Mostrar el registro sencillo del ítem
Automatic Diagnosis of Ocular Toxoplasmosis from Fundus Images with Residual Neural Networks.
dc.contributor.author | Parra, Rodrigo | |
dc.contributor.author | Ojeda, Verena | |
dc.contributor.author | Vázquez Noguera, José Luis | |
dc.contributor.author | García Torres, Miguel | |
dc.contributor.author | Mello Román, Julio César | |
dc.contributor.author | Facon, Jacques | |
dc.contributor.author | Divina, Federico | |
dc.contributor.author | Cardozo, Olivia | |
dc.contributor.author | Castillo, Veronica Elisa | |
dc.contributor.author | Castro Matto, Ingrid | |
dc.contributor.other | Universidad Nacional de Asunción - Facultad Politécnica | es |
dc.contributor.other | Universidad Americana (PY) | es |
dc.contributor.other | Universidad Pablo de Olavide (ES) | es |
dc.date.accessioned | 2022-04-29T23:11:19Z | |
dc.date.available | 2022-04-29T23:11:19Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14066/3794 | |
dc.description.abstract | Ocular toxoplasmosis (OT) is commonly diagnosed through the analysis of fundus images of the eye by a specialist. Despite Deep Learning being widely used to process and recognize pathologies in medical images, the diagnosis of ocular toxoplasmosis(OT) has not yet received much attention. A predictive computational model is a valuable time-saving option if used as a support tool for the diagnosis of OT. It could also help diagnose atypical cases, being particularly useful for ophthalmologists who have less experience. In this work, we propose the use of a deep learning model to perform automatic diagnosis of ocular toxoplasmosis from images of the eye fundus. A pretrained residual neural network is fine-tuned on a dataset of samples collected at the medical center of Hospital de Clínicas in Asunción, Paraguay. With sensitivity and specificity rates equal to 94% and 93%,respectively, the results show that the proposed model is highly promising. In order to replicate the results and advance further in this area of research, an open data set of images of the eye fundus labeled by ophthalmologists is made available. | es |
dc.description.sponsorship | CONACYT - Consejo Nacional de Ciencia y Tecnología | es |
dc.language.iso | eng | es |
dc.subject.classification | 1303 I+D en relación con las Ciencias médicas | es |
dc.subject.other | OCULAR TOXOPLASMOSIS | es |
dc.subject.other | DEEP LEARNING | es |
dc.subject.other | RESIDUAL NEURAL NETWORKS | es |
dc.subject.other | PREDICTIVE MODEL | es |
dc.title | Automatic Diagnosis of Ocular Toxoplasmosis from Fundus Images with Residual Neural Networks. | es |
dc.type | research article | es |
dc.description.fundingtext | PROCIENCIA | es |
dc.journal.title | Public Health and Informatics | es |
dc.relation.projectCONACYT | PINV18-1293 | es |
dc.rights.accessRights | open access | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos científicos
La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.