring a deep neural network, which can then be used for obtaining the forecasting. Such a strategy is justified by the observation that the performances achieved by deep neural networks are strongly dependent on the right setting of the hyper-parameters, and genetic algorithms have shown excellent search capabilities in huge search spaces. Moreover, we base our proposal on a distributed computing platform, which allows its use on a large time-series. In order to assess the performances of our approach, we have applied it to a large dataset, related to the electric energy consumption registered in Spain over almost 10 years. Experimental results confirm the validity of our proposal since it outperforms all other forecasting techniques to which it has been compared.
Colecciones
  • Artículos científicos

Listar

Todo RI-CONACYTComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Consejo Nacional de Ciencia y Tecnología (CONACYT)

Dr. Justo Prieto N 223 entre Teófilo del Puerto y Nicolás Billof, Villa Aurelia.

Telefax: +(595-21) 506 223 / 506 331 / 506 369

Código Postal 001417 - Villa Aurelia

Asunción - Paraguay