Mostrar el registro sencillo del ítem

dc.contributor.authorParra, Rodrigo
dc.contributor.authorOjeda, Verena
dc.contributor.authorVázquez Noguera, José Luis 
dc.contributor.authorGarcía Torres, Miguel
dc.contributor.authorMello Román, Julio César
dc.contributor.authorFacon, Jacques
dc.contributor.authorDivina, Federico
dc.contributor.authorCardozo, Olivia
dc.contributor.authorCastillo, Veronica Elisa
dc.contributor.authorCastro Matto, Ingrid
dc.contributor.otherUniversidad Nacional de Asunción - Facultad Politécnicaes
dc.contributor.otherUniversidad Americana (PY)es
dc.contributor.otherUniversidad Pablo de Olavide (ES)es
dc.date.accessioned2022-04-29T23:11:19Z
dc.date.available2022-04-29T23:11:19Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.14066/3794
dc.description.abstractOcular toxoplasmosis (OT) is commonly diagnosed through the analysis of fundus images of the eye by a specialist. Despite Deep Learning being widely used to process and recognize pathologies in medical images, the diagnosis of ocular toxoplasmosis(OT) has not yet received much attention. A predictive computational model is a valuable time-saving option if used as a support tool for the diagnosis of OT. It could also help diagnose atypical cases, being particularly useful for ophthalmologists who have less experience. In this work, we propose the use of a deep learning model to perform automatic diagnosis of ocular toxoplasmosis from images of the eye fundus. A pretrained residual neural network is fine-tuned on a dataset of samples collected at the medical center of Hospital de Clínicas in Asunción, Paraguay. With sensitivity and specificity rates equal to 94% and 93%,respectively, the results show that the proposed model is highly promising. In order to replicate the results and advance further in this area of research, an open data set of images of the eye fundus labeled by ophthalmologists is made available.es
dc.description.sponsorshipCONACYT - Consejo Nacional de Ciencia y Tecnologíaes
dc.language.isoenges
dc.subject.classification1303 I+D en relación con las Ciencias médicases
dc.subject.otherOCULAR TOXOPLASMOSISes
dc.subject.otherDEEP LEARNINGes
dc.subject.otherRESIDUAL NEURAL NETWORKSes
dc.subject.otherPREDICTIVE MODELes
dc.titleAutomatic Diagnosis of Ocular Toxoplasmosis from Fundus Images with Residual Neural Networks.es
dc.typeresearch articlees
dc.description.fundingtextPROCIENCIAes
dc.journal.titlePublic Health and Informaticses
dc.relation.projectCONACYTPINV18-1293es
dc.rights.accessRightsopen accesses


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos
    La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.

Mostrar el registro sencillo del ítem