• Contacto
  • Sugerencias
  • Acerca de
    • Repositorio Institucional del CONACYT
    • Preguntas frecuentes
    • español
    • English
Ver ítem 
  •   RI-CONACYT Principal
  • Producción académica
  • Tesis de Grado
  • Ver ítem
  •   RI-CONACYT Principal
  • Producción académica
  • Tesis de Grado
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Machine Learning Approach for the Identification of a Treatment against Chagas Disease

14-INV-88-ThesisBook-ML-RubenJimenez_FINAL.pdf (1.639Mb)
14-INV-88-ThesisBook-ML-RubenJimenez_FINAL-adjunto.pdf (1.073Mb)
Exportar
RISMendeleyRefworksZotero
Compartir
URI
http://hdl.handle.net/20.500.14066/4098
Registro completo
Mostrar el registro completo del ítem
Autor(es)
Jiménez, Rubén
Asesor
Burgos Edwards, Alberto JavierAutoridad CONACYT
Fecha de publicación
2017
Tipo de publicación
other
Materia(s)
PARASITIC DISEASES
PREDICTIVE MODEL
EPIDEMIOLOGY
ENFERMEDAD DE CHAGAS
 
Resumen
In this final degree project we have presented a machine learning approach to predict the biological activity of FDA approved drugs against T. cruzi. We believe that the proposed methodology will expand the state-of-art of machine learning in the Chagas disease drug discovery pipeline. We have obtained similar performance results with the work presented in but applied only to FDA approved drugs as a repurposing strategy. A final contribution of this work is the biological evaluation provided by the metabolic pathway analysis. This evaluation allows us to map FDA approved drugs onto T. cruzi metabolic pathways. This validation is useful because it incorporates important informa tion of how the drugs target T. cruzi. Finding a subset of drugs that come up from differently motivated experiments is promising. The fact that among our results are drugs that already have been tested in the past against Chagas disease is encouraging evidence that our approaches are able to produce reasonable candidates for drug repurposing. Additionally, the majority of the drugs present in our results were never tested against T. cruzi, confirming the novelty of our approaches.
Colecciones
  • Tesis de Grado

Listar

Todo RI-CONACYTComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Consejo Nacional de Ciencia y Tecnología (CONACYT)

Dr. Justo Prieto N 223 entre Teófilo del Puerto y Nicolás Billof, Villa Aurelia.

Telefax: +(595-21) 506 223 / 506 331 / 506 369

Código Postal 001417 - Villa Aurelia

Asunción - Paraguay