Mostrar el registro sencillo del ítem
A trust-based methodology to evaluate deep learning models for automatic diagnosis of ocular toxoplasmosis from fundus images
dc.contributor.author | Parra, Rodrigo | |
dc.contributor.author | Ojeda, Verena | |
dc.contributor.author | Vázquez Noguera, José Luis | |
dc.contributor.author | García Torres, Miguel | |
dc.contributor.author | Mello Román, Julio César | |
dc.contributor.author | Villalba Cardozo, Cynthia Emilia | |
dc.contributor.author | Facon, Jacques | |
dc.contributor.author | Divina, Federico | |
dc.contributor.author | Cardozo, Olivia | |
dc.contributor.author | Castillo, Verónica Elisa | |
dc.contributor.author | Castro Matto, Ingrid | |
dc.contributor.other | Universidad Americana/INCADE S.A.E | es |
dc.date.accessioned | 2022-04-29T23:09:50Z | |
dc.date.available | 2022-04-29T23:09:50Z | |
dc.date.issued | 2021-10-21 | |
dc.identifier.citation | Parra, R., Ojeda, V., Vázquez Noguera, J. L., García Torres, M., Mello Román, J. C., Villalba, C., Facon, J., Divina, F., Cardozo, O., Castillo, V. E., & Castro Matto, I. (2021). A trust-based methodology to evaluate deep learning models for automatic diagnosis of ocular toxoplasmosis from fundus images. Diagnostics, 11(11), Artículo 1951. https://doi.org/10.3390/diagnostics11111951 | en |
dc.identifier.other | https://doi.org/10.3390/diagnostics11111951 | es |
dc.identifier.uri | http://hdl.handle.net/20.500.14066/3791 | |
dc.description | Correspondence: rodrigo.parra@ua.edu.py; Tel.: +595-981-433-908 | en |
dc.description | This article belongs to the Special Issue Eye Diseases: Diagnosis and Management. | en |
dc.description.abstract | In the automatic diagnosis of ocular toxoplasmosis (OT), Deep Learning (DL) has arisen as a powerful and promising approach for diagnosis. However, despite the good performance of the models, decision rules should be interpretable to elicit trust from the medical community. Therefore, the development of an evaluation methodology to assess DL models based on interpretability methods is a challenging task that is necessary to extend the use of AI among clinicians. In this work, we propose a novel methodology to quantify the similarity between the decision rules used by a DL model and an ophthalmologist, based on the assumption that doctors are more likely to trust a prediction that was based on decision rules they can understand. Given an eye fundus image with OT, the proposed methodology compares the segmentation mask of OT lesions labeled by an ophthalmologist with the attribution matrix produced by interpretability methods. Furthermore, an open dataset that includes the eye fundus images and the segmentation masks is shared with the community. The proposal was tested on three different DL architectures. The results suggest that complex models tend to perform worse in terms of likelihood to be trusted while achieving better results in sensitivity and specificity. | es |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología | es |
dc.format.extent | 15 páginas | es |
dc.language.iso | eng | es |
dc.publisher | Multidisciplinary Digital Publishing Institute | en |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | 7. Salud | es |
dc.subject.classification | 7.3. Prevención, vigilancia y control de enfermedades transmisibles y no transmisibles | es |
dc.subject.other | Deep learning | es |
dc.subject.other | Machine learning interpretability | es |
dc.subject.other | Ocular toxoplasmosis | es |
dc.subject.other | Trust | en |
dc.title | A trust-based methodology to evaluate deep learning models for automatic diagnosis of ocular toxoplasmosis from fundus images | es |
dc.type | info:eu-repo/semantics/article | es |
dc.description.fundingtext | Programa Paraguayo para el Desarrollo de la Ciencia y Tecnología. Proyectos de investigación y desarrollo | es |
dc.identifier.essn | 2075-4418 | es |
dc.issue.number | 11 | es |
dc.journal.title | Diagnostics | es |
dc.relation.projectCONACYT | PINV18-1293 | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.copyright | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | en |
dc.subject.ocde | 2. Ingeniería y Tecnología | es |
dc.subject.ocde | 2.2. Ingeniería eléctrica, electrónica [ingeniería eléctrica, electrónica, ingeniería y sistemas de comunicación, ingeniería informática (sólo equipos) y otras disciplinas afines] | es |
dc.volume.number | 11 | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos científicos
La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.