Mostrar el registro sencillo del ítem

dc.contributor.authorParra, Rodrigo
dc.contributor.authorOjeda, Verena
dc.contributor.authorVázquez Noguera, José Luis 
dc.contributor.authorGarcía Torres, Miguel
dc.contributor.authorMello Román, Julio César
dc.contributor.authorVillalba Cardozo, Cynthia Emilia 
dc.contributor.authorFacon, Jacques
dc.contributor.authorDivina, Federico
dc.contributor.authorCardozo, Olivia
dc.contributor.authorCastillo, Verónica Elisa
dc.contributor.authorCastro Matto, Ingrid
dc.contributor.otherUniversidad Americana/INCADE S.A.Ees
dc.date.accessioned2022-04-29T23:09:50Z
dc.date.available2022-04-29T23:09:50Z
dc.date.issued2021-10-21
dc.identifier.citationParra, R., Ojeda, V., Vázquez Noguera, J. L., García Torres, M., Mello Román, J. C., Villalba, C., Facon, J., Divina, F., Cardozo, O., Castillo, V. E., & Castro Matto, I. (2021). A trust-based methodology to evaluate deep learning models for automatic diagnosis of ocular toxoplasmosis from fundus images. Diagnostics, 11(11), Artículo 1951. https://doi.org/10.3390/diagnostics11111951en
dc.identifier.otherhttps://doi.org/10.3390/diagnostics11111951es
dc.identifier.urihttp://hdl.handle.net/20.500.14066/3791
dc.descriptionCorrespondence: rodrigo.parra@ua.edu.py; Tel.: +595-981-433-908en
dc.descriptionThis article belongs to the Special Issue Eye Diseases: Diagnosis and Management.en
dc.description.abstractIn the automatic diagnosis of ocular toxoplasmosis (OT), Deep Learning (DL) has arisen as a powerful and promising approach for diagnosis. However, despite the good performance of the models, decision rules should be interpretable to elicit trust from the medical community. Therefore, the development of an evaluation methodology to assess DL models based on interpretability methods is a challenging task that is necessary to extend the use of AI among clinicians. In this work, we propose a novel methodology to quantify the similarity between the decision rules used by a DL model and an ophthalmologist, based on the assumption that doctors are more likely to trust a prediction that was based on decision rules they can understand. Given an eye fundus image with OT, the proposed methodology compares the segmentation mask of OT lesions labeled by an ophthalmologist with the attribution matrix produced by interpretability methods. Furthermore, an open dataset that includes the eye fundus images and the segmentation masks is shared with the community. The proposal was tested on three different DL architectures. The results suggest that complex models tend to perform worse in terms of likelihood to be trusted while achieving better results in sensitivity and specificity.es
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnologíaes
dc.format.extent15 páginases
dc.language.isoenges
dc.publisherMultidisciplinary Digital Publishing Instituteen
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classification7. Saludes
dc.subject.classification7.3. Prevención, vigilancia y control de enfermedades transmisibles y no transmisibleses
dc.subject.otherDeep learninges
dc.subject.otherMachine learning interpretabilityes
dc.subject.otherOcular toxoplasmosises
dc.subject.otherTrusten
dc.titleA trust-based methodology to evaluate deep learning models for automatic diagnosis of ocular toxoplasmosis from fundus imageses
dc.typeinfo:eu-repo/semantics/articlees
dc.description.fundingtextPrograma Paraguayo para el Desarrollo de la Ciencia y Tecnología. Proyectos de investigación y desarrolloes
dc.identifier.essn2075-4418es
dc.issue.number11es
dc.journal.titleDiagnosticses
dc.relation.projectCONACYTPINV18-1293es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.copyright© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).en
dc.subject.ocde2. Ingeniería y Tecnologíaes
dc.subject.ocde2.2. Ingeniería eléctrica, electrónica [ingeniería eléctrica, electrónica, ingeniería y sistemas de comunicación, ingeniería informática (sólo equipos) y otras disciplinas afines]es
dc.volume.number11es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos
    La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional